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Trajectory representation learning aims to embed trajectory sequences into fixed-length vector rep-
resentations while preserving their original spatio-temporal feature proximity. Existing works either
learn trajectory representations for specific mining tasks or fail to utilize large amounts of unlabeled
trajectory data for representation learning. In this work, we propose a self-supervised Trajectory repre-
sentation learning based on Reconstruction Contrastive Learning called TrajRCL. To be specific, TrajRCL
first obtains low-distortion and high-fidelity views of trajectories through trajectory augmentation.
Then, TrajRCL leverages a Transformer based encoder–decoder network to reconstruct low-distortion
view trajectories to approximate high-fidelity trajectories. Self-supervised contrastive learning is finally
used to enhance the consistency of the two view’s trajectory representations. Extensive experiments on
two real-world demonstrate the superiority of our model over state-of-the-art baselines and significant
efficiency on similarity trajectory search and k-NN query.

© 2023 Elsevier B.V. All rights reserved.
1. Introduction

With the rise of mobile devices and the maturity of positioning
echnology, location-based applications have been widely used in
eople’s daily life. Various remote sensing satellites, electronic
ap navigation, and terminal equipment with GPS functions
re collecting massive trajectory data [1], which includes not
nly mobility trajectories such as pedestrian travel and animal
igration, but also the driving trajectories of vehicles [2]. The
ffective mining of such spatial–temporal data is the core foun-
ation for various applications to provide intelligent services [3].
owever, in reality, the spatial–temporal application scenarios
re complex and changeable, and the collected spatial–temporal
ata become more complex due to factors such as multi-source,
ampling frequency, accuracy, data missing, etc. The trajectory
epresentation learning [4] aims to embed the original trajec-
ory data from a variable-length coordinate-time stamp sequence
nto a fixed-length vector while maintaining the original spatial–
emporal feature proximity, without manually designing vari-
us fixed trajectory measurement methods for various specific
cenes. This is crucial for various downstream spatial–temporal
ata mining tasks, ranging from location recommendation (e.g.,
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predicting tourists’ future visit preferences) [5,6], to traffic fore-
casting (e.g., traffic flow prediction) [7,8], and to public security
(e.g., identifying abnormal trajectories) [9].

In recent years, representation learning technology has at-
tracted widespread attention [10,11]. In spatial–temporal data
mining, spatial–temporal representation learning has also been
partially applied and studied. In literature, Li et al. [12] propose a
deep trajectory representation method t2vec, which is similar to
the traditional Seq2Seq model. The difference is that its decoder
is to maximize the conditional probability of the input trajec-
tory to its high sampling trajectory. Recently, Chen et al. [13]
propose a trajectory-enhanced Transformer module, Toast, which
uses trajectory data to extract driving semantics on the road
network. In addition to obtaining effective road segment rep-
resentation, this method can also obtain route representation.
However, existing methods still have three key challenges to be
solved: (1) Complexity: high complexity and large capacity of
spatial–temporal data, often accompanied by sampling frequency
uncertainty, data sparsity, and noise; (2) Learning paradigm: the
trajectory data set with labels for specific tasks is very limited.
How to effectively construct learning tasks in a self-supervised
or unsupervised way to fully utilize the large-scale trajectory
data set is challenging; (3) Applicability: how to design effective
spatial–temporal representation learning model to obtain robust
trajectory representation, and easily extend the model to various
spatial–temporal data mining tasks, has not been extensively

explored.
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To tackle these challenges, we propose TrajRCL, a self-superv-
sed trajectory representation learning model based on the recon-
titution contrastive learning framework, to solve the problem of
rajectory representation learning. In TrajRCL, we use a trajec-
ory adaptive transformer-based neural network architecture as
he backbone. Specifically, three different trajectory perturbation
olicies are designed to alter the original trajectory to gener-
te different view trajectories. Then, the Transformer encoder–
ecoder is used to reconstruct low-distortion view trajectories
o high-fidelity view trajectories. For the three tasks of masking,
econstructing, and contrastive learning, three loss functions are
esigned to jointly train the model. Additionally, we also design
multi-scale spatial-aware embedding layer that uses Hilbert

oding to generate the embeddings of spatial–temporal trajecto-
ies, which are fed into the backbone for representation learning.
e conduct extensive experiments to evaluate the model perfor-
ance on two real-world trajectory datasets. The experimental

esults show the superiority of our model over several strong
aselines on various trajectory mining tasks.
Our key contributions can be summarized as follows:

• We propose a self-supervised trajectory representation
learning framework, TrajRCL, to obtain the effective tra-
jectory representation for various downstream tasks. Our
TrajRCL combines data augmentation, trajectory reconstruc-
tion, and self-supervised contrastive learning which can
effectively capture the spatiotemporal dependencies in tra-
jectory data to obtain high-quality and robust trajectory
representations.

• We design three loss functions for enhancing trajectory
representation learning in TrajRCL to jointly train the model.
Through the masking loss function, the encoder is forced to
learn the semantic information of masked tokens. Through
the reconstruction loss function, the decoder needs to re-
construct low-distortion trajectories to approximate high-
fidelity trajectories. The trajectory representations learned
by the encoder and decoder are forced to align via a con-
trastive loss function.

• Three downstream tasks are performed to evaluate the
performance of the proposed model. The results on two
real-world datasets demonstrate the effectiveness of the
proposed model in learning trajectory representation in
comparison to state-of-the-art baselines.

. Related work

.1. Representation learning

The goal of representation learning is to automatically em-
ed the original data into the low-dimensional feature vectors,
hich can be effectively used as input feature information for
arious machine learning and deep learning models [11,14]. In
he past few years, deep learning methods show their unique
erformance advantages in many fields, so deep representation
earning algorithms receive extensive attention in various fields,
ncluding text processing [15], network analysis [16,17], recom-
endation [18,19], trajectory Planning [20–23], etc. Le et al. [24]
ropose an unsupervised text representation learning method,
hich can learn fixed-length feature representations from varia-
le-length text fragments. Perozzi et al. [25] propose DeepWalk
or multi-label network classification, and learn the latent rep-
esentation of vertices in the network. Song et al. [26] propose
new metric learning scheme based on structured prediction,
hich aims to optimize clustering quality by grasping the global
tructure of the embedding space. Guo et al. [27] propose a
358
method for Streaming Session-based Recommendation that lever-
ages matrix factorization-based attention model and reservoir-
based streaming model for efficiency. Zhang et al. [18] propose
a self-supervised hypergraph learning framework for group rec-
ommendation to capture the intra- and inter-group interactions
among users and alleviate the data sparsity issue with the raw
data itself. Xia et al. [19] develop a self-supervised graph co-
training framework for session-based recommendation to en-
hance data augmentation with genuine self-supervision signals.
However, existing representation learning work is difficult to be
directly applied to trajectory data with complex spatiotemporal
features.

2.2. Self-supervised representation learning

Contrastive learning, as a form of self-supervised learning,
plays a critical role in representation learning. With the emphasis
on deep learning, comparative learning makes great progress
in the field of representation learning, and several important
researches are produced [28,29]. Some recent studies show that
the success of contrastive learning can be attributed to the max-
imization of mutual information [30]. More precisely, the widely
used infoNCE loss is a lower bound of the mutual information.

Existing studies [31–34] conduct contrastive learning at the
instance level, use data augmentation to generate different views,
and learn relevant data representations by comparing positive
and negative samples. Chen et al. [31] propose a contrastive
learning framework for visual representations and simplify con-
trastive self-supervised learning algorithms. Lin et al. [32] com-
bine representation learning and data recovery into a unified
framework from the perspective of information theory. He et al.
[33] built a dynamic dictionary with a queue and a moving
average encoder so that the learned representations can be effi-
ciently transferred to downstream tasks. Self-supervised learning
has obvious effects in addressing the effects of data sparsity
and data noise in recommendation and trajectory analysis tasks.
Sun et al. [35] propose a self-supervised hypergraph representa-
tion learning approach for sociological analysis to explore richer
patterns under various sociological criteria. Jiang et al. [36] pro-
pose a self-supervised trajectory representation learning frame-
work with temporal regularities and travel semantics, namely
START, to convert raw trajectories into low-dimensional repre-
sentation vectors by exploiting spatial–temporal characteristics
such as temporal regularities and travel semantics.

2.3. Representation learning of trajectories

Trajectory representation learning can be considered as a spe-
cial kind of representation learning for processing sequence data,
which receive a lot of attention recently [11,23,37]. Therefore, it
is natural to consider using an RNN-based encoder–decoder to
learn representations of sequential data [23,37]. The traditional
RNN-based encoder–decoder is designed for text data in natural
language processing [38], where text documents have little noise
and no time gap between words. To solve this problem, several
models based on attention mechanism are proposed [39–42], and
the time information is also encoded reasonably [43]. Trajectory
data is not only a simple time series, but also contains com-
plex spatial dependencies and road network dependencies. To
incorporate road network information, some works extract road
network graphs from real roads [44], and others encode spatial
gridding trajectory sequences [44,45].

In recent years, trajectory representation learning has been
applied to a variety of different trajectory mining tasks, such as
trajectory prediction [46], location recommendation [34], traffic
forecasting [7,47], outlier detection [48,49]. Li et al. [50] develop a



S. Li, W. Chen, B. Yan et al. Future Generation Computer Systems 148 (2023) 357–366

m
a
a
l
m
i
s
t
s
p
c
t
m
p
o

f
t
t
i
N
m
a
t
t
m
t
o
o
m
t
D
j
f
u
i
r

3

t

D
o
d
m

D

ulti-layer LSTM encoder–decoder model in which the temporal
ttention mechanism is used to enhance the sequence learning
bility for human mobility representation. Capobianco et al. [51]
everage attention mechanism to enhance the recurrent network
odel, which is applied to vessel trajectory representation learn-

ng. CNN-based models are also used for mobility sequence repre-
entation and trajectory representation learning [52,53]. Recently,
he self-attention model is used to replace RNN in trajectory
equence modeling [54]. Lin et al. [55] propose CTLE which is a
re-trained model and applies a Transformer encoder to calculate
ontextual embeddings for trajectory representation learning. In
he follow-up work [56], they further propose a TALE pre-training
ethod based on the CBOW framework, which is able to incor-
orate temporal information into the learned embedding vectors
f locations.
A line of trajectory representation learning studies is proposed

or trajectory similarity computation [17,57]. Li et al. [12] propose
he first deep learning approach to learning representations of
rajectory. Yang et al. [10] propose T3S to embed each trajectory
nto a vector in a d-dimensional space. Yao et al. [58] develop
EUTRAJ to collaborate with all spatial-based trajectory indexing
ethods to reduce the search space. Yang et al. [57] design
learning-based model to consider interactions between the

rajectory pairs. However, most existing methods learn trajec-
ory representation by approximating some traditional distance
etrics as ground truth, while ignoring the exploration of new

rajectory distance metrics based on the self-supervised paradigm
f spatiotemporal features. Only a few studies have been carried
ut from this aspect, Liu et al. [59] propose a novel contrastive
odel to learn trajectory representations by distinguishing the

rajectory-level and point-level differences between trajectories.
eng et al. [60] also learn the consistent representations of tra-
ectories by applying trajectory data augmentations under the
ramework of contrastive learning. Compared wit them, we have
nified the three joint training objectives of contrast, denois-
ng and reconstruction to achieve more generalized trajectory
epresentation and apply it to downstream tasks.

. Problem definition

In this section, we first introduce the common definitions and
hen present problem formulations.

efinition 1 (Real Path). The real moving path T of a moving
bject is a continuous spatial curve in the longitude and latitude
omain, representing the exact path of the object during its
ovement.

efinition 2 (Trajectory). A trajectory is the sample point (a, b)
sequence of the real path, where a is longitude, b is latitude, and
(a, b) is the trajectory point in geographic coordinates. Each tra-
jectory can be expressed as Tr = {(a1, b1), (a2, b2), . . . , (an, bn)},
n is the length of the trajectory.

Due to the limitation of recording equipment, we cannot ob-
tain the real path of the moving object, but only the raw trajec-
tory. When the sampling rate is high enough, it can be approxi-
mated as the real path.

Based on the above definitions, we define the studied problem
of this work as follows:

Problem 1 (Trajectory Representation Learning). Given the large-
scale trajectory dataset, our goal is to learn the low-dimensional
vector representation y ∈ Rm (m is the embedding dimension) for
each trajectory Tr such that the learned representation can reflect
the real path of the trajectory, and thus be applied to various
downstream trajectory data mining tasks.
359
4. Methodology

The overall architecture of the proposed TrajRCL is presented
in Fig. 1. In particular, TrajRCL consists of three key components:
trajectory augmentation module, Transformer-based sequence mod-
eling module, and self-supervised contrastive learning. Trajectory
augmentation module uses different data augmentation policies to
obtain trajectory sequences in both low-distortion trajectory view
and high-fidelity trajectory view. As the backbone of TrajRCL,
the goal of Transformer-based sequence modeling module is to
reconstruct the potential underlying path through the trajectory
sequences, which is mainly divided into two parts: multi-scale
spatial-aware embedding and Transformer encoder–decoder. Self-
supervised contrastive learning module uses a weight-shared pro-
jection layer to obtain deeper trajectory embeddings, and intro-
duces contrastive learning to constrain the trajectory represen-
tation learning between two different views to maximize the
representation between different views consistency.

4.1. Trajectory augmentation

The real path T of a moving object is a continuous spatial
curve (e.g., in the latitude–longitude domain) representing the
exact path taken by the object. In real-world data, a real path can
be represented by different trajectories Tr , which is a sequence of
sampling points of the underlying path of a moving object. Taking
a trajectory Tri = {⟨a1, b1⟩ , ⟨a2, b2⟩ , . . . , ⟨an, bn⟩} as an example,
we create two trajectory views for it: low-distortion trajectory
Tr ilow and high-fidelity trajectory Tr ihigh, respectively.

4.1.1. Low-distortion trajectory view
For the low-distortion trajectory view, we randomly adopt two

strategies of downsampling and dynamic distortion to obtain its
corresponding trajectory sequence:

• Downsampling. For each trajectory sequence with a given
length n, we dynamically select 20%–60% of trajectory points
for random masking. The remaining trajectory sequence is
the low-distortion trajectory view for the original trajectory.

• Dynamic Distortion. For each trajectory sequence with a
given length n, we dynamically select 20%–60% of the tra-
jectory points for distorting, and the distorted trajectory
sequence is the low-distortion trajectory view. Specifically,
point ⟨ai, bi⟩ is distorted by adding Gaussian noise with a
radius of 50 m, as follows:{

ai = ai + 50 · ϵ, ϵ ∼ Gaussian(0, 1)
bi = bi + 50 · ϵ, ϵ ∼ Gaussian(0, 1) . (1)

4.1.2. High-fidelity trajectory view
For the high-fidelity trajectory view, we randomly adopt two

strategies of original preservation and linear interpolation to ob-
tain the corresponding trajectory sequence:

• Original Preservation. Do nothing to the trajectory, and use
its original trajectory sequence as a high-fidelity trajectory
view.

• Linear Interpolation. For a trajectory sequence of given
length n, we dynamically randomly select trajectory point
pairs of 10%–20%, and use linear interpolation technology
to add new points in the middle of point pairs. The new

trajectory sequence serves as a high-fidelity trajectory view.



S. Li, W. Chen, B. Yan et al. Future Generation Computer Systems 148 (2023) 357–366

4

T
g
s
H
r
t
a
u
e

4

u
p
r
s
t
e
s{

w
H
t
e
l
b

l

Fig. 1. The overall architecture of our proposed TrajRCL.
.2. Transformer-based sequence modeling

Due to the natural sequential nature of trajectories, we choose
ransformer encoder–decoder as our backbone network, with the
oal of reconstructing the underlying path R from the trajectory
equence Tri, maximizing the conditional probability P(R | Tri).
owever, due to the unavailability of the underlying path, we
eplace maximizing objective P (R | Tri) with maximizing objec-
ive P

(
Trhigh | Trlow

)
, and use an encoder–decoder module with

self-attention network as the backbone. Specifically, the mod-
le is mainly composed of two parts: multi-scale spatial-aware
mbedding module and Transformer encoder–decoder module.

.2.1. Multi-scale spatial-aware embedding module
We first design a novel multi-scale spatial encoding method,

sing the Hilbert Curve to encode the latitude and longitude
oints in the two-dimensional space into binary forms in the cor-
esponding real number domain. This encoding method well pre-
erves the spatial structure of the original data, while increasing
he density of multi-scale spatial information. Specifically, differ-
nt view trajectories Tr∗ are embedded into the low-dimensional
pace vector H∗ through a linear layer:

Xlow = σ (WlowHlow + blow) , Hlow = Hilbert (Trlow)

Zhigh = σ
(
Whigh Hhigh + bhigh

)
, Hhigh = Hilbert

(
Trhigh

) ,

(2)

here H∗ is the representation of trajectory Tr∗ obtained through
ilbert curve transformation, σ is the Leaky ReLU activation func-
ion with a leaky rate of 0.2, W∗ and b∗ are the trainable param-
ters, and Xlow and Zhigh are the low-dimensional embedding of
ow-distortion view and high-fidelity view trajectories obtained
y multi-scale spatial-aware embedding module, respectively.
When encoding trajectory data using the Hilbert curve, each

ongitude–latitude point (ai, bi) in a trajectory Tr is first converted
to a two-dimensional point (xi, yi) in a Cartesian coordinate sys-
tem. Next, We use the Hilbert curve to map these points to a
one-dimensional index space [61], where each point corresponds
to a unique index value on the curve. The index values are
represented using binary numbers, and concatenated to form a
single vector as an alternative to coordinate points. After trans-
formation, a vector sets H can be obtained. This process can be
represented as:

H = Hilbert(Tr) = {h1, h2, . . . , hn} , (3)

where each hi represents the index of the ith longitude-latitude
point on the Hilbert curve, and n represents the length of the
trajectory. The Hilbert curve transformation enables the preser-
vation of the spatial structure of trajectory data while increasing
the density of multi-scale spatial information, thus realizing the
coding and compression of trajectory data.
360
4.2.2. Transformer encoder–decoder module
As our work is to solve the problem of trajectory sequence

representation, we employ Transformer network architecture as
the backbone network, and its encoder embeds sequence repre-
sentation Hlow of the low-distortion view trajectory Tlow by the
bidirectional encoding, so that the embedding of each trajec-
tory point through the encoder can effectively fuse the spatial
information on the entire trajectory. Its decoder utilizes an au-
toregressive language model to reconstruct high-fidelity view
trajectories from low-distortion trajectories.

For the Transformer encoder, we stack several transformer
layers, each layer consisting of a causal masked multi-head self-
attention module and a position-wise feed-forward network (FFN)
module. Position-wise FFN will output a bag of embeddings,
where the embedding at each position predicts the corresponding
next point of the sequence. Residual connections and normaliza-
tion have been applied to both modules.

For the lth layer, the input X(l)
∈ Rm×d is firstly transformed

by the multi-head self-attention module. The output of the first
attention head is:

head#1
= softmax

(
X(l)WQ

(
X(l)WK

)T
√
d

)
X(l)WV , (4)

where WQ ,WK ,WV
∈ Rd×d/h are the weight matrices corre-

sponding to ‘‘Query’’, ‘‘Key’’ and ‘‘Value’’, respectively. X(0) is the
learned embedding matrix in the input low-distortion trajec-
tory. Then, we stack multiple attention heads and merge the
outputs from different attention heads by performing a linear
transformation operation:

MultiHead
(
X(l))

=
[
head#1

; head#2
; · · · ; head#h]

× Wo, (5)

where Wo ∈ Rd×d is the learnable parameter matrix.
Next, layer normalization and residual connection on attention

module are performed to obtain the final output of the attention
module:

X(l)
ATT = LayerNorm

(
X(l)

+ MultiHead
(
X(l))) , (6)

After the attention module, it will pass through a position-
wise FFN:

X(l)
FFN = max

(
0,W1X

(l)
ATT + b1

)
W2 + b2, (7)

where W1,W2 are trainable weight matrices, and b1, b2 are bi-
ases. Lastly, the output of the l-th encoder layer can be obtained:

X(l+1)
= LayerNorm

(
X(l)

ATT + X(l)
FFN

)
, (8)

The decoder uses an autoregressive language model to re-
construct high-fidelity view trajectories through low-distortion
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rajectories. At the reconstruction step of each trajectory, the new
ecoder query WQ

Dec is compared with the encoded keys WK and
alues WV according to Eq. (3) to complete the reconstruction of
igh-fidelity view trajectories.
In this part, we design two loss functions, which are the mask-

ng distortion trajectory reconstruction loss of the bidirectional
ncoder L1 and the overall decoding loss of the autoregressive
ecoder L2. L1 is used to capture the dynamic spatial proxim-
ty information of trajectory points, and L2 is used to recon-
truct the high-fidelity view trajectory. The two loss functions are
ormalized as follows:

1 = −

∑
x̃∈M(x)

log P
(
x̃ | M̄(x)

)
, (9)

2 = − log
∏
t

P
(
zt | z1:t−1, M̄(x)

)
, (10)

here M̄(x) denotes the embedding of unmasked or undistorted
rajectory points in the low-distortion view trajectory, x̃ ∈ M(x)
denotes the embedding of masked or distorted trajectory points
in the low-distortion view trajectory, and zt is the embedding
of reconstructed tth trajectory point in the corresponding high-
fidelity view trajectory.

Next, we send the embeddings of the low-distortion view
trajectory through the encoder and the embeddings of the high-
fidelity view trajectory decoded by the decoder to the maxi-
mum pooling layer to obtain the corresponding overall trajectory
representations y(i) and z(i) as follows:

y(i) = MaxPooling (y1, y2, . . . , yn) , (11)

z(i) = MaxPooling (z1, z2, . . . , zn) . (12)

4.3. Self-supervised contrastive learning

After obtaining trajectory representations of different views,
we further feed them into a weight-shared projection layer to
obtain their deep representations. Contrastive learning has
demonstrated its superiority in various representation learning
applications. Inspired by that, we introduce a self-supervised
contrastive learning framework to enhance the model’s represen-
tation learning ability, maximizing the consistency of representa-
tions learned from different trajectory views.

We implement the operation of trajectory projection using
two dense layers to obtain a deep representation:

y(i) = W(2) σ
(
W(1)y(i) + b(1)

)
+ b(2),

z(i) = W(2) σ
(
W(1)z(i) + b(1)

)
+ b(2),

(13)

where W(∗) is the learnable weight vector and b(∗) is the bias. σ
is a leaky ReLU activation function with a leaky rate of 0.2.

In self-supervised contrastive learning, the deep represen-
tation pairs under different views of the same trajectory are
regarded as positive sample pairs, while other samples under
the same batch are regarded as negative samples. The goal of
optimization is to make the different views (i.e., low-distortion
trajectory view and high-fidelity trajectory view) of the same
trajectory sample as consistent as possible in the representation
space and at the same time be as far away as possible from
other negative samples in the same batch. The loss function L3
is formalized as follows:

L3 = − log
esim

(
y(i),z(i)

)
/τ∑N

j=1 e
sim(y(i),z(j))/τ

, (14)

here τ is the temperature parameter, sim(·, ·) is the cosine
imilarity function, and (y(i), z(j)) represents a pair of negative
amples.
361
.4. Model learning

The overall loss Lmodel of the model is obtained by combining
he trajectory reconstruction loss L1, the overall decoding loss L2,
ith the contrastive learning loss L3. More specifically, we opti-
ize our model by maximizing the following objective function:

model = β(L1 + αL2) + L3. (15)

here α and β are used to balance the importance of reconstruc-
ion loss, decoding loss, and contrastive learning loss.

. Experiment

To verify the effectiveness of our proposed model, we con-
uct extensive experiments on two public real-world trajectory
atasets.

.1. Datasets

We evaluate TrajRCL on two public real-world trajectory
atasets in two cities, i.e., Porto taxi trajectory dataset and T-Drive
rajectory dataset. The Porto dataset comes from the ECML-PKDD
ompetition and contains more than 1.7 million complete trajec-
ories collected from 442 taxis operating in the city of Porto from
uly 1, 2013 to June 30, 2014. Its sampling frequency is once every
5 s. The T-Drive dataset is a sample of the T-Drive trajectory
ataset, which contains the weekly trajectories of 10,357 taxis
rom February 2 to February 8, 2008, and the total number of
rajectory points is about 17 million.

.2. Baseline methods

To evaluate the performance of our TrajRCL, we study the most
imilarity search problem and k-NN query problem on the Porto
ataset, and compare TrajRCL with six classical trajectory distance
easures: the Hausdorff distance [62], the Fréchet distance [63],
ynamic Time Warping (DTW) [64], Longest Common SubSe-
uence (LCSS) [65], Edit distance with Real Plenty (ERP) [66], Edit
istance on Real sequence (EDR) [67] and the latest Contrastive
earning based Trajectory Similarity Computation (CL-TSim) [60]
ethod.
We also evaluate the effectiveness of our TrajRCL for the

rajectory prediction task on both Porto and T-Drive datasets, and
ompare our model with the following baselines:

• ST-LSTM [68]: This method is a long- and short-term tra-
jectory prediction model considering spatial trajectory rela-
tionship.

• STAN [54]: This method explicitly exploits relative spa-
tiotemporal information of all the points with self-attention
layers along the trajectory.

• CTLE [55]: This is a Context and Time aware Location Em-
bedding (CTLE) model, which calculates a location’s repre-
sentation vector with consideration of its specific contextual
neighbors in trajectories.

• TALE [56]: This is a Time-Aware Location Embedding (TALE)
pre-training method based on the CBOW framework, which
is able to incorporate temporal information into the learned
embedding vectors of locations.

• Graph-Flashback (G-Fback) [34]: This is a state-of-the-art
graph-based model with strong location representation abil-
ity.

• PreCLN [46]: This is a pretrained-based contrastive learning

network for vehicle trajectory prediction.
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Table 1
Overall performance comparisons for most similar trajectory search on Porto dataset.
Method 5k 10k 20k 30k 40k 50k 60k Time

Hausdorff 2.14 3.1 5.26 7.47 9.74 11.94 14.18 17886 s
Fréchet 2.11 2.99 4.91 6.96 9.06 10.88 12.79 34280 s
DTW 1.32 1.78 2.12 2.63 3.21 3.78 4.32 18420 s
LCSS 25.31 28.45 40.77 39.43 42.09 50.85 48.81 21060 s
ERP 41.41 78.59 152.62 229.07 307.07 383.06 460.09 22800 s
EDR 16.00 29.92 58.29 83.31 105.14 139.23 169.53 20340 s
CL-TSim 1.21 1.97 2.74 2.86 3.05 3.47 4.89 1764 s
TrajRCL 1.42 1.61 2.47 2.58 4.20 6.85 7.90 68 s
5.3. Experimental settings

One of the most important tasks in trajectory analysis is simi-
ar trajectory search. Following [12], we design two experiments
i.e., most similar trajectory search and k-nearest-neighbors (k-
NN) query) to evaluate the accuracy of methods for comput-
ing trajectory similarity using self-similarity and cross-similarity
comparisons. Specifically, We randomly select 1,000 trajectories
from the test dataset, denoted by Q , and then we select another
n trajectories, denoted as P . For each trajectory Tri ∈ Q , we
generate two sub-trajectories from it by the odd-even sampling
of trajectory points, denoted as Tra and Tra′ , and use them to
construct two datasets DQ = {Ta} and DQ ′ = {Ta′}. We perform
the same operation for the trajectories in P to get DP and DP ′ .
For each query Ta ∈ DQ , we compute its top-k most similar
trajectories from database DQ ′ ∪Dp′ and calculate the rank of Tra′ .
Ideally, Tra′ is ranked at the top since it is produced from the same
original trajectory as Tra.

Moreover, we further validate TrajRCL using the trajectory
prediction task. Following [46], for each trajectory Tri = ⟨(t1, lat1,
lon1), (t2, lat2, lon2), . . . , (tn, latn, lonn)⟩, we encode the latitude
latj and longitude lonj, and then generate the trajectory loca-
tion coding sequence to predict the future trajectory location
sequence. Given all trajectories of all vehicles TR and the road
network G, our goal is to predict the future vehicle trajectory of
the next ∆ time steps for any given vehicle.

5.4. Performance evaluation for most similar trajectory search

We first evaluate the performance of our TrajRCL for the most
similar trajectory search task compared to six trajectory distance
measurement methods by increasing the number of trajectories
from 5k to 60k. We report the mean rank of 1k queries in DQ and
search time on the 60k dataset on Porto dataset in Table 1.

It can be seen that the mean rank performance of all meth-
ods decreases as the number of trajectories in queried dataset
increases. Among all methods, DTW achieves the best perfor-
mance, and ERP achieves the worst performance. This may be
because DTW considers the sequence information of the tra-
jectory, but does not strictly obey the trajectory point order,
while ERP introduces an interval as the threshold of edit dis-
tance, and it is not easy to determine a reasonable threshold for
large-scale trajectory distance calculation. Although our TrajRCL
does not achieve the best performance in most cases, it con-
sistently achieves at least the second-best performance, which
demonstrates that our proposed model can effectively capture the
spatiotemporal dependencies in trajectories.

More importantly, one research motivation of trajectory rep-
resentation learning is to speed up the efficiency of trajectory
similarity computation for large-scale trajectories. As can be seen
from the time results in Table 1, our TrajRCL achieves significant
efficiency improvements. In particular, compared with DTW mea-
surement, our model improves the efficiency by 271 times, even
compared with the fastest baseline CL-TSim, it also improves the
efficiency by 26 times.
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5.5. Performance evaluation for k-NN query

We next evaluate the performance of different methods on
Porto dataset for the kNN query task. In particular, we randomly
select 10,000 trajectories from the test set as the target database,
and 1,000 trajectories as the query database. We query the k-
nearest neighbors for each trajectory from the target database as
its ground truth. Then we transform the trajectories in both the
query and target databases by randomly dropping or distorting
points at a certain rate. Next, for each transformed query, we use
each method to find its k-NNs from the target database, and then
compare the result with the corresponding ground truth. Tables 2,
3, and 4 show the Precision results of all methods w.r.t. different
dropping rates and distorting rates. The corresponding average
query time for k-NN queries is also shown in the last column in
each table.

From the results in the three tables, we have the following
three findings: (1) As the dropping/distorting rate increases, the
performance of all methods decreases. More specifically, drop-
ping has a greater impact on model performance than distorting
on the same scale. It is obvious that discarding trajectory points is
more likely to change the spatial characteristics of the trajectory.
(2) As k increases, the performance of our TrajRCL gets better and
better. For example, when k = 20, our model achieves the best
performance in most cases, but when k = 40 our model achieves
the best performance in all cases. This also demonstrates that our
model can learn the representations of similar trajectories more
closely. (3) The query efficiency of our TrajRCL is far superior to
other measurement methods. Specifically, our model is up to 78
times more efficient than the Fréchet measurement. Compared
with the state-of-the-art CL-TSim for 40-NN query, the efficiency
is improved by 8.2 times.

5.6. Performance evaluation for trajectory prediction

To further evaluate the trajectory representation ability of the
model, we introduce a trajectory prediction task. Specifically,
we use TrajRCL to learn trajectory representations, i.e., y and z,
and then concatenate them to obtain the final trajectory repre-
sentation. Then we import the trajectory representation into an
MLP trajectory decoder to predict future trajectory sequences. We
adopt the MSE, RMSE, and their standard deviation as evaluation
metrics to verify the performance of the proposed model.

Table 5 shows the comparison results of TrajRCL with the
baseline models, where the best values are shown in bold. From
all the results, we can see that TrajRCL achieves the best trajectory
prediction performance, which demonstrates that our model has
a strong learning ability to represent trajectories. In particular,
the relative performance improvement of our TrajRCL over the
best-performed baseline PreCLN is 6.1% and 8.3% in terms of MAE
and RMSE on T-Drive dataset. TrajRCL also significantly outper-
forms the graph-based baseline Graph-Flashback by an average
of 14.91% and 52.36% improvements in terms of MAE and RMSE
on two datasets, respectively. Although PreCLN model considers
the contrastive learning framework and three pre-training tasks,
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Table 2
Overall performance comparisons for 20-NN queries on Porto dataset.
Method k = 20, dropping rate k = 20, distorting rate Time

0.2 0.3 0.4 0.5 0.6 0.2 0.3 0.4 0.5 0.6

Hausdorff 0.5043 0.4021 0.2230 0.1542 0.1593 0.3712 0.2215 0.1342 0.1215 0.0852 12.18 s
Fréchet 0.5523 0.3673 0.2815 0.1725 0.1730 0.4125 0.2921 0.1354 0.1230 0.0850 68.19 s
DTW 0.0379 0.0300 0.0250 0.0279 0.0270 0.0269 0.0216 0.0178 0.0147 0.0143 19.76 s
LCSS 0.3720 0.3521 0.2315 0.1763 0.1763 0.5140 0.4521 0.4012 0.3536 0.3573 20.96 s
ERP 0.0325 0.0230 0.0190 0.0145 0.0145 0.8170 0.7700 0.7590 0.7035 0.6985 40.64 s
EDR 0.0130 0.0060 0.0040 0.0075 0.0075 0.0995 0.0790 0.0640 0.0565 0.0570 20.32 s
CL-TSim 0.6924 0.6243 0.5874 0.5079 0.5441 0.7164 0.6948 0.6793 0.6185 0.6523 7.23 s
TrajRCL 0.7820 0.7048 0.6518 0.6045 0.6027 0.8002 0.7763 0.7428 0.7137 0.7125 0.87 s
Table 3
Overall performance comparisons for 30-NN queries on Porto dataset.
Method k = 30, dropping rate k = 30, distorting rate Time

0.2 0.3 0.4 0.5 0.6 0.2 0.3 0.4 0.5 0.6

Hausdorff 0.4815 0.3819 0.2155 0.1342 0.1334 0.3568 0.2158 0.1275 0.1024 0.0880 12.46 s
Fréchet 0.5368 0.3564 0.2743 0.1656 0.1638 0.4052 0.2825 0.1348 0.1145 0.0879 69.75 s
DTW 0.0287 0.0233 0.0183 0.0197 0.0197 0.2467 0.1930 0.1533 0.1247 0.1217 20.21 s
LCSS 0.3964 0.3820 0.2640 0.2015 0.1995 0.5246 0.4785 0.4314 0.3840 0.3821 21.44 s
ERP 0.0233 0.0167 0.0147 0.0127 0.0127 0.7983 0.7577 0.7373 0.6830 0.6907 41.57 s
EDR 0.0127 0.0067 0.0047 0.0057 0.0057 0.0873 0.0677 0.0523 0.0453 0.0450 20.76 s
CL-TSim 0.6920 0.6345 0.5846 0.5077 0.5312 0.7125 0.6912 0.6702 0.6117 0.6433 7.64 s
TrajRCL 0.7762 0.7021 0.6558 0.6017 0.6005 0.7968 0.7740 0.7385 0.7129 0.7014 0.89 s
Table 4
Overall performance comparisons for 40-NN queries on Porto dataset.
Method k = 40, dropping rate k = 40, distorting rate Time

0.2 0.3 0.4 0.5 0.6 0.2 0.3 0.4 0.5 0.6

Hausdorff 0.4835 0.3840 0.2214 0.1387 0.1380 0.3611 0.2248 0.1243 0.1079 0.1045 9.87 s
Fréchet 0.5413 0.3613 0.2790 0.1842 0.1830 0.4005 0.3029 0.1394 0.1144 0.1131 55.30 s
DTW 0.0237 0.0207 0.0167 0.0175 0.0175 0.2430 0.1883 0.1535 0.1233 0.1188 16.02 s
LCSS 0.4453 0.4230 0.3045 0.2482 0.2475 0.5573 0.5149 0.4720 0.4280 0.4275 17.00 s
ERP 0.0212 0.0148 0.0143 0.0115 0.0115 0.8022 0.7593 0.7388 0.6805 0.6882 32.96 s
EDR 0.0133 0.0070 0.0060 0.0063 0.0063 0.0825 0.0623 0.0513 0.0423 0.0417 16.46 s
CL-TSim 0.7142 0.6578 0.6050 0.5480 0.5744 0.7245 0.7102 0.6980 0.6443 0.6632 6.89 s
TrajRCL 0.7963 0.7228 0.6745 0.6233 0.6220 0.8034 0.7903 0.7542 0.7200 0.7122 0.84 s
s
s
t
v
v

Table 5
Overall performance comparisons for trajectory prediction.
Method Porto T-Drive

MAE Std RMSE Std MAE Std RMSE Std

ST-LSTM 876.59 11.39 3395.26 238.19 99.31 3.89 1029.74 29.03
STAN 613.24 8.36 2578.16 121.83 84.39 3.42 714.37 27.14
CTLE 588.95 9.31 2385.60 89.61 71.21 2.91 603.38 20.18
TALE 211.44 5.79 1636.35 32.43 68.38 2.73 693.16 23.86
G-Fback 209.37 7.11 464.29 22.19 59.33 2.69 337.91 17.83
PreCLN 193.15 4.99 432.18 21.86 55.90 2.35 307.95 12.49
TrajRCL 184.73 3.17 412.79 21.04 52.67 1.82 284.41 8.69

it ignores the contrastive learning between different views of the
trajectory and the original trajectory data. Our TrajRCL model
can effectively learn representations from trajectory data through
reasonable trajectory enhancement and appropriate use of in-
stance pairs for comparative learning. In addition, our model is
significantly higher than the pre-training methods such as TALE
and CTLE in terms of MAE and RMSE. Through the reconstruc-
tion contrastive learning, on the one hand, our model effectively
learns the key spatiotemporal dependencies of the trajectory
through the reconstruction of low-distortion trajectories. On the
other hand, our model also uses contrastive learning to effec-
tively capture the common spatiotemporal dependencies in both
high-fidelity view and low-distortion view trajectories.

5.7. Ablation study

To validate the effectiveness of each component in TrajRCL, we
urther conduct the ablation study. We compare our TrajRCL with
our carefully designed variants.
 i
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Fig. 2. Experimental results of ablation study on Porto dataset.

• w/o Dynamic Distortion (DD): This variant removes the dy-
namic distortion strategy in low-distortion trajectory view.

• w/o Linear Interpolation (LI): This variant removes the
linear interpolation strategy in high-Fidelity trajectory view.

• w/o Multi-scale Spatial-aware embedding module (MS):
This variant removes the multi-scale spatial-aware embed-
ding module and uses a common compact layer to replace
it.

• w/o Contrastive Learning layer (CL): This variant removes
the contrastive learning layer.

We conduct ablation experiments on the two tasks of the most
imilar trajectory search and trajectory prediction. In the most
imilar trajectory search experiment, we selected the number of
rajectories 5k and 60k for comparison. As shown in Fig. 2, all
ariants exhibit similar performance trends on both tasks. All
ariants are significantly worse than the full model, demonstrat-
ng the effectiveness of the proposed sub-modules. In particular,
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Fig. 3. Parameter sensitivity w.r.t. α and β on Porto dataset.

/o CL variant shows the worst performance, which also shows
hat the contrastive learning module designed in this paper plays
major role in improving the model performance. Followed by

he w/o MS variant, which also verifies the rationality of our pro-
osed multi-scale spatial-aware embedded module. In addition,
his experiment also shows that the joint use of multiple different
rajectory enhancement strategies further improves the model
erformance.

.8. Sensitivity study

We finally investigate the sensitivity of our TrajRCL with re-
pect to the important parameters, including hyper-parameters
and β to balance the importance of reconstruction loss, de-

coding loss, and contrastive learning loss. We conduct sensitivity
experiments on the kNN query. We select k = 20 and k =

0 and the dropping rate is 0.4 to evaluate the performance of
ur model. Results on Porto dataset are shown in Fig. 3. We
an observe that: (1) When β = 0 (i.e., ignoring L1 and L2), the
erformance is the worst, this emphasizes the importance of the
econstruction loss and decoding loss. (2) When α increases from
.01, the performance of the model is significantly improved,
hich verifies the effectiveness of the decoding loss. When α =

.3, the performance of the model is the best, indicating that
he reconstruction loss and decoding loss have reached a better
alance.

. Conclusion

In this paper, we present a self-supervised framework, Tra-
RCL, for learning effective trajectory representation. It combines
ata augmentation, reconstruction, and contrastive learning to
apture dependencies in trajectories to obtain high-quality and
obust trajectory representations. TrajRCL is then jointly trained
ith three designed loss functions to enhance trajectory repre-
entation learning. The performance of our proposed model is
valuated through three trajectory analytical tasks on two real-
orld datasets and results show the superiority of our model
ompared to state-of-the-art baselines. In future work, we plan
o investigate efficient pre-trained representation learning tech-
iques for large-scale multi-source multi-spatial-scale trajectory
ata.
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