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a b s t r a c t

Multi-view unsupervised feature selection (MUFS) has recently aroused considerable attention, which
can select the compact representative feature subset from original multi-view data. Despite the
promising preliminary performance, most previous MUFS methods fail to explore the discriminative
ability of multi-view data. In addition, they usually utilize spectral analysis to maintain the geometrical
structure, which will inevitably increase the difficulty of parameter selection. To address these issues,
we present a novel MUFS method, named structural regularization based discriminative multi-view
unsupervised feature selection (SDFS). Specifically, we calculate the similarity matrix of sample
space from different views and automatically weight each view-specific graph to learn a consensus
similarity graph, in which these two types of graphs can promote each other. Further, we treat the
learned latent representation as the cluster indicator, and employ a graph regularization without
introducing additional parameters to maintain the geometrical structure of data. Besides, a simple yet
efficient iterative updating algorithm with theoretical convergence property is developed. Extensive
experiments on several benchmark datasets verify that the designed model is superior to several
state-of-the-art MUFS models.

© 2023 Elsevier B.V. All rights reserved.
1. Introduction

Nowadays multi-view data are ubiquitous in real-world ap-
lications. For instance, images can be described by different
eatures, e.g., local binary pattern (LBP), global information (GIST),
ensus transform histogram (CENT) and scale-invariant feature
ransform (SIFT). Videos can be described by different features,
.g., linear predictive coefficient (LPC) and discrete wavelet trans-
orm (DWT). Although different views can describe an identi-
al object, each view has unique heterogeneous features. Tra-
itional single-view learning methods often integrate all fea-
ures into a single view to handle the multi-view data, which
ight neglect the correlation between different views and will
ffect the performance to a certain extent. To comprehensively
xplore the abundant intrinsic information of an object from
ulti-view data, many multi-view learning methods build the
odels directly from multi-view data, including active learning

1], transfer learning [2], multi-view representation learning [3],
ulti-view clustering [4], and multi-view feature selection [5].
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Among them, multi-view feature selection is an efficient way
to reduce the dimension of high-dimensional multi-view data,
which has received considerable attention recently. In addition,
since data labeling is labor-intensive and time-consuming, multi-
view data are often labeled in practical applications. Thus, the
multi-view unsupervised feature selection (MUFS) method is a
fundamental and challenging task, which has been employed in
various applications, e.g., visual concept recognition [6], activity
recognition [7], and human motion retrieval [8].

Recently, numerous MUFS methods have been presented [6,9–
12]. The key problem of MUFS is how to model the multi-view
information to guide the process of feature selection. To solve this
issue, the clustering structure and the geometrical structure of
the original data are often considered. Specifically, Feng et al. [6]
consider the graph Laplacian [9] of each view, and then linearly
combine these graphs to maintain the local geometrical structure.
Liu et al. [10] explore the clustering structure by developing a
robust multi-view clustering strategy. Tang et al. [11] maintain
the local geometrical structure by cross-view similarity graph
learning. Fang et al. [12] integrate the learning of the cluster-
ing structure and the preservation of the geometrical structure,
which can simultaneously explore the clustering structure and
the geometrical structure.
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Although these above-mentioned MUFS methods achieve
promising performance, there still exist three key problems. (a)
Although existing methods fully utilize the information of cluster-
ing structure or geometrical structure, they rarely integrate them
into a joint framework. (b) Existing methods usually construct
view-specific similarity graphs or consensus similarity graph stat-
ically, which might lead to a lower quality of the generated graph.
(c) Existing pseudo-label learning methods cannot fully consider
the clustering structure information of the original multi-view
data.

To address these issues, we develop a novel structural regu-
larization based discriminative multi-view unsupervised feature
selection (SDFS) method, which can explore the intrinsic infor-
mation of clustering structure while maintaining the geometrical
structure of data. Specifically, the samples from the same source
or different sources usually correlate to each other due to the in-
fluence of external conditions, it is crucial to explore the inherent
attributes of the original data through the link information. Thus,
we measure the intrinsic relations between different samples by
using the adjacency matrix, and then learn the latent represen-
tation matrix of the adjacency matrix. Since the learned latent
representation matrix contains the clustering structure of data
samples, it is treated as prior knowledge to guide the process
of feature selection. Further, we employ an automatic weighting
strategy to jointly learn the view-specific similarity graph and
the consensus similarity graph. Moreover, we design a novel
parameter-less graph regularization strategy, which can maintain
the geometrical structure without introducing additional param-
eters. Finally, we impose the ℓ2,1-norm to constrain the row
sparsity of feature selection matrices.

The main contributions of this work are summarized as fol-
lows:

• The latent representation learning is conducted in data
space, in which the learned low-dimensional latent repre-
sentation matrix is regarded as the cluster indicator matrix
to provide prior knowledge for feature selection tasks.
• An automatic weighting strategy is developed to jointly

learn the view-specific similarity graph and the consensus
similarity graph, in which these two learning processes can
promote each other.
• A parameter-less graph regularization strategy is designed

to maintain the geometrical structure of sample space with-
out introducing additional parameters.
• An efficient scheme is proffered to optimize the proposed

method, and extensive experimental results verify the su-
periority of the proposed SDFS model.

The remainder of this paper is organized as follows. Sec-
tion 2 briefly introduces the existing related work. Section 3
describes the details of the proposed SDFS model and the al-
ternating updating scheme. Section 4 provides extensive exper-
iments and corresponding analysis. Finally, the conclusion is
included in Section 5.

2. Related work

2.1. Single-view feature selection

Unsupervised feature selection (UFS) is classified into three
main types, i.e., filter methods [13–15], wrapper methods [16–
18], and embedded methods [19,20]. The filter methods utilize an
evaluation index to get the most representative feature subsets
from the original features. The typical filter methods include
PCA score [13], Laplacian score [14], and spectral feature se-
lection (SPEC) [15]. The wrapper methods evaluate the feature
subset according to the accuracy of clustering or classification,
2

and usually obtain better performance in comparison with filter
methods [18]. However, the time cost of wrapper methods is
very expensive for large-scale data [21]. The embedded methods
integrate the model construction and feature selection, so that
these two procedures can be simultaneously optimized.

Due to the advantages of lower computing cost and higher
performance, embedded methods gain more attention than the
other two categories. For instance, in [19], Cai et al. integrate
the spectral analysis into the UFS framework to improve per-
formance. In [20], Yang et al. apply the discriminative analysis
in UFS tasks to select the most distinguishing features. In [22],
Sheng et al. improve the performance of UFS by maintaining the
local geometrical structure of both feature and sample space.
In [23], Wang et al. develop an unsupervised soft-label feature
selection (USFS) method, in which the learned soft-label matrix
can enhance the discriminative ability of the algorithm while
effectively alleviating the loss of information. In [24], Li et al.
propose a self-paced learning and low-redundant regularization
(SPLR) method for UFS, which utilizes self-paced learning to re-
move the outliers in original features. In [25], Miao et al. present a
graph regularized local linear embedding (GLLE) method for UFS,
which simultaneously employs manifold regularization and lo-
cally linear embedding to preserve the local invariance of feature
subspace. In [26], we present a soft-label guided non-negative
matrix factorization (SLNMF) based UFS method, which utilizes
soft-label regression to guide the process of non-negative matrix
factorization for obtaining suitable low-dimensional representa-
tion of data. In [27], You et al. present a neural networks em-
bedded self-expression (NNSE) based UFS method, which utilizes
neural networks to explore the nonlinear mapping correlation
between original data and pseudo-labels. Note that the above
methods are proposed for single-view learning, which cannot
directly handle the multi-view data.

2.2. Multi-view feature selection

To cope with the feature selection for multi-view data, var-
ious methods have been developed. For instance, in [6], Feng
et al. propose a MUFS method for visual concept recognition.
In [8], Wang et al. propose a MUFS method for human motion
retrieval. In [10], Liu et al. employ a robust multi-view k-means
clustering algorithm to learn robust and high-quality pseudo-
labels for feature selection, which reduces the computational
complexity of the pseudo-label learning in previous MUFS meth-
ods. In [28], Lin et al. employ a maximum margin criterion to
learn the inter-class and intra-class structure information of each
view, which helps to learn the discriminative transformation ma-
trix. In [29], Kennedy et al. propose a mixed sparsity regularized
MUFS (MSMFS) method, which imposes mixed group sparsity
regularization to alleviate the effects of outliers and different
views. In [30], Lin et al. integrate the locally sparse regularization
terms with a shared loss to enhance the sparsity of blocks from
views and features.

Previous MUFS methods explore the manifold structure of
each view with fixed and predefined similarity matrices sepa-
rately without considering the common structures. To tackle this
problem, in [31], Hou et al. propose an adaptive similarity and
view weight (ASVW) method, which learns an adaptive common
similarity matrix to characterize the manifold structure from dif-
ferent views. In [32], Dong et al. present an adaptive collaborative
similarity learning (ACSL) method, which dynamically learns the
desirable collaborative similarity structure and the ideal neighbor
assignment. In [33], Bai et al. propose a non-negative struc-
tured graph learning (NGSL) method, which imposes the rank
constraint on the similarity graph to ensure the ideal structure.
In [34], Wan et al. present an adaptive similarity embedding (ASE-
UMFS) method for MUFS, which unifies data from different views
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Table 1
Notations and descriptions.
Notations Description

X (m)
∈ Rn×d(m)

The original data matrix in the mth view
F (m)
∈ Rn×c The pseudo-label matrix in the mth view

W (m)
∈ Rd(m)

×r The selection matrix in the mth view
H (m)
∈ Rr×c The coefficient matrix in the mth view

A(m)
∈ Rn×n The adjacency matrix in the mth view

S(m)
∈ Rn×n The view-specific similarity matrix in the mth view

D(m)
∈ Rn×n The diagonal matrix of S(m)

S ∈ Rn×n The consensus similarity matrix
D ∈ Rn×n The diagonal matrix of S
α(m) The adaptive view weighting in the mth view
n The number of samples
d(m) The number of features in the mth view
nv The number of views
r The dimension of latent subspace
c The number of clusters

to an optimal sparse subspace to maintain the global structure
and learns a consensus similarity matrix to maintain the local
structure. Similar to these methods, in this work, we focus on
learning a unified similarity matrix to maintain consistency by
a linear weighting fusion.

To fully take into account the diversity and consistency of
ata, in [35], Tang et al. assume that the cluster indicator matrix
f each view should be as same as possible, and propose a
onsensus learning guided MUFS (CGMV-UFS) method. In [11],
ang et al. integrate all views of data into a consensus pseudo-
abel space to explore both consensus information and diversity
nformation. In [36], Yuan et al. construct the graph matrix from
ach view-specific subspace to explore the complementary in-
ormation, and employ a low-rank tensor regularization term to
nsure the consistency of different views. In [12], Fang et al.
ropose a joint MUFS and graph learning (JMVFG) method, which
tilizes a cross-space locality preserving term to bridge the gap
etween the global manifold in the original and the local man-
fold in the projected space. Moreover, to solve the problem of
igher computational complexity in traditional graph learning,
n [37], Shi et al. propose a multi-view feature selection with
inary hashing (MVFS-BH) method, which imposes a binary hash
onstraint in the process of graph learning to obtain binary hash
odes as pseudo-labels. The above methods introduce graph reg-
larization to improve the performance, which will inevitably
ncrease the difficulty of parameter regulation. By contrast, we
evelop a parameter-less graph regularization strategy, which
an efficiently alleviate this issue.

. Proposed method

In this section, we first introduce the main notations. Then,
e elaborate on the proposed SDFS, as well as the iterative
ptimization algorithm and complexity analysis of SDFS.

.1. Notations

For an arbitrary matrix Y , yi is the ith instance of Y , and Y T

nd Tr(Y ) represent the transpose and trace of Y , respectively.
∈ Rn×1 denotes the column vector whose elements are all

, and I1 ∈ Rr×r and I2 ∈ Rc×c denote the identity matrices.
Y∥2,1 =

∑n
i=1

√∑d
j=1 Y

2
ij represents the ℓ2,1-norm of Y . ∥Y∥F =∑n

i=1
∑d

j=1 Y
2
ij represents the Frobenius norm of Y . For the sake

f clarity, Table 1 summarizes the commonly used notations in
ur work.
3

3.2. Latent representation learning

Generally, in multi-view data, the latent representations of
different instances affect each other and form linked information
accordingly, in which the instances with similar latent repre-
sentations are more likely to be concatenated than those with
different latent representations. Here, we utilize the Gaussian
function to explore the relationship between instances, which is
formulated as follows:

A(m)
ij =

⎧⎨⎩exp
(
∥x(m)

i −x
(m)
j ∥

2
2

−2σ2

)
, x(m)

i ∈ Nk(x
(m)
j )or x(m)

j ∈ Nk(x
(m)
i )

0, otherwise

(1)

where A(m) is the adjacency matrix of the mth view, x(m)
i and x(m)

i
are the ith and jth instance vectors of the mth view, σ is the
Gaussian scale parameter, and Nk(x

(m)
i ) is the k nearest neighbors

of x(m)
i .
To find the suitable low-dimensional latent representation

matrix, we factorize the adjacency matrix A(m) into two non-
negative matrices F (m) and F (m)T , which is formulated as follows:

min
F (m)

nv∑
m=1

∥A(m)
− F (m)F (m)T

∥
2
F

s.t. ∀m, F (m)
≥ 0

(2)

where F (m) denotes the latent representation matrix in the mth
view.

Note that the latent representation matrix F records the clus-
tering structure of data instances, which can be used as a cluster
indicator matrix to provide discriminative information for UFS
tasks [38,39].

3.3. Pseudo-label sparse regression

Similar to [40], we employ the least square regression to
measure the correlation between the pseudo-label space and
low-dimensional latent representation space as follows:

min
F (m),W (m),H(m)

nv∑
m=1

∥F (m)
− X (m)W (m)H (m)

∥
2
F

s.t. ∀m, W (m) > 0,H (m) > 0

(3)

where W (m) and H (m) denote the feature selection matrix and the
regression coefficient matrix in the mth view, respectively.

Moreover, we impose an ℓ2,1-norm on W to ensure the spar-
sity of features. Besides, we impose the orthogonal constraint on
F and W to ensure that each column or row contains at most one
non-zero element. Thus, Eq. (3) can be converted as

min
F (m),W (m),H(m)

nv∑
m=1

{
∥F (m)

− X (m)W (m)H (m)
∥
2
F + γ ∥W (m)

∥2,1

}
s.t. ∀m, W (m) > 0,H (m) > 0,W (m)TW (m)

= I1,

F (m)T F (m)
= I2

(4)

where γ is a balancing parameter to adjust the sparse regulariza-
tion term.

3.4. View-specific graph regularization

For UFS tasks, it has been proved that the local geometrical
structure of data is vital [41]. As an effective way to maintain
the local geometrical structure of data, graph learning has been
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xtensively used. However, existing MUFS methods based on
raph learning suffer from two shortcomings: (1) The manually
ixed hyper-parameters are hard to tune, which might lead to
ub-optimal results. (2) The performance of the fixed graph is
reatly affected by noises, redundancy, and outliers contained in
he original data. Different from them, we employ the sparse rep-
esentation algorithm [42] to adaptively measure the similarity
eights as follows:

min
S(m)

nv∑
m=1

n∑
i,j=1

∥x(m)
i − x(m)

j ∥
2
2s

(m)
ij

s.t. ∀m, i, s(m)T
i 1 = 1, 1 ≥ s(m)

i,j ≥ 0, diag(S(m)) = 0

(5)

where ∥x(m)
i − x(m)

j ∥
2
2 denotes the Euclidean distance between x(m)

i

and x(m)
j , and s(m)

ij denotes the similarity between x(m)
i and x(m)

j .
Moreover, the normalization is imposed on S, i.e., s(m)T

i 1 = 1,
which is equivalent to a sparse constraint, and diag(S(m)) = 0 is
used to avoid trivial solutions.

By jointly integrating Eqs. (3) and (5), the learning process of
F , W , H , and S can promote each other. Thus, the joint learning
model is formulated as

min
F (m),W (m),H(m)

nv∑
m=1

{
∥F (m)

− X (m)W (m)H (m)
∥
2
2

+ λ1

n∑
i,j=1

∥x(m)
i − x(m)

j ∥
2
F s

(m)
ij

}
s.t. ∀m, i, s(m)T

i 1 = 1, 1 ≥ s(m)
i,j ≥ 0, diag(S(m)) = 0

(6)

where λ1 is a balancing parameter.
However, the graph regularization inevitably leads to an ad-

ditional balancing parameter λ1, which increases the burden of
parameter selection [43,44]. To address this issue, we design a
parameter-free strategy. Specifically, according to Eq. (3), if f (m)

i
and f (m)

j are the nearest neighbors of each other, x(m)
i W (m)H (m)

and x(m)
j W (m)H (m) should also the nearest neighbors. Thus, we can

derive that f (m)
i ≈ x(m)

i W (m)H (m). Then, Eq. (6) is converted as
follows:

min
F (m),W (m),H(m)

nv∑
m=1

n∑
i,j=1

∥f (m)
i − x(m)

j W (m)H (m)
∥
2
2s

(m)
ij

s.t. ∀m, i, s(m)T
i 1 = 1, 1 ≥ s(m)

i,j ≥ 0, diag(S(m)) = 0

(7)

3.5. Consensus graph regularization

To further maintain the local geometrical structure of sample
space, we dynamically learn the consensus similarity graph of
different views. Through the multi-view similarity graph learned
in Section 3.4, the learning strategy of the consensus similarity
graph is formulated as

min
S(m),S,α(m)

nv∑
m=1

α(m)
∥S − S(m)

∥
2
F

s.t. ∀i, sTi 1 = 1, 1 ≥ si,j ≥ 0,

(8)

where S represents the consensus similarity matrix, and α(m)

represents adaptive view weighting of the mth view.
For two data instances x(m)

i and x(m)
j , if they are close to

each other, the corresponding pseudo-label vectors f (m)
i and f (m)

j
should also be close to each other. Thus, the consensus graph
regularization can be formulated as

min
S

nv∑ n∑
∥f (m)

i − f (m)
j ∥

2
2sij (9)
m=1 i,j=1

4

By combining Eqs. (2) and (9), the learning process of F and S
can promote each other. The joint learning model is formulated
as

min
F (m),S

nv∑
m=1

{
∥A(m)

− F (m)F (m)T
∥
2
F + λ2

n∑
i,j=1

∥f (m)
i − f (m)

j ∥
2
2sij

}
s.t. ∀m, F (m) > 0

(10)

where λ2 is a balancing parameter.
Similar to Eq. (7), if a(m)

i and a(m)
j are the nearest neighbors

to each other, f (m)
i F (m)T and f (m)

j F (m)T should also the nearest
neighbor. Thus, we can derive that a(m)

i ≈ f (m)
i F (m)T . Then, Eq. (10)

is converted as follows:

min
F (m),S

nv∑
m=1

n∑
i,j=1

∥a(m)
i − f (m)

j F (m)T
∥
2
2sij

s.t. ∀m, F (m) > 0

(11)

3.6. Objective function

By combining Eqs. (4), (7), (8) and (11), the overall objective
model of the proposed SDFS is formulated as follows:

min
φ

nv∑
m=1

{ n∑
i,j=1

∥f (m)
i − x(m)

j W (m)H (m)
∥
2
2s

(m)
ij + α(m)

∥S − S(m)
∥
2
F

+

n∑
i,j=1

β∥a(m)
i − f (m)

j F (m)T
∥
2
2sij + γ ∥W (m)

∥2,1

}
s.t. ∀m, i, F (m) > 0,W (m) > 0,H (m) > 0,W (m)TW (m)

= I1,

F (m)T F (m)
= I2, sTi 1 = 1, 1 ≥ si,j ≥ 0,

diag(S(m)) = 0, s(m)T
i 1 = 1, 1 ≥ s(m)

i,j ≥ 0

(12)

where φ = {F (m),W (m),H (m), S(m), S, α(m)
}, and β is the balancing

parameter.
By solving the above objective function, the weight values

of features can be calculated by ∥Wi∥2. Then, the features are
arranged in descending order, and the top l features are chosen
to form the new data matrix Xnew .

3.7. Optimization

The optimization of SDFS is a non-convex problem. Thus, we
proffer an alternating scheme of the augmented Lagrange mul-
tiplier (ALM) method [45] to solve this problem. Specifically, we
alternately solve one variable by fixing other variables, and repeat
this step until the objective function is converged.

We introduce five Lagrangian operators η, ω, θ , ϵ and τ , where
θ , ϵ and τ are used to ensure F , W and H be non-negative. As
reported by ℓ2,1-norm in [46], we impose a fairly tiny constant σ

to avoid overflow. For the mth view, we define a diagonal matrix
Q (m)
∈ Rd(m)

×d(m)
, in which the ith factor on its main diagonal is

defined as

Q (m)
ii =

1

2max(∥q(m)
i ∥2, σ )

(13)

where q(m)
i denotes the ith row of W (m).

The optimization procedures are listed as follows.
Update F (m): Fix W (m), H (m), S(m), S and α(m), and retain the
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Algorithm 1 The proposed SDFS algorithm

Input: The original data matrix X (1), ..., X (nv ), the balancing
parameters β and γ , the number of selected features l, the
dimension of subspace r , and the number of categories c.
Initialize: Define matrices F (1), ..., F (nv ), W (1), ...,W (nv ),
H (1), ...,H (nv ), Q (1), ...,Q (nv ), and V . Calculate the similarity
matrices A(1), ..., A(nv ), and S(1), ..., S(nv ), and initialize S by
connecting S.
Update:
repeat

For each view, update F (m) with Eq. (14);
For each view, update W (m) with Eq. (19);
For each view, update H (m) with Eq. (24);
For each view, update α(m) with Eq. (29);
For each view, update S(m) with Eq. (32);
Update S with Eq. (40);

until convergence
Output: Feature selection matrix W .
Feature selection: Calculate the evaluation values of all fea-
tures through ∥Wi∥2, and arrange them in descending order.
Then, the top l features are chosen to form the new data matrix
Xnew .

relevant terms containing F (m), Eq. (12) can be converted as

min
n∑

i,j=1

{∥f (m)
i − x(m)

j W (m)H (m)
∥
2
2s

(m)
ij + β∥a(m)

i − f (m)
j F (m)T

∥
2
2sij}

s.t. F (m) > 0, F (m)T F (m)
= I2

(14)

By converting Eq. (14) into a trace form, we can get

L(F (m)) = Tr(F (m)TD(m)F (m))− 2Tr(F (m)T S(m)Z (m))

+
η

2
Tr(F (m)T F (m)

− I2)(F (m)T F (m)
− I2)T

+ βTr(F (m)F (m)TDF (m)F (m)T )+ Tr(θF (m)T )

− 2βTr(A(m)T SF (m)F (m)T )

(15)

here Z (m)
= X (m)W (m)H (m).

Solving the partial derivative of L(F (m)) w.r.t. F (m), we can get

∂L(F (m))
∂F (m) = D(m)F (m)

− S(m)Z (m)
− 2βA(m)T SF (m)

+ βDE(m)
1

+ βF (m)F (m)TDF (m)
+ η(E(m)

1 − F (m))+ θ

(16)

where E(m)
1 = F (m)F (m)T F (m).

By employing the Karush-Kuhn–Tucker (KKT) conditions [47,
48], i.e., θijF

(m)
ij =0, we can get(

(D(m)F (m)
− S(m)Z (m)

− 2βA(m)T SF (m)
+ βDE(m)

1

+ βF (m)F (m)TDF (m)
+ ηE(m)

1 − ηF (m))
)
ijF

(m)
ij = 0

(17)

Then, the iteration rule of F (m) is obtained as follows:

F (m)
ij ← F (m)

ij

(
2βA(m)T SF (m)

+ S(m)Z (m)
+ ηF (m)

)
ij(

βF (m)F (m)TDF (m) + (βD+ η)E(m)
1 + D(m)F (m)

)
ij

(18)

Update W (m): Fix F (m), H (m), S(m), S and α(m), and retain the
relevant terms containing W (m), Eq. (12) can be converted as

min
n∑

i,j=1

∥f (m)
i − x(m)

j W (m)H (m)
∥
2
2s

(m)
ij + γ ∥W (m)

∥2,1

(m) (m)T (m)

(19)
s.t. W > 0,W W = I1
5

By converting Eq. (19) into a trace form, we can get

L(W (m)) = Tr(Z (m)TD(m)Z (m))− 2Tr(F (m)T S(m)Z (m))

+
ω

2
Tr(W (m)TW (m)

− I1)(W (m)TW (m)
− I1)T

+ γ Tr(W (m)TQ (m)W (m))+ Tr(ϵW (m)T )

(20)

Solving the partial derivative of L(W (m)) w.r.t. W (m), we can
et

∂L(W (m))
∂W (m) = X (m)TD(m)X (m)W (m)H (m)H (m)T

+ γQ (m)W (m)

− X (m)T S(m)T F (m)H (m)T
+ ω(E(m)

2 −W (m))+ ϵ

(21)

where E(m)
2 = W (m)W (m)TW (m).

Through the KKT conditions, i.e., ϵijW
(m)
ij =0, we can get(

(X (m)TD(m)X (m)W (m)H (m)H (m)T
− X (m)T S(m)T F (m)H (m)T

+ γQ (m)W (m)
+ ω(E(m)

2 −W (m)))
)
ijW

(m)
ij = 0

(22)

Then, the iteration rule of W (m) is obtained as follows:

W (m)
ij ← W (m)

ij
(X (m)T S(m)T F (m)H (m)T

+ ωW (m))ij
(X (m)TD(m)Z (m)H (m)T + γQ (m)W (m) + ωE(m)

2 )ij
(23)

Update H (m): Fix F (m), W (m), S(m), S and α(m), and retain the
relevant terms containing H (m), Eq. (12) can be converted as

min
n∑

i,j=1

∥f (m)
i − x(m)

j W (m)H (m)
∥
2
2s

(m)
ij

s.t. H (m) > 0

(24)

By converting Eq. (24) into a trace form, we can get

L(H (m)) = Tr(Z (m)TD(m)Z (m))+ Tr(τH (m)T )

− 2Tr(F (m)T S(m)Z (m))
(25)

Solving the partial derivative of L(H (m)) w.r.t. H (m), we can get

∂L(H (m))
∂H (m) = W (m)TX (m)TD(m)Z (m)

−W (m)TX (m)T S(m)T F (m)
+ τ (26)

Through the KKT conditions, i.e., τijH
(m)
ij =0, we can get(

(W (m)TX (m)TD(m)Z (m)
−W (m)TX (m)T S(m)T F (m))

)
ijH

(m)
ij = 0 (27)

Then, the iteration rule of H (m) is obtained as follows:

H (m)
ij ← H (m)

ij
(W (m)TX (m)T S(m)T F (m))ij
(W (m)TX (m)TD(m)Z (m))ij

(28)

Update α(m): Fix F (m), W (m), H (m), S(m) and S, and retain the
relevant terms containing α(m). According to [49], if the weighting
α(m) are fixed, we can derive

minα(m)
∥S − S(m)

∥
2
F = min

√
∥S − S(m)∥2F

(29)

Solving the partial derivative of the above function w.r.t. S, we
an get

∂

√
∥S − S(m)∥2F

∂S
=

∂∥S − S(m)
∥
2
F

(2
√
∥S − S(m)∥2F )∂S

(30)

According to Eqs. (29) and (30), we can derive the iteration
ule of α(m) as follows:

(m)
=

1

(2
√
∥S − S(m)∥2)

(31)

F
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Update S(m): Fix F (m), W (m), H (m), S and α(m), and retain the
relevant terms containing S(m), Eq. (12) can be converted as

min
n∑

i,j=1

∥f (m)
i − x(m)

j W (m)H (m)
∥
2
2s

(m)
ij + α(m)

∥S − S(m)
∥
2
F

s.t. ∀i, diag(S(m)) = 0, s(m)T
i 1 = 1, 1 ≥ s(m)

i,j ≥ 0

(32)

Note that Eq. (32) is independent between different i. Thus, we
an divide the Lagrangian function of Eq. (32) into n sub-problems
s follows:

in
n∑

j=1

1
2
∥f (m)

i − x(m)
j W (m)H (m)

∥
2
2s

(m)
ij +

α(m)

2
∥S − S(m)

∥
2
F

+ ρ∥s(m)
i ∥

2
2 − ξ (s(m)

i 1− 1)− ζ T s(m)
i

(33)

here ρ is a regularization parameter, ξ is a Lagrangian coeffi-
ient scalar, and ζ is a Lagrangian coefficient vector.
Here, we define d(m)

ij = ∥f
(m)
i − x(m)

j W (m)H (m)
∥
2
2, and d(m)

j is the
th vector of d(m)

ij . Thus, Eq. (33) is rewritten as follows:

(s(m)
i , ξ , ζ ) =

1
2
∥s(m)

i +
d(m)
i

2ρ
∥
2
2 +

α(m)

2ρ
∥si − s(m)

i ∥
2
2

− ξ (s(m)
i 1− 1)− ζ T s(m)

i

(34)

For the jth entry of s(m)
i , the partial derivative of L(s(m)

i , ξ , ζ )
w.r.t. s(m)

i can be written as

∂L(s(m)
ij , ξ , ζ )

∂s(m)
ij

= s(m)
ij +

d(m)
ij

2ρ
−

α(m)(sij − s(m)
ij )

ρ
− ξ − ζj (35)

Through the KKT conditions, i.e., s(m)
ij ζj=0, we can get

(m)
ij =

(2α(m)sij + 2ρξ − d(m)
ij

2ρ + 2α(m)

)
+

(36)

where (a)+ = max(a, 0).
Assume {d(m)

i1 , . . . , d(m)
in } are arranged in ascending order. As-

suming s(m)
i has k non-zero entries, we have s(m)

ik > 0 and s(m)
i(k+1) =

0. Besides, by combining Eq. (36) and the constraint s(m)
i 1 = 1.

Then, we can get⎧⎪⎨⎪⎩
2α(m)sik + 2ρξ − d(m)

ik > 0
2α(m)si(k+1) + 2ρξ − d(m)

i(k+1) ⩽ 0

ξ =
2ρ+α(m)

+2
∑k

h=1 d(m)
ih

2ρk

(37)

According to Eq. (37), to ensure that the optimal solution for
(m)
i has k non-zero entries, ρ is defined as

=
kd(m)

i(k+1) −
∑k

h=1 d
(m)
h − 2kα(m)si(k+1) − 2α(m)

2
(38)

Then, the iteration rule of s(m)
ij is obtained as follows:

(m)
ij =

⎧⎨⎩
d(m)
i(k+1)−d

(m)
ij +2α

(m)sij−2α(m)si(k+1)

kd(m)
i(k+1)−

∑k
h=1 d(m)

ih +2
∑k

h=1 α(m)sih−2kα(m)si(k+1)
, j ⩽ k

0, j > k
(39)

pdate S: Fix F (m), W (m), H (m), S(m) and α(m), and retain the
elevant terms containing S, Eq. (12) can be converted as

min
nv∑

m=1

{
α(m)
∥S − S(m)

∥
2
F +

n∑
i,j=1

β∥a(m)
i − f (m)

j F (m)T
∥
2
2sij

}
T

(40)
s.t. ∀i, si 1 = 1, 1 ≥ si,j ≥ 0 o

6

Similar to Eq. (32), we can divide the Lagrangian function of
Eq. (40) into n sub-problems as follows:

min
nv∑

m=1

{
α(m)

2
∥S − S(m)

∥
2
F +

n∑
j=1

β

2
∥a(m)

i − f (m)
j F (m)T

∥
2
2sij

}
− ς (sTi 1− 1)− ϑT si

(41)

here ς represents a Lagrangian coefficient scalar, ϑ represents
a Lagrangian coefficient vector.

Define p(m)
ij = ∥a

(m)
i − f (m)

j F (m)T
∥
2
2, and p(m)

ij is the jth element
of vector p(m)

i . Eq. (41) can be rewritten as

L(si, ς, ϑ) =
nv∑

m=1

∥si − s(m)
i +

βp(m)
i

2nvα(m) ∥
2
2 − ς (sTi 1− 1)− ϑT si

(42)

Through the KKT conditions, we can get

∀j,
∑nv

m=1(sij − g (m)
j )− ς − ϑj = 0

∀j, sij ≥ 0, ϑj ≥ 0, sijϑj = 0
(43)

here g (m)
= s(m)

i +
βp(m)

i
2nvα(m) .

Then, according to the constraint, i.e., sTi 1− 1 = 0, we get

ς =
nv −

∑nv

m=1 g
(m)T1− ϑT1

n
(44)

For ∀j, we can derive the optimal solution for sij as follows:

sij =
nv + n

∑nv

m=1 g
(m)
j + nϑj −

∑nv

m=1 1
Tg (m)T

j 1− 1TϑT
j 1

nvn
(45)

According to Eqs. (43) and (45), we can derive

∗
=

∑n
j=1(sij + ϑ∗ − g∗j )

n
=

∑n
j=1(ϑ

∗
− g∗j )+

n
(46)

here g∗j =
nv+n

∑nv
m=1 g(m)

j −
∑nv

m=1 1T g(m)T
j 1

nvn
and ϑ∗ =

1TϑT
j

nvn
.

Here, we first define a function of χ , i.e. f (χ ) =
∑n

j=1(χ−g
∗
j )+

n −

. Then, we utilize the Newton method to solve the root finding
roblem f (ϑ∗) = 0, which is written as follows:

ϑ∗t+1 = ϑ∗t −
f (ϑ∗t )
f ′(ϑ∗t )

(47)

Similar to Eq. (46), the iteration rule without additional pa-
rameters for sij is obtained as follows:

sij = g∗j − ϑ∗ +
ϑj

nv

=
(
g∗j − ϑ∗

)
+ (48)

.8. Computational complexity

In this section, we analyze the time computational complexity
f SDFS. Specifically, the optimization of SDFS can be divided
nto six sub-processes. Thus, the computational complexity of
pdating F (m) is O(n3

+ n2d(m)
+ nd(m)r), where c ≪ n and

≪ d. The computational complexity of optimizing W (m) is
(n2d(m)

+nd(m)2
+d(m)2r+nd(m)r). The computational complexity

f optimizing H (m) is O(n2r (m)
+ nd(m)r + d(m)r2 + r2c). The

omputational complexity of optimizing α(m) is O(n2d(m)). The
omputational complexity of optimizing S(m) is O(nd(m)k), where
is the number of neighbors and k≪ n. The computational com-
lexity of optimizing S is O(nc). Thus, the total time complexity

is O
(
tnk(n3

+ n2d(m)
+ nd(m)2

+ d(m)2r)
)
, where t is the number

f iterations.
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Table 2
Details of datasets.
Dataset Instances Views Classes Features

MSRC-v1 210 5 7 1302, 48, 512, 256, 210
Mfeat 2000 6 10 216, 76, 64, 6, 240, 47
Calthch101-7 1474 6 7 48, 40, 254, 1984, 512, 928
Coil20 1440 3 20 944, 324, 512
ORL 400 3 40 4096, 3304, 6750
Youtube 1596 2 11 750, 750

4. Experiments

In this section, we compare the proposed SDFS with several
ther state-of-the-art methods on six benchmark datasets to
alidate its efficacy.

.1. Datasets

To evaluate the effectiveness of SDFS, we use six benchmark
atasets in our experiments, including MSRC-v1 [50], Mfeat [51],
althch101-7 [52], Coil20 [53], ORL [54], and Youtube [55]. For
larity, Table 2 provides the statistical information of these
atasets, and the description of these datasets is given as follows:

• MSRC-v1 [50]: MSRC-v1 composes of 240 images with 8
object classes, in which each image is associated with five
types of views. According to the experimental setup in [56],
we select 210 images and seven object classes, i.e., tree,
bicycle, airplane, face, building, and cow.
• Mfeat [51]: Mfeat is a widely-used handwritten digital

dataset, which consists of 2000 instances corresponding to
10 digits, i.e., (0 ∼ 9). It is gathered from two handwritten
digital datasets, i.e., the MNIST dataset and the USPS dataset.
Each sample is described by six types of features.
• Caltech101-7 [52]: Caltech101-7 composes of 1474 images

with 101 object classes, in which each image is captured for
object recognition problems and associated with six types
of views. According to the experimental setup in [57], we
select seven object classes, i.e., faces, Garfield, motorbikes,
Dolla-bill, Windsor-chair, stop-sign, and Snoopy.
• Coil20 [53]: Coil20 composes of 1440 images from the

Columbia object image library. According to the experimen-
tal setup in [58], we extracted three types of features as
different views, i.e., histogram of oriented gradients (HOG),
local binary pattern (LBP), and global information features.
• ORL [54]: ORL composes of 400 face images captured from

40 humans with varying facial expressions, facial wears,
illuminations, taking times, and angles. Each sample is de-
scribed by three views, i.e., intensity, LBP, and texture.
• Youtube [55]: Youtube composes of 1596 video sequences

in 11 actions, in which each video sequence is extracted
from two views, i.e., global information features and scale-
invariant feature transform (SIFT) features.

.2. Compared algorithams

To demonstrate the superiority of SDFS, we compare it with
everal state-of-the-art algorithms, and the details are given as
ollows:

• Baseline : Baseline uses all features to cluster.
• UDFS [20]: UDFS is a classic representative single-view UFS

algorithm. In multi-view tasks, it combines all features into
a single view as input to perform the process of feature
selection.
7

• DGSLFS [22]: DGSLFS is a single-view UFS algorithm. In
multi-view tasks, it combines all features into a single view
as input to perform the process of feature selection.
• SLNMF [26]: SLNMF is a new single-view UFS algorithm. In

multi-view tasks, it combines all features into a single view
as input to perform the process of feature selection.
• CGMV-UFS [35]: CGMV-UFS restricts the clustering index

matrix of each view by learning the consensus matrix.
• ACSL [32]: ACSL dynamically learns the ideal collaborative

similarity structure and the desirable neighbor assignment.
• NGSL [33]: NGSL employs the rank constraint to ensure that

the adaptive similarity graph has an ideal structure.
• TLR-MFS [36]: TLR-MFS imposes the low-rank tensor reg-

ularization on the similarity graph to capture consistent
information across views.

4.3. Experimental setup

To achieve good performance of each algorithm, we adjust the
balancing parameters of each comparison method according to
the original papers and record the best results under the optimal
parameters. For SDFS, we set the balancing parameters from the
grid {10−3, 10−2, 10−1, 1, 10, 102, 103

}. Besides, we set the values
of selected feature ratio varying from 3% to 15% with 3% inter-
vals. Finally, for each method, we perform K -means clustering
algorithm 40 times and record the average clustering results with
standard deviation (std).

Two widely used clustering evaluation criteria, i.e., clustering
accuracy (ACC) and normalized mutual information (NMI), are
employed in our experiments [59,60].

4.4. Experimental results

In this section, we set the percentage of selected features to
9% for all methods. For SDFS and other compared methods, we
report the mean results with std in Tables 3 and 4. In addition,
to clearly show the performance, we make the best values bold
and underline the second-best values. Meanwhile, we report the
mean results under different percentages of selected features in
Figs. 1 and 2, in which the x-axis and y-axis denote the ratio
of selected features and the values of ACC or NMI. From these
results, we have the following observations:

(1) First, SDFS achieves better performance on almost all
benchmark datasets in comparison with other methods.
The reason lies in that the proposed SDFS can make
fully utilize the discriminative information and geometrical
structure information in multi-view data.

(2) Second, the performance of MUFS algorithms is superior to
that of single-view UFS algorithms on most datasets. The
reason is that the MUFS algorithms consider the correlation
between different views.

(3) Third, compared with the linear regression based MUFS al-
gorithms, i.e., ACSL and NGSL, the proposed SDFS achieves
higher performance. The reason might be that both ACSL
and NGSL fail to fully consider the discriminative informa-
tion of the original data.

(4) Fourth, it is worth noting that the proposed SDFS ob-
tains better performance than the Baseline on all datasets
excluding Caltech101-7, which verifies that the selected
feature subset using SDFS can significantly improve the
clustering performance.

(5) Last, for the Caltech101-7 dataset, the NMI value of Base-
line is higher than that of other methods. The reason might
be that 3% ∼ 15% are not the optimal percentages of
selected features for Caltech101-7. Nonetheless, the pro-
posed SDFS achieves higher ACC results compared with
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Table 3
Clustering performance (ACC ± std%) of different methods on six datasets.
Dataset Baseline UDFS DGSLFS SLNMF CGMV-UFS ACSL NGSL TLR-MFS SDFS

MSRC-v1 77.86 ± 4.58 48.45 ± 3.62 63.26 ± 3.49 67.02 ± 2.42 62.67 ± 1.36 75.21 ± 4.28 65.76 ± 2.98 78.92 ± 3.52 83.67 ± 5.10
Mfeat 80.76 ± 5.19 69.34 ± 0.57 69.54 ± 1.19 78.86 ± 4.53 72.74 ± 2.14 88.51 ± 1.89 86.61 ± 2.09 89.78 ± 0.96 91.42 ± 1.17
Caltech101-7 55.86 ± 2.79 39.39 ± 1.06 42.92 ± 4.05 50.21 ± 3.44 50.40 ± 2.25 52.77 ± 2.11 51.20 ± 1.92 55.99 ± 2.79 61.45 ± 2.38
Coil20 67.42 ± 2.80 61.79 ± 3.74 67.22 ± 3.07 69.91 ± 2.81 65.96 ± 2.07 70.56 ± 3.34 73.08 ± 2.92 70.52 ± 3.39 73.67 ± 2.66
ORL 59.54 ± 2.36 46.15 ± 2.61 50.25 ± 2.98 51.39 ± 2.17 51.88 ± 2.65 51.75 ± 3.35 55.94 ± 3.34 57.18 ± 3.35 61.16 ± 3.53
Youtube 14.36 ± 0.11 22.52 ± 2.19 20.19 ± 1.67 21.64 ± 0.74 19.47 ± 0.53 28.29 ± 2.11 18.97 ± 1.62 27.73 ± 1.04 29.84 ± 0.30
Table 4
Clustering performance (NMI ± std%) of different methods on six datasets.
Dataset Baseline UDFS DGSLFS SLNMF CGMV-UFS ACSL NGSL TLR-MFS SDFS

MSRC-v1 68.76 ± 4.27 34.51 ± 3.09 53.65 ± 2.58 58.26 ± 2.59 52.46 ± 1.18 68.54 ± 2.34 55.83 ± 2.91 69.75 ± 3.62 77.04 ± 3.85
Mfeat 80.17 ± 0.95 61.05 ± 0.63 68.89 ± 0.71 76.98 ± 0.97 67.76 ± 1.08 82.27 ± 0.82 82.70 ± 1.78 82.81 ± 0.79 84.82 ± 0.87
Caltech101–7 50.38 ± 1.09 33.42 ± 0.61 40.27 ± 0.64 42.49 ± 2.15 35.48 ± 1.07 45.94 ± 2.16 44.74 ± 0.92 45.16 ± 1.94 47.36 ± 2.28
Coil20 79.95 ± 1.49 73.95 ± 2.23 77.92 ± 1.73 79.49 ± 0.93 77.48 ± 1.16 78.46 ± 1.49 82.67 ± 1.44 79.17 ± 1.68 81.74 ± 1.32
ORL 76.97 ± 0.80 61.70 ± 2.77 67.11 ± 1.46 70.18 ± 1.18 71.55 ± 1.25 68.17 ± 2.93 71.82 ± 2.43 74.74 ± 2.07 77.91 ± 2.30
Youtube 3.24 ± 0.01 13.62 ± 1.84 10.41 ± 1.18 14.01 ± 1.21 9.42 ± 0.79 22.92 ± 1.21 9.66 ± 1.62 20.79 ± 1.38 24.04 ± 0.23
Fig. 1. ACC of different feature selection algorithms on eight datasets.
Baseline. As can be seen from Fig. 3, when the selected
feature ratio increases, the NMI of the proposed method
fluctuates between 44.21% ∼ 52.84%. And when selecting a
35% feature ratio, it reaches the maximum value of 52.84%,
which exceeds the Baseline by 2.46%. This indicates the
effectiveness of the proposed method.

Furthermore, to intuitively illustrate the effects of the pro-
osed method, we visualize the clustering results using t-SNE in
ig. 4. It can be observed from the figure, the data points of Xnew

are divided into different clusters with relatively clear borders.
In contrast, the clusters of original data X are blended with each
other.

4.5. Parameter sensitivity analysis

In this section, we analyze the impacts of β and γ . Since there
is no prior information about these parameters, we determine it
by grid search in a heuristic strategy as previous works [6,26,31].
Specifically, the values of β and γ are chosen in the range of
8

{10−3, 10−2, 10−1, 1, 10 , 102, 103}. The results are reported in
Figs. 5 and 6.

It can be observed from the figures that when the values of β

and γ are adjusted, the ACC and NMI values of the proposed SDFS
do not change obviously on most datasets, especially on Mfeat,
Coil20 and ORL. For Youtube, when 10−3 ≤ β ≤ 1, the ACC
and NMI results of the proposed SDFS are relatively good, and
the performance is stable under other parameter combinations.
For Caltech101-7, the ACC values of the proposed SDFS are stable
for γ , and it only fluctuates within a small range for β . For the
remaining cases, the ACC and NMI values occasionally fluctuate,
but they are relatively smooth in general.

The experimental results show that the proposed SDFS is
insensitive to the two balancing parameters β and γ on most
datasets, which demonstrates that the proposed SDFS model is
robust. Although some combinations of β and γ may cause fluc-
tuations in clustering performance, SDFS can still achieve stable
performance within a broad range.
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Fig. 2. NMI of different feature selection algorithms on eight datasets.
Fig. 3. NMI of the proposed SDFS with different selected feature ratios on
Caltech101-7 dataset.

4.6. Ablation analysis

In this section, we analyze the effectiveness of consensus
raph learning and latent representation learning. Specifically, we
onsider two special cases of SDFS:

• SDFS1: We set the balancing parameter β to zero.
• SDFS2: We set the adaptive weighting parameter α and

balancing parameter β to zero, simultaneously.

Fig. 7 shows the average results of SDFS and the special cases,
i.e., SDFS1 and SDFS2, on all datasets. From this figure, we can
observe that the performance of SDFS is higher than SDFS1 and
SDFS2 in all datasets. Based on the above analysis, we can con-
clude that both consensus graph learning and latent representa-
tion learning are effective for the proposed SDFS model.

4.7. Convergence analysis

According to the discussion in Section 3.7, the proposed SDFS
is a non-convex problem, and an alternating scheme of ALM
method is developed to optimize it. In this section, we conduct
the experiments to validate the convergence of SDFS, and the
9

Fig. 4. t-SNE visualization of clustering results by SDFS and Baseline on the
MSRC-v1 and Caltech101-7 datasets, where (a) and (c) are the results on
MSRC-v1, and (b) and (d) are the results on Caltech101-7.

curves of convergence are shown in Fig. 8. From this figure,
we can observe that the objective curves can converge quickly,
which verifies the effectiveness of the developed optimization
algorithm.
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Fig. 5. ACC results of SDFS with different values of α and β on eight datasets.
Fig. 6. NMI results of SDFS with different values of α and β on eight datasets.
. Conclusion

This article presents a novel MUFS method called structural
egularization based discriminative multi-view unsupervised fea-
ure selection (SDFS). The proposed method can discover the
elations between samples by learning the adjacency matrix and
atent representation, in which the latent representation matrix
s regarded as prior knowledge to guide the feature selection.
urther, a novel graph regularization strategy is imposed on the
iew-specific graphs and the consensus graph to maintain the ge-
metrical structure of data without introducing additional param-
ters, in which the consensus graph is learned by an automatic
10
weighting strategy. An efficient iterative updating scheme is prof-
fered to optimize the proposed method. Experimental results on
six benchmark datasets validate the superiority of SDFS for MUFS
tasks.

One limitation of the proposed SDFS lies in that it requires
a relatively high complexity for graph construction, which leads
to low efficiency when it is applied to large-scale datasets. To
tackle this problem, in the future, we would like to develop an
anchor graph-based MUFS model to reduce the computational
complexity. Another limitation lies in that its optimization re-
quires updating six variables separately. In the future, we would
like to investigate designing a new optimizing method that can
simultaneously optimize two or more variables.
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Fig. 7. ACC and NMI results of SDFS and two special cases on eight datasets.
Fig. 8. Convergence curves of SDFS on six datasets.
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