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a b s t r a c t

Anomaly detection on multivariate time series (MTS) is of great importance in both data mining
research and industrial applications. While a handful of anomaly detection models are developed for
MTS data, most of them either ignore the potential correlations between different variables or overlook
the different importance of variables at each time period in MTS, which leads to poor accuracy in
anomaly detection. In this paper, we propose a novel unsupervised MUltivariate Time series ANomaly
deTection framework (MUTANT), which simultaneously models the correlations between variables
and the importance of variables at each time period. Specifically, we construct a feature graph for
variables in each time window and perform graph convolutional network (GCN) to learn embeddings
for all variables, which effectively captures the time-varying correlations between variables in MTS.
Then, we propose an attention-based reconstruction model to learn robust latent representations to
capture normal patterns of MTS by modeling the importance of variables based on time dependencies
along with time dimension. Our evaluation experiments are conducted on four real-life datasets from
different industrial domains. Experimental results show that MUTANT significantly outperforms state-
of-the-art MTS anomaly detection methods, achieving an average anomaly detection F1-score higher
than 0.96. The source code is available at https://github.com/Coac-syf/MUTANT.

© 2023 Elsevier B.V. All rights reserved.
1. Introduction

Anomaly detection has been widely studied in different do-
ains [1] (e.g., log messages, time series, graphs, etc.), aiming

at finding which instances significantly deviate from the other
observations in the same dataset [2]. In this work, we mainly
study the problem of anomaly detection in Multivariate Time
Series (MTS for short hereafter), which has attracted much at-
tention in data mining community. A large amount of MTS data
is generated by sensors in industrial devices, such as server ma-
chines [3], spacecrafts [4], robot-assisted systems [5]. Anomaly
detection for MTS is widely used to monitor the status of the
devices in the application domain of manufacturing industry and
IT systems [6–9].

Generally, it is preferred to identify entity anomalies at the
ntity-level directly using MTS, rather than at the metric-level
sing univariate time series [4,5,7,8,10]. In this work, we focus
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on detecting the overall anomalies of the MTS of each moni-
tored entity. However, detecting anomalies at entity-level is very
challenging. Firstly, due to the lack of labeled anomalies in his-
torical data, and the unpredictable and highly varied nature of
anomalies, supervised learning methods are infeasible. Secondly,
for a complex real-world system, several monitoring metrics are
often related to each other due to their intrinsic connections (e.g.,
related sensors in a water treatment plant), thus an incident at
an entity type may cause anomalies in multiple metrics. Single
univariate time series cannot reveal information on these global
properties. Therefore, anomaly detection on multiple univariate
time series does not perform well for MTS. Thirdly, there may ex-
ist strong temporal dependencies in MTS data. Due to this reason,
many classical unsupervised approaches, e.g., distance/density-
based methods [11–14], and density estimation methods [15–18],
perform poorly since they cannot capture temporal dependencies
along with time dimension.

Previous studies towards this end, have made significant ef-
forts on anomaly detection for MTS. For instance, Hundman et al.
[4] leverage LSTM to detect anomalies in multivariate time-series
metrics of spacecraft based on prediction error. Su et al. [8]
propose a stochastic recurrent neural network, OmniAnomaly,
which captures the normal patterns of MTS by learning data
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epresentations through stochastic latent variables. DAEMON [10]
ombines the autoencoder and adversarial training and designs
wo groups of generators and discriminators to learn the normal
attern of MTS and thereafter uses the reconstruction error to de-
ect anomalies. InterFusion [19] simultaneously models the inter-
etric and temporal dependency for MTS, which learns the nor-
al patterns in MTS through hierarchical VAE with two stochastic

atent variables. GDN [20] uses an attention-based graph neu-
al network (GNN) to learn the relationship between different
ensors, and additionally provide explainability for the detected
nomalies using attention weights. However, these works either
se RNN models to model time series while ignore the potential
nter-relationships between variables (metrics) in MTS [4,5,7,8], or
dopt GNNs to capture multivariate correlations explicitly but
gnore the different importance of variables at each time period in
TS [20,21]. In this work, we aim to learn robust latent represen-

ations to capture normal patterns in MTS, considering both the
orrelations between variables and the importance of variables
ased on temporal dependencies at each time period.
Nevertheless, there are still two major challenges that remain

o be solved for our goal. The first challenge is how to learn
he time-varying correlations between variables in MTS. MTS is
comprised of a group of univariate time series (i.e., variables),
and some variables in MTS often show an inconsistent pattern
with other variables due to their intrinsic connections in complex
real-world systems. Consequently, in the MTS anomaly detec-
tion systems, it is very necessary to consider the correlations
between variables. The second challenge is how to capture the time
dependencies on time series and learn the importance of variables
for reconstruction-based anomaly detection. Although there exist
correlations between variables, the importance of different vari-
ables to anomaly detection is different, and the importance is
also different in different time periods. That is, the importance
of each variable to reconstruction-based anomaly detection is
also time-dependent in MTS. None of existing methods consider
modeling the importance of variables along time dimensions in
MTS anomaly detection.

To tackle the aforementioned challenges, we propose a novel
unsupervised MUltivariate Time series ANomaly deTection
framework (MUTANT) based on GCN and Variational Auto-
Encoder (VAE) architecture. Specifically, we first construct a fea-
ture graph based on variables’ features for each time window
in MTS, and then we perform Graph Convolutional Network
(GCN) to learn the embedding vectors for all variables in each
time window, which effectively captures the time-varying cor-
relations between variables in MTS. In addition, we design an
attention-based reconstruction model, consisting of an LSTM-
based attention module that learns the importance of variables
in each time window based on time dependencies in the time
dimension and a VAE module that learns the latent intrinsic
representation for each observation to capture ‘‘normal patterns’’
of MTS. Furthermore, we use end-to-end training to optimize our
model by a joint learning objective function. Our experimental
evaluation on four benchmark datasets demonstrates that our
proposed MUTANT significantly performs better than state-of-
the-art MTS anomaly detection methods, achieving up to 7.18%
improvement in terms of F1-score.

We highlight the key contributions of this work as follows:

• We propose a novel reconstruction-based MTS anomaly de-
tection framework, considering both the time-varying cor-
relations between variables and the importance of variables
based on temporal dependencies at each time period in MTS.
• We propose an attention-based reconstruction model that

jointly learns the importance of variables via the proposed
LSTM-based attention module and the robust representation
for observations via VAE to capture ‘‘normal patterns’’ of
MTS.
2

• We conduct extensive experiments on four real-life MTS
datasets to demonstrate the superiority of our model when
competing with state-of-the-art baselines, achieving up to
7.18% improvement in terms of the F1-score. Furthermore,
the ablation study also verifies the rationality of our de-
signed sub-modules, and robustness evaluation with respect
to noise is also investigated.

2. Related work

Anomaly detection on univariate time series. Anomaly
detection in time series is a challenging and interesting task
that has been studied extensively [22]. Yahoo EGADS [3] is a
general and scalable framework for detecting anomalies in large-
scale time series by using a combination of anomaly detec-
tion and forecasted modules with an anomaly filtering layer.
Twitter [23] proposes a method called the Seasonal Hybrid Ex-
treme Study Deviation test (S-H-ESD), which can detect both
local and global anomalies in time series. In 2017, Google [24]
tested the performance of deep learning models (including DNNs,
RNNs, and LSTMs) for anomaly detection on their datasets and
achieved the expected results. The rapid development of neural
networks provides a solid foundation for improving the accuracy
of anomaly detection. DSPOT [25] uses extreme value theory
to detect anomalies in streaming univariate time series with-
out making assumptions about the distribution of the raw data
or manually setting thresholds. LAKE [16] and ADAF [26] are
proposed to detect anomalies in high-dimensional data using
layer-constrained VAE and autoregressive flow models, respec-
tively. Donut [27] is a VAE-based unsupervised model that detects
anomalies in seasonal KPIs. SR-CNN [28] applies Spectral Resid-
ual (SR) in the domain of visual saliency to anomaly detection
and combines with Convolutional Neural Networks (CNN) to
improve the model’s performance. Nevertheless, these methods
focus on unit time series and cannot be directly applied to
anomaly detection on multivariate time series.

Anomaly detection on multivariate time series. To detect
pacecraft anomalies, LSTM-NDT [4] applies LSTM for MTS pre-
iction, and then determines anomalies using prediction error.
ncDnc-AE [7] is an LSTM-based encoder–decoder model to ob-
ain latent patterns of multi-sensor time series by reconstructing
ormal data, then identifying anomalies based on reconstruction
rrors. DAGMM [15] combines deep AE and Gaussian Mixture
odel (GMM) to detect anomalies. But this method does not

nvolve the time dependency of the data, so it is only suitable
or multivariate variables (not MTS). USAD [29] is a model with
ne encoder and two decoders, which uses the idea of adversarial
raining to train the model, so as to increase the gap between
ormal data and abnormal data. DAEMON [10] combines the
utoencoder and adversarial training, and designs two groups
f generators and discriminators to obtain the normal patterns
f MTS, and thereafter uses the reconstruction error to detect
nomalies. These two methods expect to widen the gap between
ormal data and abnormal with the idea of adversarial train-
ng but do not take into account the time dependence of the
equence.
In order to solve this problem, LSTM-VAE [5] replaces the

eed-forward network in VAE with LSTM to obtain temporal de-
endencies. Similarly, OmniAnomaly [8] combines GRU with VAE
nd uses stochastic variable connection and planar normalizing
low to improve the performance of the model, finally deter-
ining anomalies according to the reconstruction probabilities.
SCRED [9] constructs a multi-scale representation matrix to
apture system states at multiple levels and uses attention-based
onvLSTM to capture temporal relationships. And MAD-GAN [6]
ses LSTM-RNN as the base model to capture temporal dependen-
ies and embeds them into the framework of GAN while utilizing
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he generator and discriminator of GAN to detect anomalies.
owever, these methods only focus on the most basic character-
stics of time series data, that is, the time dependence of data, but
gnore the relationship between variables and the importance of
ifferent variables.
InterFusion [19] uses hierarchical VAE with two stochastic la-

ent variables to obtain the normal patterns of MTS. AMSL [30] is
self-supervised MTS anomaly detection model, which improves
he generalization ability of the model through a convolutional
utoencoder. TimeAutoAD [31] is also a self-supervised detec-
ion model. This method proposes three strategies to generate
seudo-negative time series based on training data, and distin-
uish the generated data from the original data by comparing the
oss, so as to improve the monitoring performance of the model.
LM-AD [32] is a cluster-based anomaly detection method for
ultivariate time series. This method combines the multivariate
LM-MI framework with the dynamic kernel selection method
nd determines the kernel in ELM-MI through clustering. Never-
heless, the above methods treat all variables in MTS equally and
ail to capture the time-varying correlations between variables in
etecting anomalies.
Graph Neural Networks. GNNs have achieved great success

s a common model for processing graph-structured data. In
eneral, the theory of GNNs believes that the feature of the
urrent node is affected by the feature of its neighbor nodes.
CN [33] obtains the representation of a node by aggregating
epresentations of its one-step neighbors. Based on this idea,
raph attention network (GATs) [34] assigns different weights
o different neighbors through an attention function when ag-
regating the representation of neighbors, so as to reflect the
ifferent influences of different neighbors on the current node.
elated variants have also been successfully applied to anomaly
etection of MTS, for example, [21] utilizes two parallel graph
ttention (GAT) layers to capture temporal and spatial depen-
encies respectively. GDN [20] is also a method based on graph
ttention neural network, which mainly obtains the relationship
etween different sensors, and judges abnormality according to
hether it deviates from these relationships. GNN-DTAN [35] is
method based on a graph neural network, it uses the graph

onstruction module in the model to extract the relationship
etween features. The trained model is then used to predict the
ata, and the anomaly score between the predicted and actual
alues is calculated. Although graph-based methods consider the
elationship between variables, they ignore that the effects of
ifferent variables are different for anomaly detection.

. Problem statement

efinition 1 (Multivariate Time Series, or MTS). Multivariate time
series is a time series of successive observations which are col-
lected at equal-space timestamps, defined as X = {x1, x2, . . . , xn},
here n is the length of X, each observation xt ∈ Rm is a m-
imensional vector at time point t(t ≤ n): xt = {x1t , x2t , . . . , xmt },

and m is the number of variables [8].

Given an MTS X as training input, the objective of unsuper-
vised MTS anomaly detection is to identify whether an unseen
observation xt (t > n) is anomalous or not. For time series model-
ing, historical values are beneficial for understanding the current
time point. Therefore, we define a time window of length τ at
given time point t: Wt = {xt−τ+1, . . . , xt−1, xt}. The original time
series X can be transformed into a sequence of time windows
W = {W1,W2, . . . ,Wn} to be used as training input, and a time
window Wt instead of observation xt is used to calculate the
anomaly score.

Based on the above definitions, we next formally define our
studied problem as follow:
3

Table 1
Key notations and their definitions.
Notation Definition

X = {x1, x2, . . . , xn} A multivariate time series
xt ∈ Rm The observation at time t
Wt The time window at time t
Xi All values of ith variable in X
n The length of X
m The number of variables
τ The length of time window
Gt The feature graph of Wt

At The adjacency matrix of Gt

H(l)
t , x⃗t The learned embeddings of Wt

x̃t The weighted embeddings of Wt
x̂t The reconstructed vector

Problem 1 (MTS Anomaly Detection). Given an MTS X, the goal of
our anomaly detection problem is to calculate an anomaly score
for an unseen observation xt (t > n), and then a binary label yt
(e.g., yt = 1 indicating an anomaly, 0 for not) is determined by
compared against a threshold.

The key notations used in this paper are summarized in Ta-
ble 1.

4. Methodology

In this section, we present the details of our proposed MU-
TANT (as shown in Fig. 1), consisting of two key components: (i)
Temporal GCN, and (ii) Attention-based reconstruction module. Tem-
poral GCN aims to obtain the representation vectors for variables,
which implies the potential connections between different vari-
ables in each time window. Attention-based reconstruction module
attempts to capture the normal patterns of MTS by learning their
robust latent representations with LSTM-based attention and VAE,
and uses the reconstruction errors to determine anomalies.

Although GCN, LSTM, and VAE are common models in anomaly
detection, there is no previous method to integrate the models
together, so as to achieve the purpose of considering the time de-
pendence of time series, the relationship between variables, and
giving different weights to different variables. Most importantly,
from the subsequent experimental results, the performance of
MUTANT is significantly better than that of all state-of-the-art
MTS anomaly detection methods on the evaluated real-world
datasets.

4.1. Temporal graph convolutional network

MTS is usually continuously collected by multiple sensors, and
at the same time or interval, variables collected from different
sensors are often related. For example, in a medical monitoring
system, the multiple sensors on the same patient are correlative.
When the patient is in a sudden condition, they may change
drastically at the same time. If the connections between them can
be expressed and used in anomaly detection, it will naturally be
helpful to detect anomalies.

In this work, we try to build the connections between vari-
ables in MTS and obtain more reasonable representations for all
variables in each time window according to such connections
for anomaly detection. GCNs have been widely used in graph
representation learning and have achieved great success [36–39].
To better capture the connections between different variables,
we introduce the GCN model to learn the representations for
variables in each time window.

To adapt to the GCN model, we first use k-NN method to
construct a feature graph G = {V, E} for each time window W
t t
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Fig. 1. The overview of the proposed MUTANT.
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n X, where each node vi ∈ V is a variable, and each variable is
onnected with its most related k variables by an edge. Specif-
cally, the value of each variable vi in the current time window
s regarded as its features, i.e., f it = {x

i
t−τ+1, . . . , x

i
t−1, x

i
t}. We

first calculate the correlation coefficient matrix ρ ∈ Rm×m among
variables in the feature space. In this paper, we employ the

earson correlation coefficient (Eq. (1)), which is a popular way
o obtain the correlation coefficient between two vectors.

i,j =
Cov(f it , f

j
t )√

Var[f it ]Var[f
j
t ]

, (1)

where Cov(f it , f
j
t ) is the covariance of f it and f jt , Var[f it ] is the

variance of f it , and Var[f jt ] is the variance of f jt .
We use adjacency matrix At ∈ Rm×m to represent the graph

Gt , where Ai,j
t = 1 denotes that there is an edge between nodes

vi and vj.
To capture the potential inter-relationships between variables,

we employ graph convolution operation on each graph Gt to
ggregate the features of variables from their neighborhood vari-
bles. Following [33], we perform the following layer-wise prop-
gation rule in a multi-layer convolution network:

(l+1)
t = ReLU(D̃

−
1
2

t Ãt D̃
−

1
2

t H(l)
t W(l)

t ), (2)

where W(l)
t is a layer-specific trainable weight matrix, Ãt = At+ I,

nd D̃ii
t =

∑
j Ã

ij
t . H

(0)
t = Wt , and H(l)

t ∈ Rm×d is the output of lth
layer for time window Wt , where d is the embedding dimension.
The final output of temporal GCN is the time-varying embedding
vectors of all variables in each time window Wt , denoted by
x⃗t = H(l)

t .

4.2. Attention-based reconstruction module

After obtaining the embedding vector of each variable, we use
a reconstruction model to better obtain the essential character-
istics contained in the MTS for anomaly detection. This module
mainly includes two parts: LSTM-based attention and VAE-based
reconstruction module.

4.2.1. LSTM-based attention
Although an MTS includes multiple variables, the importance

of each variable is definitely different for anomaly detection. And
the importance of variables on different time windows may also
be different. In addition, the time dependencies of variables on
time series are essential for anomaly detection.

To capture the time dependence on MTS and learn the im-
portance of different variables in different time windows, we
propose an LSTM-based attention mechanism to achieve this
goal. This is because many previous works have proved that
LSTM can successfully obtain the time dependence of time series.
 d

4

Compared with other advanced attention models, the attention
mechanism based on LSTM is simpler and more efficient. It can
greatly reduce the training time and complete the function of
weighting variables. As shown in Fig. 2, in each LSTM unit, we
take the embedding vectors of variables in the time window as
input and obtain the weights of variables in the current time
window through a linear layer and a softmax layer. Then, we use
the weighted embedding vectors as the input of the LSTM unit
to obtain the weights of variables in the next time window. Each
LSTM unit has two transmission states ct and ht , and ct is limited
y three gates, i.e., forget gate ft , input gate it and output gate ot .
The formulation of LSTM-based attention is as follows:

t = σ (Wf [ht−1; x̃t ] + bf ), (3)

it = σ (Wi[ht−1; x̃t ] + bi), (4)

ot = σ (Wo[ht−1; x̃t ] + bo), (5)

ct = ft ⊙ ct−1 + it ⊙ tanh(Wc[ht−1; x̃t ] + bc), (6)

ht = ot ⊙ tanh(ct ), (7)

where [; ] denotes concatenation operation, ht−1 is the previous
hidden state, x̃t is the current input, σ (·) is sigmoid function,

is element-wise multiplication, and Wf ,Wi,Wo,Wc and bf , bi,
o, bc are learnable parameters.
More specifically, in each LSTM unit, we first concatenate ht−1,

t−1 and x⃗t , and feed them into the linear layer to obtain w̌t .
hen, after softmax layer conversion, the final weight wt for all
ariables is obtained. The formulation of this process is:

ˇ
i
t = tanh(W[ht−1; ct−1; x⃗it ] + b), (8)

i
t =

exp(w̌i
t )∑m

j=1 exp(w̌
j
t )

, (9)

˜
i
t = x⃗t

i
· wi

t , (10)

here x⃗it is the embedding vector of ith variable in time win-
dows Wt , and x̃t = {x̃1t , x̃2t , . . . , x̃mt } is the output of LSTM-based
ttention multiplying the embeddings of the variables by the
orresponding weights. Afterwards, ht−1, ct−1 and x̃t are fed into
STM unit to obtain the ct , ht for the next time window.
Since the input of LSTM units is the embedding vectors of

he consecutive time windows, the LSTM-based attention module
an capture the time dependencies on MTS and convert the
ependencies into the weights of variables in different time win-
ows, so that different variables play different roles in anomaly

etection.
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Fig. 2. The architecture of LSTM-based attention module.
1
1

.2.2. VAE-based reconstruction module
Although we use temporal GCN to obtain the embeddings

f variables in each window and employ LSTM-based attention
o capture the time dependencies in the time dimension, for
nsupervised anomaly detection, how to measure the difference
etween normal samples and potential abnormal samples is vital.
hat is, how determining whether a sample differs significantly
rom most samples in X is crucial for anomaly detection.

VAE [40] has been widely applied in MTS anomaly detection
odels [4,8,10] due to its ability to obtain latent patterns of
igh-dimensional data. In this work, we also leverage VAE to
imultaneously train the reconstruction module and guide the
earning of variable weights in LSTM-based attention.

VAE compresses high-dimensional input x̃t into low-dimens-
onal latent representation zt by dimensionality reduction, and
hen reconstructs x̃t by zt . Assuming that zt obeys the prior dis-
tribution pθ (zt ), x̃t can be sampled from the posterior distribution
pθ (x̃t |zt ). However, it is very challenging to calculate pθ (x̃t |zt )
accurately, so VAE approximates it with an inference network
qφ(zt |x̃t ), where θ and φ are the parameters in the generation
network and inference network, respectively.

Like most VAE training methods, this work also use Stochastic
Gradient Variational Bayes (SGVB) [41] to train the parameters in
the VAE by maximizing the evidence of lower bound (ELBO), and
the reconstruction-based loss function Lre(x̃t ) for input x̃t is:

Lre(x̃t ) = −Eqφ (zt |x̃t )[log(pθ (x̃t |zt ))]
+ DKL[qφ(zt |x̃t )||pθ (zt )].

(11)

The first term is the reconstruction of x̃t by maximizing the log-
likelihood log pθ (x̃t |zt ) with sampling from qφ(zt |x̃t ). The second
term achieves regularization of latent variable zt by minimizing
the Kullback–Leibler (KL) divergence between the approximate
posterior and the prior of the latent variable.

As shown in Fig. 1, we input x̃t into VAE to reduce the dimen-
sion of variable embeddings. After the dimensionality reduction
of the encoder, we get the latent representation zt , and through
the decoder, we obtain the reconstructed value x̂t . Then we use
the reconstruction of x̃t and x̂t to train VAE model.

4.3. Offline model training

To achieve the best detection performance, we implement
end-to-end training for our model by designing a joint learning
objective function. Below we formally define the joint learning

objective function to obtain the result of global optimization.

5

First, for unsupervised learning, we use the following binary
cross-entropy loss function through negative sampling to opti-
mize the temporal GCN model:

LGCN = −
∑

(i,j)∈Ω

log σ (⟨(x⃗it )
T, x⃗jt⟩)

−

∑
(i′,j′)∈Ω−

log σ (−⟨(x⃗i
′

t )
T, x⃗j

′

t ⟩),
(12)

where x⃗it is the embedding vector of ith variable in time window
Wt , T denotes matrix transposition, ⟨, ⟩ can be any vector similar-
ity measure function (e.g., inner product), Ω is the set of positive
node pairs in Gt , and Ω− is the set of sampled negative node pairs.
That is, if i, j ∈ Ω−, then Ai,j

t = 0. Our purpose is to maximize the
similarities between the node embeddings in the positive samples
and minimize the similarities between the node embeddings in
the negative samples simultaneously.

Second, we use the Eq. (11) to train our reconstruction module.
Finally, we combine LGCN and Lre to jointly train our model
through hyperparameter α, which is used to balance the impor-
tance of representation learning and reconstruction model. The
joint objective function of our model is:

Ljoint (Θ) = LGCN + αLre, (13)

where Θ denotes all parameters need to be trained, including
W(l)

t , W, Wf , Wi, Wo, Wc , b, bf , bi, bo, bc , φ, and θ .

Algorithm 1 Pseudo-code of MUTANT framework under the
guidance of loss function
Input: Multivariate time series X, parameters n, τ , k.
Output: The value of loss.
1: for t=τ to n do
2: Wt = X[t − τ + 1 : t]
3: ρ ← Pearson(Wt )
4: Gt ← k-NN
5: x⃗t ← GCN(Gt )
6: x̃t ← LSTM based Attention(x⃗t )
7: x̂t ← VAE(x̃t )
8: end for
9: Calculate Ljoint using Eq. (13)
0: Back propagation and update parameters in MUTANT
1: Return Ljoint

Algorithm 1 shows the main process of our MUTANT. In each
time window, we first construct the feature graph Gt (lines 3–
4) and obtain the embedding vectors through the temporal GCN
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Table 2
The statistics of benchmark datasets. (%) is the ratio of anomalies in each test
set.
Dataset Train Test #entities #dimensions Anomalies (%)

MSL 58,317 73,729 27 55 10.72
SMAP 135,183 427,617 55 25 13.13
SWaT 495,000 449,919 1 51 11.98
WADI 784,571 172,801 1 123 5.99

(line 5). Then we lean the weights for variables through the LSTM-
based attention module, and obtain x̃t (line 6). Next we use VAE
o reconstruct x̃t , and obtain the reconstructed value x̂t (line 7).
inally, the model is iteratively optimized using the calculated
oss function in Eq. (13)

.4. Online detection

After training the MUTANT, we can use it to identify whether
n observation at a time point t in the MTS (denoted as xt ) is
nomalous or not. Notice that the input of MUTANT is a time
indow Wt , instead of xt , and output is reconstructed input, i.e.,
ˆ t . The difference between x̃t and x̂t , i.e., reconstruction error, is
dopted as the anomaly score in our model, which is denoted as
t , i.e., st = (x̃t − x̂t ). A small anomaly score means the input
t can be well reconstructed. Because we train our MUTANT on

he normal data, the model learns how to reconstruct normal
ata and also successfully captures the hidden normal patterns in
TS. Therefore, when the reconstruction error of an observation

s small, it means that it conforms to these patterns. On the
ontrary, a higher reconstruction error means it does not fit these
atterns, and it may be an outlier. Namely, if an observation has
higher anomaly score, it is more likely to be an anomaly.

.5. Time complexity analysis

We now analyze the time complexity of our proposed MU-
ANT for detecting anomalies in MTS. MUTANT is mainly com-
osed of three sub-modules including the temporal GCN module
or acquiring the relationship of variables, the LSTM-based atten-
ion module for learning the importance of variables based on
ime dependencies in the time dimension, and the VAE module
or obtaining the normal mode of MTS. For the temporal GCN, we
se GCN to aggregate first-order neighbors’ features. Therefore,
he time complexity of temporal GCN is O(Ned), where Ne is
he number of edges in feature graph G, d is the dimension of
mbedding. For LSTM-based attention, the computational com-
lexity of LSTM is O(nm2), where n is the length of MTS, m is
he number of variables. The VAE’s computational complexity
s O(n2m2). Therefore, the total time complexity of MUTANT is
(Ned+ nm2

+ n2m2).

. Experiment

In this section, we first introduce the details of four eval-
ation datasets and the competitive algorithms. We study the
ffectiveness of our proposed MUTANT on four datasets compared
o state-of-the-art baseline methods, and a hypothesis test is
esigned to prove the performance significance of the proposed
UTANT. We then focus on the ablation study to verify the
ffect of each component in our model. Finally, the parameter
ensitivity and robustness of our model are discussed.
6

.1. Datasets

We conduct extensive experiments on four publicly available
eal-world datasets.

• Mars Science Laboratory (MSL) rover and Soil Moisture
Active Passive (SMAP) satellite1 are two public real-world
expert-labeled datasets from NASA [4]. Each dataset con-
tains a training set and a test set, and anomalies in the
testing set are labeled. They contain the data of 27 and 55
entities each monitored by 55 and 25 metrics (variables),
respectively.
• Secure Water Treatment (SWaT) dataset2 is collected from

an industrial water treatment plant that produces filtered
water [42]. The dataset [43] contains 11 days of continuous
operations, including 7 days under normal conditions and 4
days under attack scenarios.
• Water Distribution (WADI) dataset2 is collected from the

WADI testbed, which consists of 16 days of continuous
operation: 14 days under normal conditions and 2 days with
attack scenarios.

The detailed statistics of four datasets are summarized in
able 2.

.2. Evaluation metrics

We use Precision, Recall, and F1-score to evaluate the perfor-
ance of our proposed model and baselines, which are defined
s:

recision =
TP

TP + FP
, Recall =

TP
TP + FN

,

F1− score =
2× Precision× Recall
Precision+ Recall

,

(14)

here TP is the True Positives, FP is the False Positives, and FN is
he False negatives.

In reality, anomalies often last for a short period of time, and
here will be continuous anomalies in MTS. Therefore, a point-
djusted way to measure the detection performance is proposed
n [27]. This method proposes that if any observation in the
round truth anomaly segment is detected as abnormal, then the
round truth anomaly segment is considered to be successfully
etected, and all observations in the segment are considered to
e correctly detected outliers. In this work, the point-adjusted
ethod is adopted to calculate the evaluation metrics.

.3. Baselines

We compare our MUTANT against the following baselines:

• LSTM-NDT [4] - An LSTM-based prediction network that de-
termines anomalies based on the prediction error. A pruning
strategy is proposed to improve the accuracy of detection.
• LSTM-VAE [5] - A reconstruction-based model that replaces

the feed-forward network in the VAE with LSTM to capture
the temporal dependence of the data.
• OmniAnomaly [8] - A VAE-based reconstruction model that

uses GRU to obtain temporal dependencies, and adopts
stochastic variable connection and planar normalizing flow
to improve detection accuracy.
• USAD [29] - An unsupervised framework with one encoder

and two decoders, whose learning is inspired by GANs to
increase the gap between normal data and abnormal data.

1 https://github.com/khundman/telemanom.
2 https://itrust.sutd.edu.sg/itrust-labs_datasets/dataset_info/.

https://github.com/khundman/telemanom
https://itrust.sutd.edu.sg/itrust-labs_datasets/dataset_info/


Y. Shi, B. Wang, Y. Yu et al. Knowledge-Based Systems 275 (2023) 110725

a
t
i
1
r
W

5

t
t

Table 3
Anomaly detection accuracy in terms of precision, recall, and F1-score on four datasets.
Method MSL SMAP SWaT WADI

Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

LSTM-NDT 0.9690 0.6932 0.8082 0.8455 0.9096 0.8764 0.6572 0.7754 0.7114 0.6098 0.5281 0.5660
LSTM-VAE 0.9147 0.7486 0.8234 0.7164 0.9875 0.8304 0.7123 0.9258 0.8051 0.8302 0.5203 0.6397
OmniAnomaly 0.9269 0.8502 0.8869 0.9640 0.7418 0.8384 0.9623 0.7432 0.8387 0.3017 0.9486 0.4578
USAD 0.8710 0.9536 0.9104 0.7697 0.9831 0.8634 0.9334 0.7572 0.8361 0.6451 0.3220 0.4296
MTAD-GAT 0.9374 0.8801 0.9078 0.9029 0.8997 0.9013 0.9662 0.7491 0.8439 0.3242 0.8706 0.4725
GDN 0.9050 0.8052 0.8522 0.7685 0.8591 0.8113 0.9935 0.6812 0.8082 0.9750 0.4019 0.5692
ELM-AD 0.8124 0.8603 0.8356 0.9242 0.7673 0.8384 0.8529 0.7688 0.8087 0.6021 0.5137 0.5543
InterFusionb 0.8853 0.9073 0.8962 0.9515 0.8481 0.8968 \ \ 0.9280b

\ \ 0.9103b

DAEMONa 0.910a 1.0a 0.953a 0.929a 0.892a 0.910a 0.966a 0.929a 0.947a
\ \ \

AMSL 0.9559 0.8756 0.9139 0.9431 0.9218 0.9323 0.9528 0.9452 0.9489 0.8847 0.9402 0.9116

MUTANT 0.9571 0.9709 0.9640 0.9788 0.9719 0.9753 0.9607 0.9912 0.9757 0.9172 0.9703 0.9430
aResults are reported in [10].
bResults are reported in [19].
• MTAD-GAT [21] - A reconstruction-based model that treats
each univariate time series as a separate feature and lever-
ages two parallel GAT layers to capture temporal and spatial
dependencies, respectively.
• GDN [20] - An approach based on graph attention neural

network which learns the relationships between different
sensors, and judges abnormality according to whether it
deviates from these relationships.
• ELM-AD [32] - A cluster-based anomaly detection method

for multivariate time series. It combines the multivariate
ELM-MI framework with the dynamic kernel selection
method and determines the kernel in ELM-MI through clus-
tering.
• DAEMON [10] - A model that combines autoencoder and

adversarial training to learn the normal pattern of MTS, and
thereafter uses the reconstruction error to detect anomalies.
• InterFusion [19] - An unsupervised method that simultane-

ously models the inter-metric and temporal dependency for
MTS anomaly detection.
• AMSL [30] - A self-supervised multivariate time series

anomaly detection model, which improves the generaliza-
tion ability of the model through a convolutional autoen-
coder.

Notice that the source code of DAEMON is not publicly avail-
ble, thus we directly adopt the experimental results reported in
heir paper [10]. Although the code of InterFusion is available,
ts running time is very long. For example, it used more than
00 h on the small dataset MSL. Therefore, we directly adopt the
eported F1-score results on the large-scale datasets SWaT and
ADI in their paper [19].

.4. Experimental setting

In our experiments, we use the training set (shown in Table 2)
o train detection models and use the test set (shown in Table 2)
o evaluate the performance of all models.

For MUTANT, we set the number of graph neural layers l to 3,
embedding dimensionality of variables to 5, τ to 20, k to 4, α to 1,
and the dimension of latent representation z to 80 on SMAP, 100
on MSL, SWaT and 120 on WADI. We use the source code released
by their authors for baseline evaluation. Specifically, we use the
parameter settings provided in their paper, and the parameters of
all baselines are tuned to be optimal. In experiments, we repeat
each experiment 10 times for all methods to report average
results. The source code is available at https://github.com/Coac-
syf/MUTANT.
7

5.5. Overall performance

We compare MUTANT with eight unsupervised methods for
the detection of MTS anomalies to demonstrate the overall per-
formance of our MUTANT. Table 3 shows the obtained perfor-
mance results for all methods on the four public datasets, where
the best results are shown in bold. To fully demonstrate the
performance of all baseline methods, for each method, we test
all possible anomaly thresholds and report the highest F1-score.

As we can see, MUTANT significantly outperforms all baseline
methods in terms of F1-score on all tested datasets. More specif-
ically, experimental results indicate that MUTANT achieves aver-
age gains of 3.74% F1-score in comparison to the best-performed
baseline across all tested datasets, reaching up to 7.18% on SMAP.
MUTANT even achieves average gains of 4.09% as compared to
state-of-the-art AMSL on the four datasets. Considering that the
average performance gain in MTS anomaly detection reported in
recent works [21,29] is usually around 1.14–1.4% in F1-score, this
performance improvement achieved by our MUTANT is signifi-
cant. This is because our MUTANT effectively captures the con-
nections between different variables in MTS and their importance
in different time windows for reconstruction-based anomaly de-
tection through our designed modules.

LSTM-NDT, LSTM-VAE, or OmniAnomaly, which combine VAE
and RNN variants, only consider the time dependence on time
series and ignore the potential connections between variables in
MTS. Although adversarial training is used to amplify the recon-
struction error of inputs containing anomalies in auto-encoder
based USAD, it ignores both the time dependencies in the time
dimension and connections between variables. It can be seen that
these methods present relatively good performance on datasets
with only dozens of variables (i.e., MSL, SMAP, and SWaT), but
perform poor results on the dataset with hundreds of variables
(i.e., WADI).

Both MTAD-GAT and GDN are GNN-based anomaly detection
methods, which consider the dynamic connections between mul-
tiple variables in MTS. In addition, MTAD-GAT also combines
the forecast-based model and the reconstruction-based model
to detect anomalies, while GDN leverages only the forecasting
model for anomaly detection. However, they all ignore that the
impact (importance) of different variables in detecting anomalies
is different. Results show that MTAD-GAT achieves acceptable
performance on MSL and SMAP datasets, while GDN presents
a lower performance on MSL and SMAP datasets. Since ELM-
AD is a cluster-based anomaly detection method, it weakens the
dependence of data on time and ignores the relationship between
variables, making the detection result not ideal.

Additionally, according to the experimental results reported
in [10], our MUTANT is also significantly better than state-of-
the-art DAEMON on MSL, SMAP, and SWaT datasets. Specifically,

https://github.com/Coac-syf/MUTANT
https://github.com/Coac-syf/MUTANT
https://github.com/Coac-syf/MUTANT
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Table 4
Hypothesis testing in terms of precision, recall, and F1-score on four datasets.
Method MSL SMAP

Precision Recall F1-score Precision Recall F1-score

LSTM-NDT 1.507e−3 1.921e−17 2.028e−13 1.542e−5 5.570e−7 5.623e−11
LSTM-VAE 2.057e−8 2.351e−10 1.282e−12 4.268e−7 6.101e−5 1.113e−9
OmniAnomaly 8.237e−8 9.563e−10 2.371e−11 3.549e−5 2.900e−6 4.434e−10
USAD 4.680e−12 3.265e−11 2.064e−12 9.471e−8 1.148e−5 1.880e−11
MTAD-GAT 2.402e−7 1.681e−6 5.302e−13 7.725e−8 4.739e−6 1.389e−10
GDN 3.471e−11 2.622e−14 1.719e−15 9.464e−11 2.693e−9 5.133e−12
ELM-AD 1.843e−6 2.005e−6 3.059e−12 9.086e−8 1.139e−7 8.491e−14
InterFusion 7.298e−9 3.069e−7 5.541e−12 5.553e−3 2.260e−7 2.179e−9
AMSL 6.498e−3 4.320e−4 2.517e−8 1.051e−5 3.095e−5 3.292e−9

Method SWaT WADI

Precision Recall F1-score Precision Recall F1-score

LSTM-NDT 3.185e−11 1.109e−9 3.724e−13 6.315e−14 1.806e−14 1.651e−17
LSTM-VAE 1.030e−5 2.086e−4 4.481e−11 1.244e−6 3.336e−13 4.743e−12
OmniAnomaly 7.708e−5 3.501e−6 2.990e−16 1.078e−7 4.454e−5 9.041e−15
USAD 2.646e−6 4.592e−8 1.988e−14 1.845e−11 2.339e−10 3.716e−14
MTAD-GAT 4.375e−4 1.286e−7 8.428e−15 2.305e−7 4.144e−6 9.026e−18
GDN 2.713e−3 2.468e−7 8.214e−16 9.529e−3 3.851e−6 2.378e−17
ELM-AD 7.494e−8 6.939e−8 1.059e−13 1.383e−7 9.298e−7 1.486e−18
InterFusion \ \ \ \ \ \

AMSL 4.408e−6 1.119e−4 3.535e−8 1.418e−3 3.882e−3 1.193e−5
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MUTANT achieves an average 5.1% improvement in terms of
F1-score over DAEMON on large-scale MTS data, i.e., SMAP and
WaT. Furthermore, MUTANT also performs better than Inter-
usion on all tested datasets. In particular, MUTANT achieves
verage gains of 4.37% as compared to InterFusion on SWaT and
ADI according to the reported F1-score in [19].
In summary, MUTANT achieves the best detection perfor-

ance on either multi-entity MTS with dozens of variables or
ingle-entity MTS with hundreds of variables, suggesting that
ur proposed model effectively captures the correlations between
ariables in MTS and learns the reasonable importance of these
ariables in each time window for reconstruction-based anomaly
etection.

.6. Hypothesis testing

To further demonstrate the superiority of MUTANT, we con-
uct hypothesis testing experiments. Specifically, we statistically
valuate MUTANT against all baselines on four datasets via t-test.
or each pair of comparison methods, we define null hypothesis
0 and the alternative hypothesis H1:

0 : A ≈ B

1 : A < B
(15)

here A is the experimental result of one of the above-mentioned
aselines on a certain dataset, and B is the detection result of MU-
ANT in the corresponding dataset. We compute the p-value for
ach test and check the hypothesis at p = 0.05 significance level.
e perform the t-test on the three evaluation metrics: precision,

ecall and F1-score, and the specific statistical evaluation results
re shown in Table 4. Notice that the source code of DAEMON
s not publicly available, thus we cannot do the hypothesis test
ith this method. Since InterFusion’s running time is very long,
e directly adopt the reported F1-score results on the large-scale
atasets SWaT and WADI in their paper. Therefore, we also do
ot take the hypothesis test with InterFusion on SWaT and WADI
atasets.
As shown in Table 4, all t-test results of precision, recall and F1-

core are significant at p = 0.05. Especially in F1-score, MUTANT
ignificantly outperforms all the baseline methods at p = 0.05.
Thus we can reject the null hypothesis H0 and accept alternative
Hypothesis H1. Namely, the detection performance of our pro-
posed MUTANT is significantly better than those of all baselines.
 m

8

Fig. 3. The performance comparison of variants on four datasets.

his experiment also demonstrates that the improvement of our
UTANT over state-of-the-art baselines is statistically significant

n detecting anomalies for MTS.

.7. Ablation study

To verify each component of MUTANT, we further conduct
he ablation study. We compare our model with two carefully
esigned variations. Despite the changed part(s), all variations
ave the same frame structure and parameter settings. The per-
ormance of all variations in terms of F1-score on four datasets
re shown in Fig. 3.

• MUTGCN - This variation removes the temporal GCN mod-
ule, and directly uses time window Wt as the input of the
reconstruction module.
• MUTAtt - In this variation, we remove the LSTM-based atten-

tion mechanism, and directly feed the learned embeddings
of variables into VAE for reconstruction.

Effect of temporal GCN. The comparison between MUTGCN and
UTANT highlights the effectiveness of the temporal GCN in MTS
nomaly detection. From Fig. 3, we can observe that MUTGCN
erforms worse than MUTANT on all datasets, and even performs
he worst on theWADI dataset. Specifically, MUTANT significantly
mproves 46.02% over MUTGCN in terms of F1-score on the dataset
ith hundreds of variables (i.e., WADI). This indicates that our
odel with GCN, considering the potential connections between
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Fig. 4. Experimental results of MUTANT w.r.t. parameters on the SMAP dataset.
ariables in MTS, works much better on the high-dimensional
TS than the low-dimensional MTS. That is, considering the
onnections between variables is essential for high-dimensional
TS anomaly detection.
Effect of LSTM-based attention. The comparison between MUTAtt

nd MUTANT reflects the importance of the LSTM-based attention
odule for MTS anomaly detection. As shown in Fig. 3, MUTAtt
roduces worse results than MUTANT on all datasets, reducing
.4% performance in terms of F1-score on SWaT, which demon-
trates the crucial role of our designed LSTM-based attention
echanism in learning the importance of each variable in each

ime window for MTS anomaly detection.

.8. Parameter sensitivity

We now investigate the sensitivity of our MUTANT w.r.t. the
mportant parameters, including time window length τ , the num-
er of nearest neighbors k, representation of latent layer z, and

size of training set. All experiments are conducted using the SMAP
dataset, and the results are depicted in Fig. 4.

Fig. 4(a) shows the obtained results of MUTANT in terms
of precision, recall, and F1-score by varying the length of time
window from 1 to 75. It can be seen that the detection effect of
MUTANT increases first and then decreases, as the length of the
time window increases. When τ = 15, MUTANT achieves the best
performance. This is because when the time window is too small,
due to the limited data in the window, the correlation between
the variables cannot be well captured. But when the time window
is too large, it will contain too much complex information, and the
inter-relationship between the variables becomes complicated
and thus is not properly modeled.

The second parameter we study is how MUTANT responds
to different k nearest neighbors. The value of k determines how
many variables similar to the current variable are selected as
neighbor nodes by connecting an edge. Fig. 4(b) presents the
performance of MUTANT w.r.t. different choices of k. We can
see that the effect of k on our model has similar observations
with time window length τ . The model performance achieves
the best when the value of k reaches 4. Only by selecting the
appropriate k can we achieve the purpose of obtaining the po-
tential connections between different variables. If the value of
k is too small, the connections between some variables may be
ignored, while when the value of k is too large, more connections
are established between variables. But the relationship strength
between the variables will be weakened by some noise, which
does not reflect the real connections of variables.

From the results in Fig. 4(c), we can see that the performance
of MUTANT gradually rises and then decreases slightly as the
dimension of latent layer z increases and achieves the best per-
formance when dimension J reaches at 20. The main reason is
that if dimension J of the latent layer z is too small, it is difficult

to retain the essential characteristics of the time series, i.e., too

9

Fig. 5. Experimental results of MUTANT w.r.t. hyper-parameter α.

much information is lost, and it is not easy to be reconstructed,
resulting in the overall error of normal samples is be too large.
Conversely, a larger dimension causes the reconstruction model
to fail to capture the essential features, making our model unable
to effectively distinguish abnormal samples from normal samples.

We next study the influence of the size of the training set on
the detection performance. Fig. 4(d) illustrates the performance of
our MUTANT with respect to the size of the training set. Specif-
ically, we vary the ratio γ of the original training set for each
experiment, for example, if γ is set to 0.9, we remove the first
10% of the training set and use the rest as the real training set. We
can observe that the performance of our MUTANT remains stable
when γ varies from 1 to 0.6. Namely MUTANT is robust relative
to the size of the training set. Even with 40% of the training set,
our model still achieves 0.9606 in F1-score, which is much higher
than all other comparison algorithms.

Finally, we evaluate the impact of hyper-parameter α on the
detection performance of MUTANT on SMAP and SWaT datasets.
α is used to balance the importance of representation learning
of temporal GCN and reconstruction module. The experimental
results are shown in Fig. 5. As we can see, F1-score of MUTANT
first increases to the maximal values and then decreases as hyper-
parameter α increases. This is intuitive because both temporal
GCN and reconstruction module are essential for precise detec-
tion as verified in the ablation study. As shown in Fig. 5(a), F1-
score of MUTANT reaches maximum values when α falls around
1 on SMAP. Similarly, MUTANT achieves the best performance
when α is set to 1 on SWaT in Fig. 5(b). This also suggests both
our proposed representation learning and reconstruction module
contribute a lot to the overall performance.

5.9. Robustness evaluation

In the process of data collection, due to the influence of ex-
ternal factors, some wrong data may be generated or mixed with
some noise data, which often reduces the accuracy of detection.
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Table 5
Anomaly detection results of MUTANT on contaminated training data.
ε% MSL SMAP SWaT WADI

Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

1% 0.9563 0.9655 0.9609 0.9770 0.9685 0.9727 0.9735 0.9716 0.9725 0.9416 0.9287 0.9351
5% 0.9317 0.9840 0.9570 0.9391 0.9809 0.9595 0.9749 0.9232 0.9483 0.9195 0.9480 0.9335
10% 0.9284 0.9644 0.9461 0.9386 0.9813 0.9595 0.9654 0.9298 0.9473 0.8783 0.9635 0.9189
15% 0.9097 0.9968 0.9513 0.9413 0.9886 0.9643 0.9660 0.9428 0.9543 0.9528 0.9017 0.9265
20% 0.9062 0.9968 0.9493 0.9347 0.9880 0.9606 0.9817 0.9160 0.9477 0.9496 0.8761 0.9114
Therefore, the outlier detection models must have good robust-
ness with noise data. To evaluate the robustness of MUTANT,
we design the following experiment: we use generated random
numbers to replace the original data in the training set so that the
training set contains some noise. More specifically, we generate
ε% random numbers of the training set and replace ε% values in
he training set by randomly selecting time points and variable
imensions. It is worth noting that these random numbers do not
bey any distribution in order to be closer to reality.
Table 5 shows the experimental results of MUTANT with dif-

erent contaminated training sets on four datasets. We can ob-
erve that the performance of MUTANT decreases slightly with
he increase of noise ratio ε. However, the average F1-score of
MUTANT is only reduced by 2.31% even when noise accounts for
20%, which is still better than the performance of all baselines
with original training sets shown in Table 3. The possible reason is
that our MUTANT uses the variable features in each time window
to construct the feature graph, and uses the embedding vectors of
variables to replace the previous contaminated features to learn
normal patterns in the reconstruction module, which effectively
enhances the robustness of MUTANT to noise.

5.10. Case study

In this section, we investigate the effectiveness of the pro-
posed model in detecting anomalies through a case study ap-
proach. In particular, we select two representative cases on MSL
and SMAP datasets, respectively. Note that although two datasets
include dozens of variables, we only select seven representative
variables for convenience. As shown in Fig. 6, where vi represents
the time series produced by the ith variable.

The case in Fig. 6(a) comes from the MSL dataset, and the
data samples at t1 and t2 are the anomalies detected by our
model, and they are also real anomalies. It can be seen from the
figure that the changing trends of variables v1 and v2 and the
changing trends of variables v5 and v6 are basically consistent,
which indicates that there is a strong correlation between v1 and
v2 and between v5 and v6. But at time t1, the changing trend
between v1 and v2 changed, and the consistency is no longer
maintained, which indicates that anomalies may occur in the
system. The same is true for the anomaly at time t2. However,
the time series generated by each variable has not changed dras-
tically, and even remains within the normal range, so it is difficult
for other anomaly detection models that do not consider the
inter-relationship between variables to find these anomalies. The
proposed model, using temporal GCNs to model variables in time
windows, captures the correlations between variables well and
thus can effectively detect this type of anomaly.

The case shown in Fig. 6(b) comes from the SMAP dataset,
where the data samples at time t1 and t2 are anomalies detected
by our model, and they are also real anomalies. Since the time
series data generated by variables v1, v2, and v3 are basically sta-
ble or change periodically, when the data changes significantly at
time t1, the proposed model and other anomaly detection models
can easily detect this anomaly. However, for the abnormality at

time t2, the data generated by variables v1, v2, and v3 does not

10
Fig. 6. Results of case study.

change. Although the time series data generated by variables v6
and v7 are in a state of continuous change, the data frequency at
time t2 is accelerating. This anomaly here is successfully identified
by our MUTANT based on this change, while it is not detected by
other anomaly detection methods. This is because we propose an
attention mechanism that assigns weights to different variables
based on the time dependence of the time series data. This
mechanism assigns different weights to variables in different time
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Fig. 7. Learning curve of loss function for MUTANT.
indows. At the time t2, the frequency of data changes generated
y v6 and v7 is accelerated, and our model pays more attention to
hese variables and gives them greater weight so that abnormality
t time t2 is detected.

.11. Convergence of mutant

Fig. 7 shows the learning curves of the loss function of our
UTANT model on the four datasets, where the abscissa indicates

he number of epochs, and the ordinate indicates the loss value.
e can see that our model can converge quickly and remain

table, which reflects the high efficiency of our proposed model
n this work.

. Conclusion

In this paper, we propose a novel unsupervised method MU-
ANT for MTS anomaly detection. MUTANT first constructs a
eature graph based on variable features for each time window
n MTS and uses GCN to learn the embeddings for all variables.
hen, MUTANT feeds the embeddings of variables into the pro-
osed attention-based reconstruction module, which consists of
n LSTM-based attention module that learns the importance of
ariables in each time window and a VAE module that learns
he latent representation for each observation to capture normal
atterns of MTS. Additionally, we use end-to-end training to opti-
ize our model by a joint learning objective function. Experimen-

al results on four public benchmark datasets demonstrate the
uperiority of the proposed MUTANT in comparison with state-
f-the-art techniques. For future work, we are very interested in
nducing a more robust self-supervised learning framework based
n contrastive learning for MTS anomaly detection.
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