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A B S T R A C T

Session-based recommendation focuses on predicting the next item that an anonymous user is most likely
to click. Due to its privacy-protecting ability, it is receiving increasing attention from researchers in recent
years. The existing studies typically focus on sequence or graph structure learning. However, they ignore
the consistency and sequential dependence relationships that are widely existed between items in real-
world scenarios. To address this problem, we present a novel method named HyperS2Rec. Specifically, we
propose to learn two kinds of item embeddings with hypergraph convolutional network and gated recurrent
unit, respectively, to account for both consistency-awareness and sequential dependence-awareness. Then the
attention mechanism is designed to flexibly combine the above both embeddings. Finally, the reversed position
and the soft attention mechanism are utilized to obtain session representations. To verify the effectiveness
of the proposed HyperS2Rec, we conduct experiments on three real-world datasets. The results prove that
the proposed HyperS2Rec significantly outperforms state-of-the-art methods. The source code of our proposed
model is available at https://github.com/ZZY-GraphMiningLab/HyperS2Rec.
1. Introduction

With the rapid growth of the Internet, users are flooded with plenty
of information. Recommendation systems aim to provide users with the
information they need in a timely and effective manner (Yue, Xiao,
Zhao, & Li, 2022; Zhao, Yang, Li, & Nie, 2021; Zhao et al., 2020),
and have become an essential technology to alleviate information over-
load (Malik, Rana, & Bansal, 2020; Zhang, Yao, Sun, & Tay, 2019; Zhao
et al., 2022). Traditional studies (Aggarwal, 2016; Burke, 2002) usually
rely on long-term historical interactions and complete user profiles to
accomplish good performance. However, in real-world recommenda-
tion scenarios, user profiles are generally not available (Guo et al.,
2019). For example, if a user does not log in online shopping websites
when browsing items, only short-term historical interactions in the
ongoing session can be used to predict the next click (Latifi, Mauro,
& Jannach, 2021). Thus, it is quite difficult for traditional methods to
achieve the desired performance in such scenarios.

Significantly different from the early research, session-based recom-
mendation is proposed to deal with this dilemma. It is able to provide
anonymous users with recommending results by only considering their
short-term historical interactions. Therefore, it is receiving increasing
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attention from researchers (Tan, Xu, & Liu, 2016; Wang, Lou, & Jiang,
2022; Zhang, Zheng et al., 2022). One of the most critical issue in
session-based recommendation is how to accurately and efficiently
capture and learn complex transitions of items from the limited infor-
mation. As shown in Fig. 1(a), 𝑢1 clicked accessories such as phone cases,
screen protectors or earphones after clicking a mobile phone. We can see
that the items in session 1 are sequentially dependent. Based on such
dependent assumption, recurrent neural network (RNN) is widely ap-
plied due to its capability of learning sequential data. GRU4Rec (Hidasi,
Karatzoglou, Baltrunas & Tikk, 2016) is the first work to employ RNN
in the field of session-based recommendation. It innovatively regards
the clicks of a user as a sequence. NARM (Li et al., 2017) captures the
sequential behavior of users and the main purpose of a session via a
hybrid encoder. STAMP (Liu, Zeng, Mokhosi, & Zhang, 2018) proposes
to capture the short-term interest through the most recently clicked
item. Although RNN-based methods mentioned above are able to well
handle sequential information in a session, the strongly dependent
assumption makes them fail to model the other important relationship,
e.g., consistency. Consistency means that there is no strict order be-
tween items. As an example shown in Fig. 1(b), 𝑢2 clicked a variety of
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Fig. 1. A toy example of two kinds of relationships between items. From Fig. 1(a), we can see that the items in session 1 are sequentially dependent. While the items in session
2 are consistent as shown in Fig. 1(b). Both of the above relationships are widely existed in real-world scenarios and should be paid attention to.
bags, like handbag, backpack, shoulder bag, etc. Obviously, there is no
sequential dependence but consistency between items in session 2. As
the consistency is also widely existed in real-world scenarios, it is vital
to capture both of relationships for session-based recommendation.

Graph neural network (GNN) based methods aim to model ses-
sions as graph-structured data, which enables them to make full use
of graph structure to enhance the recommending performance. SR-
GNN (Wu, Tang et al., 2019) first attempts to model each session
as a subgraph. It learns item representations via gated graph neural
network (GGNN). GC-SAN (Xu et al., 2019) utilizes both GGNN and
self-attention mechanism to enrich contextualized representations of
items. SHARE (Wang, Ding, Zhu, & Caverlee, 2021) is designed based
on hypergraph attention network (HGAT) and learns contextual infor-
mation with sliding windows. DHCN (Xia et al., 2021) captures the
beyond-pairwise relations among items through hypergraph modeling.
Although GNN-based methods are effective in learning complex graph-
structured transitions via the information propagation on the graph,
they relax the modeling of sequential dependence between items shown
in Fig. 1(a).

To this end, we propose a novel method (named HyperS2Rec) which
simultaneously considers both consistency and sequential dependence
between items. Specifically, it first learns item representations with hy-
pergraph structure and sequence structure, respectively. Then the final
item representations are generated via an attention mechanism. More-
over, the reversed position embedding mechanism and soft attention
mechanism are exploited to integrate the impact of position and obtain
session representation. Finally, the model outputs the probabilities that
each candidate item becomes the next click. The main contributions of
this paper are summarized as follows.

• We propose an efficient session-based recommendation method
named HyperS2Rec. It is capable of capturing both consistency
and sequential dependence between items that are widely avail-
able in real-world scenarios.

• It learns two kinds of item representations with hypergraph con-
volutional network (HGCN) and gated recurrent unit (GRU), re-
spectively. Moreover, it flexibly gathers relatively important in-
formation from the learned representations for recommendation
with an attention mechanism.

• We conduct extensive experiments on Tmall, RetailRocket and
Diginetica datasets. The experimental results show that the pro-
posed HyperS2Rec outperforms the state-of-the-art methods.

2. Related work

In this section, we review session-based recommendation methods
related to this work from three aspects: traditional methods, deep
learning-based methods and GNN-based methods.
2

2.1. Traditional methods

Since user profiles are often not available in some scenarios, it
is natural to leverage the relationships between items to generate
results. Item-KNN (Sarwar, Karypis, Konstan, & Riedl, 2001) recom-
mends 𝐾 items similar to previous clicks based on cosine similarity.
However, it does not consider the effects of interactive order. Inspired
by word embedding methods, CoFactor (Liang, Altosaar, Charlin, &
Blei, 2016) decomposes interaction matrix and co-occurrence matrix
to improve recommending performance. The information available in
session-based recommendation is only the short-term historical inter-
actions of anonymous users, thus simple matrix factorization is not
well-suited. PRME-G (Feng et al., 2015) adopts metric embedding to
overcome the shortcoming of matrix factorization. PME (Wu et al.,
2013) utilizes distances between items and users to indicate their
relationships and makes recommending results based on the last given
item. FPMC (Rendle, Freudenthaler, & Schmidt-Thieme, 2010) fuses
personalized first-order Markov chains and a matrix factorization model
to learn transition matrix for each user. Nevertheless, it only focuses
on the transition between two adjacent items in a sequence, which has
difficulty in capturing complex high-order sequence patterns.

2.2. Deep learning-based methods

As RNN has shown advantages in modeling sequential data, it is
extensively employed in the field of session-based recommendation.
GRU4Rec (Hidasi, Karatzoglou et al., 2016) attempts to employ RNN
to recommender systems for the first time, and regards the clicks of
a user as a sequence. Besides, it models sessions with the improved
GRU layer. NARM (Li et al., 2017) simulates the sequential behavior of
users and captures the main purpose of a session via a hybrid encoder.
STAMP (Liu et al., 2018) is designed based on multilayer perceptron
and attention network. It takes both of the short-term and long-term
interest of a session into account. Hierarchical RNN (Quadrana, Karat-
zoglou, Hidasi, & Cremonesi, 2017) extends existing RNN modeling via
integrating one GRU level. It is able to capture dynamic preferences
by transferring with cross-session information. DREAM (Yu, Liu, Wu,
Wang, & Tan, 2016) is designed to learn dynamic interests and the
global sequential information it obtained reflects the interactions of a
user over time. ReLaVaR (Chatzis, Christodoulou, & Andreou, 2017)
cooperates RNN with variational inference to alleviate data sparsity.
p-RNN (Hidasi, Quadrana, Karatzoglou & Tikk, 2016) utilizes parallel
RNN to model clicking items and their features in a session and exploits
a novel training strategy to improve recommending performance. Jan-
nach and Ludewig fused the advantages of RNN and heuristics-based
KNN to effectively use sequential signals and co-occurrence information
in a session (Jannach & Ludewig, 2017).

Apart from RNN-based methods, there are still lots of deep learning-

based methods for session-based recommendation. HMN (Song, Cao,
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Zhang, & Xu, 2019) learns memory matrices from two aspects: item-
level and feature-level. In addition, it adopts hierarchical attention
mechanism and selects multi-level features to obtain session represen-
tation. CSRM (Wang et al., 2019) utilizes two memory modules to
consider the information of the ongoing session and the cooperative
neighbor information in parallel, respectively. Caser (Tang & Wang,
2018) investigates the effect of recent items on recommending and
learns sequential patterns via convolution operator. Tuan and Phuong
proposed to utilize content features as the supplementary information
of clicking items (Tuan & Phuong, 2017). They adopted 3-dimensional
convolutional neural network to model different types of input data.
HierTCN (You et al., 2019) is comprised of high-level and low-level
model. It learns long-term interests and short-term interactions via RNN
and temporal convolutional network, respectively. DIDN (Zhang, Lin
et al., 2022) combines item, user and temporal information to capture
the dynamic intention of a session. Besides, it filters out the noise for
sessions via a well-designed denoising module.

Although deep learning-based methods have made great success,
the shortcoming of them is obvious. They excessively rely on sequen-
tial dependencies between adjacent items, which ignores transitional
information between non-adjacent items.

2.3. GNN-based methods

SR-GNN (Wu, Tang et al., 2019) is the first work to model sessions
as graph. It adopts GGNN to capture complex item transitions, and
fuses the local and global features of a session through an attention
mechanism. GC-SAN (Xu et al., 2019) exploits GNN to capture local
dependencies and then learns long-range dependencies with the help of
self-attention mechanism. TA-GNN (Yu et al., 2020) uses a target-aware
attention to activate the interests of users. It learns different interest
representations for different target items. FGNN (Qiu, Li, Huang, &
Yin, 2019) regards a weighted graph attention network as the encoder
of item features. Moreover, it applies a readout function to generate
session representations. MSGIFSR (Guo et al., 2022) learns interactions
between consecutive units from a high-level perspective via multi-
granularity session graph. It simultaneously takes order-variant and
order-invariant relations into account and achieves promising per-
formance. However, the methods above merely exploit the directed
session graph to model the item transitions in the ongoing session,
which neglects the rich information hidden across sessions.

To tackle this problem, many efforts have been made recently. A-
PGNN (Zhang et al., 2020) learns structural information in the user
behavior graph via a personalized GNN. Besides, the information of
historical sessions is integrated into the current session to achieve
personalized recommendation. GAG (Qiu, Yin, Huang, & Chen, 2020)
constructs session graph based on the ongoing session. The highlight of
this work is that it takes the global attributes into consideration to learn
more comprehensive representations. SGNN-HN (Pan, Cai, Chen, Chen,
& de Rijke, 2020) introduces virtual nodes as star nodes to construct
star graph. It uses star GNN to learn complex transitions between
items that are not directly connected and alleviates over-fitting via
highway networks. GCE-GNN (Wang et al., 2020) incorporates relevant
information in other sessions into the current session. Moreover, it
performs graph attention network on session graph and global graph to
represent more complicated item transitions. DGTN (Zheng, Liu, Li, &
Wu, 2020) integrates the current session and neighbor sessions into the
same graph to capture similar behavior patterns. GNN-GNF (Feng, Cai,
Wei, & Li, 2022) first filters out the noise within a session by an item-
level denoising module. Then, it selects related sessions based on the
intention of the current session via edge matching to construct global
graph.

Although GNN has achieved promising performance, the above
methods are proposed mainly based on a simple graph. Thus, they
are not well-suitable for capturing high-order relationships between
3

items (Gao et al., 2021), which limits their representative ability. F
Table 1
The notations used in this paper.

Notations Descriptions

 The constructed hypergraph according to sessions.
𝐻 The incidence matrix of hypergraph .
𝐷, 𝐵 The degree matrix of vertex/hyperedge.
|𝑆|, |𝑉 | The number of sessions/items.
𝑁𝑖 The length of 𝑠𝑖.
𝑐𝑖 The initial representation of item 𝑣𝑖.
ℎ𝑖 The representation of item 𝑣𝑖 based on HGCN.
𝑔𝑖 The representation of item 𝑣𝑖 based on sequential

information embeddings.
𝛼ℎ The weight coefficients of item representations

based on HGCN.
𝛼𝑔 The weight coefficients of item representations

based on sequential information embeddings.
𝑓𝑖,𝑡 The final representation of 𝑡th item in 𝑠𝑖.
𝛽𝑖,𝑡 The weight coefficient of 𝑡th item in 𝑠𝑖.
𝑢𝑖 The final representation of 𝑠𝑖.

Therefore, GNN is extended to hypergraph for modeling complex high-
order transitions. SHARE (Wang et al., 2021) constructs a hypergraph
for each session, and uses a contextual sliding window to model the
correlation of items. Besides, it utilizes HGAT to distinguish items
with different degrees of importance. DHCN (Xia et al., 2021) is a
recent method which is closely related to our work. It performs graph
convolution on hypergraph and line graph to obtain item-level and
session-level representations, with self-supervised learning for training.
Nevertheless, it ignores the sequential dependence of short-term session
data in real world. Different from DHCN, the HyperS2Rec proposed
in this paper fully considers both the consistency and sequential de-
pendence between items. The integration of hypergraph-structure and
sequential information enables the model to dig out the real intentions
of the current session to a great extent.

3. Preliminaries

Definition 1 (Hypergraph). A hypergraph (Bai, Zhang, & Torr, 2021)
is denoted as  = ( , ), where  is a set of 𝑁 vertices and  is a set
of 𝑀 hyperedges. Each hyperedge 𝑒𝑗 ∈  is assigned a positive weight
𝑊𝑗𝑗 , and all the weights formulate a diagonal matrix 𝑊 ∈ R𝑀×𝑀 . The
incidence matrix of a hypergraph  can be denoted as 𝐻 ∈ R𝑁×𝑀 . If a
vertex 𝑣𝑖 ∈  is connected by a hyperedge 𝑒𝑗 ∈  , 𝐻𝑖𝑗 = 1, otherwise
. For each vertex and hyperedge, their degree 𝐷𝑖𝑖 and 𝐵𝑗𝑗 are defined
s 𝐷𝑖𝑖 =

∑𝑀
𝑗=1 𝑊𝑗𝑗𝐻𝑖𝑗 ; 𝐵𝑗𝑗 =

∑𝑁
𝑖=1 𝐻𝑖𝑗 respectively. 𝐷 ∈ R𝑁×𝑁 and

∈ R𝑀×𝑀 are diagonal matrices.

roblem (Session-based Recommendation). Let 𝑆 =
{

𝑠1, 𝑠2,… , 𝑠
|𝑆|

}

enote a set of sessions. Let 𝑉 =
{

𝑣1, 𝑣2,… , 𝑣
|𝑉 |

}

denote a set consisting
of all unique items involved in all sessions. |𝑆| and |𝑉 | are the number
f sessions and items, respectively. Each anonymous session can be
epresented by a list 𝑠𝑖 =

[

𝑣𝑖,1, 𝑣𝑖,2, 𝑣𝑖,3,… , 𝑣𝑖,𝑁𝑖

]

ordered by timestamps,
here 𝑁𝑖 denotes the length of 𝑠𝑖 and 𝑣𝑖,𝑡 ∈ 𝑉 (1 ≤ 𝑡 ≤ 𝑁𝑖) represents the

𝑡th item in 𝑠𝑖. The task of session-based recommendation is to predict
he next item for 𝑠𝑖, i.e., 𝑣𝑖,𝑁𝑖+1. Formally, it outputs the probabilities
�̂� for all candidate items, where �̂�𝑖 represents the probability of 𝑣𝑖
eing the next item. The top-𝐾 items among all candidates are selected
or recommendation according to �̂�. The notations mainly used in this
aper are summarized in Table 1.

. The proposed method

.1. Overall framework

The overall framework of the proposed HyperS2Rec is shown in

ig. 2. It is comprised of four components: (1) Hypergraph information
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Fig. 2. The overall framework of HyperS2Rec. First, we model sessions as a hypergraph and obtain item representations based on HGCN. Meanwhile, we utilize GRU to learn
sequential information in 𝑠𝑖. We then generate the final item representations via the attention mechanism. Moreover, the reversed position embedding mechanism and soft attention
mechanism are utilized to obtain session representation 𝑢𝑖. Finally, the prediction layer outputs the probabilities of candidates being the next item in 𝑠𝑖.
Fig. 3. The process of hypergraph construction.
embeddings. We model sessions as a hypergraph and obtain item rep-
resentations based on HGCN; (2) Sequential information embeddings.
We employ GRU to get item representations based on sequential infor-
mation embeddings; (3) Item and session representation learning. First,
the final item representations are learned via an attention mechanism.
Then, they are fused to obtain session representation via the reversed
position embedding mechanism and the soft attention mechanism;
(4) Prediction layer. The model calculates the probabilities that each
candidate item becomes the next click, and then selects the top-𝐾 items
for recommendation.

4.2. Hypergraph information embeddings

Hypergraph Construction. Inspired by Xia et al. (2021), we model
sessions as an undirected hypergraph  = ( , ), where each session
is modeled as a hyperedge and each item is modeled as a vertex.
Fig. 3 shows the process of constructing a hypergraph from a series of
sessions. First, three sessions 𝑠1, 𝑠2, 𝑠3 are regarded as three hyperedges
𝑒1, 𝑒2, 𝑒3, respectively. Then the items in each session are connected in
pairs regardless of the order. This way is helpful for the HyperS2Rec to
capture the consistency between items in a session.

Hypergraph Convolutional Network. It generalizes graph convo-
lutional network (GCN) to hypergraph, and takes the hyperedges as
transition during information propagation. The procedures are divided
4

into the following two phases: (1) information aggregation from ver-
tices to hyperedges, and (2) information aggregation from hyperedges
to vertices. Specifically, the information of each vertex is aggregated
into the hyperedge it located. Thus, the representation of each hyper-
edge is obtained. After that, look up the hyperedges connected to each
vertex, and the information of these hyperedges is aggregated into the
vertices. As a result, the representation of each vertex is generated.

Fig. 2(a) shows the details of the hypergraph convolutional layer.
First of all, the information of vertex 𝑣4, 𝑣5, 𝑣7 is aggregated into the
hyperedge 𝑒1. The information of vertex 𝑣1, 𝑣2, 𝑣4, 𝑣6 is aggregated into
the hyperedge 𝑒2. The information of vertex 𝑣2, 𝑣3, 𝑣5 is aggregated
into the hyperedge 𝑒3. Then, as vertex 𝑣4 appears in both hyperedge
𝑒1 and 𝑒2, the information of 𝑒1, 𝑒2 is aggregated into 𝑣4. Similarly,
the information of hyperedge 𝑒1, 𝑒3 is aggregated into vertex 𝑣5. In
this way, the representations of all vertices are obtained. It is worth
noting that, the HGCN enables HyperS2 Rec to capture the information
of closely related sessions with the current one, which further improves
the learning of item representations.

Similar to the convolutional network defined on simple graph, the
challenge of HGCN is how to make the representations propagate
between convolutional layers. Wu, Souza et al. (2019) verified that
removing the nonlinear activation function and weight matrix between
layers in the process of propagation can not only reduce the additional
complexity, but also have no negative impact on downstream tasks.
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Thus, following previous work (Bai et al., 2021; Wu, Souza et al., 2019;
Xia et al., 2021), we define HGCN as follows:

𝑥(𝑙+1)𝑡 =
𝑁
∑

𝑖=1

𝑀
∑

𝑗=1
𝐻𝑡𝑗𝐻𝑖𝑗𝑊𝑗𝑗𝑥

(𝑙)
𝑖 , (1)

where 𝑥(𝑙+1)𝑡 denotes the representation of the 𝑡th node at the (𝑙 + 1)th
layer. 𝑊𝑗𝑗 is set to 1 for each 𝑗.

The matrix of Eq. (1) with row normalization is:

𝑋(𝑙+1) = 𝐷−1𝐻𝑊𝐵−1𝐻𝑇𝑋(𝑙), (2)

where 𝑊 ∈ R|𝑆|×|𝑆| denotes the weight matrix of hyperedges. Here it
is an identity matrix. 𝐷 ∈ R|𝑉 |×|𝑉 | and 𝐵 ∈ R|𝑆|×|𝑆| are the degree
matrices of vertex and hyperedge, respectively. 𝐻 ∈ R|𝑉 |×|𝑆| is the
incidence matrix of the constructed hypergraph. 𝑋(𝑙), 𝑋(𝑙+1) ∈ R|𝑉 |×𝑑

denotes the representations of all items at the 𝑙th layer and (𝑙 + 1)th
ayer, respectively. 𝑑 is the representational dimension. The input of 0th
ayer is the initialized item representations 𝐶 =

[

𝑐1, 𝑐2,… , 𝑐
|𝑉 |

]

which
are obtained according to item id, i.e., 𝑋(0) = 𝐶.

We pass 𝑋(0) through 𝐿 hypergraph convolutional layers, and aver-
age item representations learned by each layer to obtain item represen-
tations based on HGCN:

𝑋ℎ = 1
𝐿 + 1

𝐿
∑

𝑙=0
𝑋(𝑙). (3)

4.3. Sequential information embeddings

It has been demonstrated that RNN is effective in modeling se-
quences. As a variant of RNN, GRU is able to well alleviate the problem
of long-range dependencies. Besides, it has fewer parameters and faster
training speed than Long-Short Term Memory (LSTM). Therefore, we
design a module named sequential information embeddings based on
GRU to effectively capture the sequential dependence between items
in a session.

The initial hidden state 𝑔𝑖 is set to zero vector. For the initial
representation 𝑐𝑖 of item 𝑣𝑖, GRU updates the hidden states 𝑔𝑖 as follows:

𝑟𝑖 = 𝜎
(

𝑊𝑟𝑐𝑖 + 𝑈𝑟𝑔𝑖−1
)

, (4)

𝑎𝑖 = 𝜎
(

𝑊𝑎𝑐𝑖 + 𝑈𝑎𝑔𝑖−1
)

, (5)

�̃�𝑖 = tanh
(

𝑊𝑔𝑐𝑖 + 𝑈𝑔
(

𝑟𝑖 ⊙ 𝑔𝑖−1
))

, (6)

𝑔𝑖 =
(

1 − 𝑎𝑖
)

⊙ 𝑔𝑖−1 + 𝑎𝑖 ⊙ �̃�𝑖, (7)

here 𝑊𝑟,𝑊𝑎,𝑊𝑔 ∈ R𝑑×𝑑 , 𝑈𝑟, 𝑈𝑎, 𝑈𝑔 ∈ R𝑑×𝑑 are the learnable param-
ters. 𝜎(⋅) denotes sigmoid function. ⊙ denotes element-wise multi-
lication operator. The reset gate 𝑟𝑖 determines how to combine the
nformation of the current moment with the previous. The update gate
𝑖 controls the proportion of the memory from the previous moment
o the current. �̃�𝑖 remembers the state of the current moment. We
an obtain the item representations based on sequential information
mbeddings 𝑋𝑔 by employing GRU.

.4. Item and session representation learning

The attention mechanism has the ability to automatically collect the
elatively important information needed by assigning diverse weights.
he weights it generates can be adjusted continuously to select im-
ortant information under different circumstances. Based on the above
dvantages, we use an attention mechanism to learn the final item
epresentations and a soft-attention mechanism to obtain session rep-
esentations, respectively.
Item representation learning. For item 𝑣𝑖, we exploit an attention

echanism to adaptively calculate the relative importance between the
bove two aspects:
𝑖 𝑇 ( )
5

ℎ = 𝑞1 tanh 𝑊1ℎ𝑖 + 𝑏1 , (8)
𝑖
𝑔 = 𝑞1

𝑇 tanh
(

𝑊1𝑔𝑖 + 𝑏1
)

, (9)

here ℎ𝑖 and 𝑔𝑖 denote the representation of item 𝑣𝑖 based on HGCN
nd sequential information embeddings, respectively. 𝑞1 ∈ R𝑑 ,𝑊1 ∈
𝑑×𝑑 and 𝑏1 ∈ R𝑑 are learnable attention vector, weight matrix and
ias vector, respectively.

The softmax function is employed to convert the importance into
eight coefficients:

𝑖
ℎ =

exp
(

𝜇𝑖
ℎ
)

exp
(

𝜇𝑖
ℎ
)

+ exp
(

𝜇𝑖
𝑔

) = 1 − 𝛼𝑖𝑔 , (10)

where 𝛼𝑖ℎ and 𝛼𝑖𝑔 are the weight coefficients of item representations
based on HGCN and sequential information embeddings, respectively.

The final representation of item 𝑣𝑖 can be obtained with the follow-
ing formula:

𝑓𝑖 = 𝛼𝑖ℎℎ𝑖 + 𝛼𝑖𝑔𝑔𝑖. (11)

As a result, the representations of all the items in 𝑠𝑖 are learned,
i.e., 𝐹𝑖 =

[

𝑓𝑖,1, 𝑓𝑖,2,… , 𝑓𝑖,𝑁𝑖

]

.
Session representation learning. It has been verified that each

item carries the positional information (Qiu, Huang, Chen, & Yin, 2021)
and the reversed position is playing more important role in exploring
users’ intention (Wang et al., 2020). Therefore, in this paper, the
reversed position that each item carries is taken into account for session
representation learning. The position embedding matrix is denoted as
𝑃 =

[

𝑝1, 𝑝2,… , 𝑝𝑁𝑖

]

, where 𝑝𝑖 ∈ R𝑑 refers to a position vector for
position 𝑖. The position information is integrated with the following
formula:

𝑓 ∗
𝑖,𝑡 = tanh

(

𝑊2

[

𝑓𝑖,𝑡∥𝑝𝑁𝑖−𝑡+1

]

+ 𝑏2
)

, (12)

where ∥ is concatenation operator. 𝑁𝑖 is the length of 𝑠𝑖. 𝑊2 ∈ R𝑑×2𝑑

and 𝑏2 ∈ R𝑑 are learnable parameters, respectively.
The soft attention mechanism (Wu, Tang et al., 2019) is adopted to

distinguish different contributions of items to the final session repre-
sentations. First, the representation of 𝑠𝑖 is obtained by averaging its
item representations.

𝑠′𝑖 =
1
𝑁𝑖

𝑁𝑖
∑

𝑡=1
𝑓𝑖,𝑡. (13)

Then, it learns the weight coefficient for each item. The formula is
hown as follows:

𝑖,𝑡 = 𝑞2
𝑇 𝜎

(

𝑊3𝑠
′
𝑖 +𝑊4𝑓

∗
𝑖,𝑡 + 𝑏3

)

, (14)

here 𝜎(⋅) denotes sigmoid function. 𝑞2 ∈ R𝑑 is an attention parameter.
3,𝑊4 ∈ R𝑑×𝑑 and 𝑏3 ∈ R𝑑 are learnable weight matrix and bias vector,

respectively. The larger the 𝛽𝑖,𝑡, the more important the 𝑡th item is to
apturing the intention of 𝑠𝑖.

Finally, the session representation 𝑢𝑖 is calculated as follows.

𝑢𝑖 =
𝑁𝑖
∑

𝑡=1
𝛽𝑖,𝑡𝑓𝑖,𝑡. (15)

4.5. Prediction layer

Given an item 𝑣𝑗 ∈ 𝑉 , the score of 𝑣𝑗 in session 𝑠𝑖 is defined as the
similarity between the representations 𝑢𝑖 and 𝑓𝑗 , shown in Eq. (16).
Thus, the score vector �̂�𝑠𝑖 can be obtained with �̂�𝑠𝑖 ,𝑗 being the 𝑗th
element.

̂𝑠𝑖 ,𝑗 = 𝑢𝑖
𝑇 𝑓𝑗 , (16)

Then, we adopt the softmax function to get the prediction vector
�̂�𝑠𝑖 , which is written as follows:

�̂� = sof tmax(�̂� ),
𝑠𝑖 𝑠𝑖 (17)
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where �̂�𝑠𝑖 ∈ R|𝑉 |×1, and �̂�𝑠𝑖 ,𝑗 denotes the probability of 𝑣𝑗 becoming
he next item in session 𝑠𝑖. The top-𝐾 items among all candidates are
elected for recommendation according to �̂�𝑠𝑖 .

For session 𝑠𝑖, the loss function is defined as follows:

(�̂�𝑠𝑖 ) = −
|𝑉 |

∑

𝑗=1
𝑦𝑠𝑖 ,𝑗 log

(

�̂�𝑠𝑖 ,𝑗
)

+
(

1 − 𝑦𝑠𝑖 ,𝑗
)

log
(

1 − �̂�𝑠𝑖 ,𝑗
)

, (18)

here 𝑦𝑠𝑖 ,𝑗 is the ground truth to denote whether 𝑣𝑗 is the next-clicked
tem in session 𝑠𝑖.

.6. Algorithm and complexity analysis

Algorithm 1 presents the training process of HyperS2Rec. For mod-
ling session 𝑠𝑖 =

[

𝑣𝑖,1, 𝑣𝑖,2, 𝑣𝑖,3,… , 𝑣𝑖,𝑁𝑖

]

, the time complexity mainly
ncludes three parts: 𝑂

(

𝑁𝑖𝑑𝐿 +𝑁𝑖𝑑2 + |𝑉 |𝑑
)

from item representation
earning, 𝑂

(

𝑁𝑖𝑑2
)

from session representation learning and 𝑂(|𝑉 |𝑑)
rom model prediction and optimization. Therefore, the total time
omplexity of HyperS2Rec is 𝑂

(

𝑇 |𝑆|
(

𝑁𝑖𝑑𝐿 +𝑁𝑖𝑑2 + |𝑉 |𝑑
))

, where |𝑉 |

enotes the number of unique items, 𝑑 denotes the representational
imension, 𝐿 is the number of HGCN layers, 𝑁𝑖 is the length of
ession 𝑠𝑖 and |𝑆| is the number of sessions. The space complexity of
yperS2Rec is 𝑂

((

𝑑 + 𝑑2 + 𝑝𝑑 + |𝑉 |𝑑
)

in total, where 𝑝 is the maximum
ength of sessions.

Algorithm 1 Training process of HyperS2Rec
Input: session set 𝑆 =

{

𝑠1, 𝑠2,… 𝑠
|𝑆|

}

, the number of HGCN layer 𝐿, maximum
epoch 𝑇

Output: Trainable parameters 𝛷
1: Initialize parameters 𝛷;
2: repeat
3: for 𝑡 in range [0, 𝑇 ] do
4: for 𝑠𝑖 in 𝑆 do
5: for 𝑙 in range [1, 𝐿] do
6: Learn 𝑙th item representations according to Eq. (2);
7: end for
8: Learn item representations based on HGCN according to Eq. (3);
9: Learn item representations based on sequential information

embeddings according to Eq. (4)–(7);
0: Obtain final representation of each item in 𝑠𝑖 according to

Eq. (8)–(11);
11: Learn the representation of 𝑠𝑖 according to Eq. (12)–(15);
12: Predict the probabilities of all candidates being the next item in 𝑠𝑖

according to Eq. (16)–(17);
13: end for
4: Update 𝛷 with gradient descent;

15: end for
16: until Eq. (18) converges;
17: Return 𝛷

5. Experiments

5.1. Datasets

We carried out experiments on the following three datasets to
evaluate the performance of HyperS2Rec.

Tmall1: It comes from the IJCAI-15 competition. It comprises the
hopping histories of anonymous users on the ‘‘Double 11’’ day and
he previous 6 months on Tmall online shopping website.
RetailRocket2: It is a Kaggle competition dataset published by an e-

ommerce company. It includes browsing statistics of anonymous users
ver a period of 4.5 months.

1 https://tianchi.aliyun.com/dataset/dataDetail?dataId=42
2 https://www.kaggle.com/retailrocket/ecommerce-dataset
6

Table 2
Statistics of datasets.

Tmall RetailRocket Diginetica

# of training sessions 351,268 433,648 719,470
# of test sessions 25,898 15,132 60,858
# of clicks 818,479 710,586 982,961
# of items 40,728 36,968 43,097
Average length 6.69 5.43 5.12

Diginetica3: It comes from CIKM Cup 2016 and includes informa-
tion of sessions extracted from e-commerce search engine logs. Only
transactional data is utilized in our experiments.

The testing sets consist of the sessions of the last week, and the
training sets are the rest historical sessions. Following the previous
work (Li et al., 2017; Liu et al., 2018; Wu, Tang et al., 2019), all sessions
that the length is 1 and all items that appear less than 5 times were
filtered out. In addition, we adopted splitting operation for each ses-
sion. That means, for each session 𝑠𝑖 =

[

𝑣𝑖,1, 𝑣𝑖,2, 𝑣𝑖,3,… , 𝑣𝑖,𝑁𝑖

]

, a series
f sequences and corresponding labels

([

𝑣𝑖,1
]

, 𝑣𝑖,2
)

,
([

𝑣𝑖,1, 𝑣𝑖,2
]

, 𝑣𝑖,3
)

,… ,
[

𝑣𝑖,1, 𝑣𝑖,2,… , 𝑣𝑖,𝑁𝑖−1

]

, 𝑣𝑖,𝑁𝑖

)

are generated, where the label of each
equence is its last item. The statistics of three datasets are described
n Table 2.

.2. Baselines

We compared the proposed HyperS2Rec with the following eleven
ompetitive baselines:
Item-KNN (Sarwar et al., 2001): The 𝐾 items most similar to

revious clicks are recommended based on cosine similarity.
FPMC (Rendle et al., 2010): The personalized first-order Markov

hain and matrix factorization are combined in this method to accom-
lish sequential recommendation.
GRU4Rec (Hidasi, Karatzoglou et al., 2016): It regards the clicks

f a user as a sequence, and models the interactive sequences via the
mproved GRU layer.
STAMP (Liu et al., 2018): It is designed based on multilayer per-

eptron and attention network. Besides, it proposes to capture the
hort-term interest through the most recently clicked item.
CoSAN (Luo et al., 2020): It constructs the dynamic item repre-

entations and neighbor session representations. Meanwhile, it models
he long-range dependencies between collaborative items to predict the
ser’s intention.
DIDN (Zhang, Lin et al., 2022): It combines item, user, and temporal

nformation to learn dynamic intention. Besides, a denoising module is
evised to filter out the noise for sessions.
SR-GNN (Wu, Tang et al., 2019): It models each session as a

ubgraph. The item representations are learned by GGNN, and the
ession representations are obtained by fusing local and global features
hrough an attention network.
GC-SAN (Xu et al., 2019): It utilizes both GGNN and self-attention

echanism to enrich contextualized representations of items.
GNN-GNF (Feng et al., 2022): It constructs global graph after a data

reprocessing module which includes item-level and session-level filter
odule.
SHARE (Wang et al., 2021): A contextual sliding window is de-

igned to model dynamic user interests, and hypergraph convolutional
ttention network is integrated to capture preferences of users.
DHCN (Xia et al., 2021): To obtain item-level and session-level

epresentations, the graph convolution is performed on hypergraph and
ine graph. Besides, self-supervised is applied into the training of the
etwork.

3 http://cikm2016.cs.iupui.edu/cikm-cup/

https://tianchi.aliyun.com/dataset/dataDetail?dataId=42
https://www.kaggle.com/retailrocket/ecommerce-dataset
http://cikm2016.cs.iupui.edu/cikm-cup/
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Table 3
The performance of the proposed HyperS2Rec and competitors over three datasets. The best and second best results are highlighted in bold and underline.

Methods Tmall RetailRocket Diginetica

H@10 M@10 H@20 M@20 H@10 M@10 H@20 M@20 H@10 M@10 H@20 M@20

Item-KNN 6.65 3.11 9.15 3.31 22.48 10.43 28.97 10.98 25.07 10.77 35.75 11.57
FPMC 13.1 7.12 16.06 7.32 25.99 13.38 32.37 13.82 15.43 15.43 26.53 6.95
GRU4Rec 9.47 5.78 10.93 5.89 38.35 23.27 44.01 23.67 17.93 17.93 29.45 8.33
STAMP 22.63 13.12 26.47 13.36 42.95 24.61 50.96 25.17 33.98 14.26 45.64 14.32
CoSAN 24.16 11.78 28.39 12.52 43.81 23.8 52.47 24.4 34.75 14.29 48.34 15.22
DIDN 24.38 13.89 29.56 13.96 43.51 26.93 51.4 27.16 40.11 17.41 53.44 18.52
SR-GNN 23.41 13.45 27.57 13.72 43.21 26.07 50.32 26.57 36.86 15.52 50.73 17.59
GC-SAN 15.75 8.64 19.28 8.89 44.1 26.92 51.18 27.4 37.86 16.89 50.84 17.79
GNN-GNF 24.96 13.88 28.93 14.22 44.87 26.81 52.79 27.21 37.67 15.76 51.61 17.77
SHARE 25.04 13.98 29.69 14.24 46.47 26.59 54.16 27.11 39.52 17.12 52.73 18.05
DHCN 25.16 13.92 30.46 14.28 47.93 28.28 55.75 28.82 39.78 17.44 53.09 18.35

HyperS2Rec 27.26 14.98 32.91 15.39 49.11 29.44 56.71 29.95 40.52 18.09 54.13 18.91
Improv(%) 8.35 7.15 8.04 7.77 2.46 4.1 1.72 3.92 1.02 3.7 1.29 2.1
n
e

d
c

5.3. Evaluation metrics

Two ranking based metrics are adopted to evaluate the recommend-
ing results.

HR@K(Hit Rate): HR@K is used to measure the accuracy of the
ecommendation. It refers to the proportion of correct items in the
enerated 𝐾 recommended items and is defined as:

𝑅@𝐾 =
𝐻𝑖𝑡𝑛
𝑁

, (19)

here 𝐻𝑖𝑡𝑛 denotes the number of correct items included in the gener-
ted 𝐾 ranked list. 𝑁 is the total number of the test set. The larger the
R@K, the more accurate the recommendation result is.
MRR@K(Mean Reciprocal Rank): MRR@K emphasizes the rank of

he correct item. It is used to measure the order of recommendation
anking and is defined as:

𝑅𝑅@𝐾 = 1
𝑁

𝑁
∑

𝑖=0

1
rank(𝑖)

, (20)

where 𝑁 is the total number of the test set. rank(𝑖) denotes the rank
of the correct item in the generated list in the 𝑖th test sample. If the
correct item is not in the generated list, then 1/(rank(𝑖)) is set to 0. A
larger MRR@K indicates that the rank of the correct item is higher.

5.4. Parameter settings

We use Gaussian distribution with a mean of 0 and a standard
deviation of 0.1 to initialize parameters. For the sake of fairness, the
representational dimension and batch size in all methods are set to
100, and the epoch is 30. We use Adam to optimize our model. The
learning rate is selected from {0.0001, 0.0005, 0.001, 0.005, 0.01}, and
will decay by 0.1 after 3 epoch. The optimal number of hypergraph
convolutional layers on three datasets is searched in {1, 2, 3, 4, 5}, re-
spectively. Moreover, for all the baselines, we adopt the best parameter
settings as they reported.

5.5. Experimental results and analyses

The experimental results are shown in Table 3. As demonstrated in
Table 3, HyperS2Rec outperforms all the baselines on three datasets.
Specifically, we have the following interesting observations and analy-
ses.

(1) Item-KNN performs poorly for the reason that it only models
the similarity between items, which ignores the interactive order in
a session. Thus, it is incapable of capturing the transitions between
items. In contrast to Item-KNN, FPMC demonstrates its effectiveness.
It combines matrix factorization with Markov chains. This explains, to
some extent, the importance of transitions between items for capturing
7

user preferences. s
(2) GRU4Rec is the first attempt of RNN in the field of session-based
recommendation. Although its performance is not as good as FPMC on
Tmall dataset, RNN-based methods significantly outperform traditional
methods in general, indicating that RNN is well suitable for modeling
sequential data. STAMP uses recurrent units to encode the interactive
sequences, and assigns weights to items in a session through an atten-
tion mechanism. Experimental results show that STAMP outperforms
GRU4Rec, indicating that assigning different weights to different items
is particularly essential to accurately capture the intention of a session.
Moreover, STAMP treats the last clicked item as short-term interest,
demonstrating the significance of capturing short-term memory for
predicting the next interaction. Nevertheless, the gradient vanishing
and exploding problem existed in RNN make the training process of
the above methods become tricky. CoSAN integrates the information
of neighbor sessions for the current session by utilizing collaborative
self-attention network. As shown in Table 3, the improvement on HR is
promising but disappointing on MRR. This confirms that incorporating
the information of related sessions can indeed enrich the representation
of the current session, but it also brings some noise. Diginetica dataset
contains more items and clicks compared with the other two datasets,
which may bring more noises. Thus, DIDN achieves competitive per-
formance on Diginetica dataset compared with other baselines. The
experimental results of DIDN demonstrate that noisy clicks indeed
affect the prediction of intentions, and this problem can be alleviated by
effective denoising methods. Besides, it is also essential to pay attention
to the dynamic changes of intention over time.

(3) The experimental results show that GNN-based methods are
more competitive. SR-GNN models sessions as graph structure, and
learns item representations through GGNN. GC-SAN introduces self-
attention to learn long-range dependencies in a session which is not
able to be learned by GNN. However, the performance of GC-SAN on
Tmall dataset is disappointing. The possible reason is that the average
length of sessions in Tmall dataset is relatively long, and the long-
range dependencies between items are not as strongly as assumed in
GC-SAN. It also further verifies our hypothesis that the items have not
only sequential dependence, but also consistency. Experimental results
show that GNN-GNF outperforms SR-GNN and GC-SAN, demonstrat-
ing that denoising can help capture the intention more accurately.
SHARE and DHCN utilize hypergraph to model sessions and gain great
improvements, which indicates the superiority of hypergraph modeling.

(4) The proposed HyperS2Rec performs the best on three datasets.
Compared with SR-GNN and GC-SAN which model sessions as simple
graph structure, HyperS2Rec models them as hypergraph, and con-
ects any two items in a session. The characteristic of hyperdege
nables HyperS2Rec to capture consistency between items. Compared

with SHARE and DHCN, HyperS2Rec considers the sequential depen-
ence between items within a session, which enables it to capture more
omplicated item transitions. In summary, the experimental results

2
how that HyperS Rec is able to consider both hypergraph-structured
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Fig. 4. The performance of HyperS2Rec and its variants on three datasets.
information and sequential information simultaneously. Thus it has
more powerful representational ability to capture the real intention of
a session.

5.6. Ablation study

We carried out ablation experiments to further study the impact of
each component in HyperS2Rec. We defined the following four variants:

• HyperS2Rec-HG: This model removes the hypergraph informa-
tion embeddings from the proposed HyperS2Rec. It considers the
representations obtained by GRU as the final item representa-
tions. This variant is designed to investigate the effectiveness of
hypergraph-structured information.

• HyperS2Rec-GRU: This model removes the sequential information
embeddings from the proposed HyperS2Rec. It takes the represen-
tations obtained by HGCN as the final item representations. This
variant is designed to investigate the effectiveness of sequential
information.

• HyperS2Rec-POS: This is a variant which removes the reversed
position embedding mechanism from the proposed HyperS2Rec.
It is designed to investigate the effects of reversed positional
information.

• HyperS2Rec-SA: It replaces the session representation described in
Eq. (15) by averaging item representations described in Eq. (13).
This variant is designed to explore the impact of soft attention
mechanism.

The experimental results of HyperS2Rec and four variants are illus-
trated in Fig. 4. Specifically, we have the following conclusions:

(1) HyperS2Rec outperforms HyperS2Rec-HG and HyperS2Rec-GRU
on three datasets. It indicates that either sequential information or
hypergraph-structured information is insufficient to predict the next-
item. Besides, the performance of HyperS2Rec-HG decreases more than
HyperS2Rec-GRU, which implies that the consistency between items is
more important than sequential dependence. In summary, the hidden
hypergraph-structured information captured by HGCN and sequential
information obtained by GRU both contribute to the final session
representations.

(2) HyperS2Rec achieves a better performance than HyperS2Rec-
POS. It shows us the effectiveness of the reversed position embedding
mechanism. In other words, the reversed positional information of
items is playing a very important role in recommendation. Therefore,
the reversed position embedding mechanism in HyperS2Rec is essential
to reflect the real intention of users.

(3) HyperS2Rec outperforms HyperS2Rec-SA, which indicates that
items in a session indeed contribute differently to capturing the prefer-
ence of the current session. Therefore, the performance of HyperS2Rec
benefits from the soft attention mechanism which assigning different
weights to different items when generating session representations.
8

5.7. Parameter analysis

Impact of HGCN layers. In order to explore the effects of the
number of HGCN layers, we ranged the number of layers within {1, 2,
3, 4, 5}. Fig. 5 shows how the change of convolutional layers affect the
performance of HyperS2Rec. As demonstrated in Fig. 5, the best result
is achieved when the number of layers is set to three on RetailRocket
dataset and Diginetica dataset. Nevertheless, one layer is the best on
Tmall dataset, and the performance decreases when the number of
layers increases.

In addition to learning consistency between items in a session,
HGCN in HyperS2Rec is able to capture the information of neighbors’
sessions. For RetailRocket dataset and Diginetica dataset, the average
length of sessions is relatively short. So it is necessary to supplement
the current session with information of related sessions. As shown in
Fig. 5, the performance of HyperS2Rec is not the best when the number
of layers is set to one and two. Meanwhile, the performance decreases
when the number of layers is greater than three. The possible reason is
over-smoothing. Thus, three layers are the best choice for RetailRocket
dataset and Diginetica dataset. On the contrary, the average length
of sessions in Tmall dataset is relatively long. More extra information
excessively supplemented would inevitably obscure the true intention
of the current session. Thus, one-layer setting is the best on Tmall
dataset.

In summary, the above results tell us that too little information of
related sessions makes insufficient learning of the current session, while
too much brings some noise. Thus, this experiment proves that, in addi-
tion to the current session’s information, appropriate supplementation
of cross-session information can effectively improve the recommending
performance.

Impact of representational dimension. We also study the impact
of representational dimension which ranges in {16, 32, 64, 128, 256}.
The results are reported in Fig. 6. It can be seen that the perfor-
mance of HyperS2Rec firstly improves and then decreases slightly with
the increment of dimensions. The reason is that a small representa-
tional dimension leads to insufficient representational ability, while a
large probably leads to over-fitting. Moreover, HyperS2Rec has different
optimal representational dimensions on different datasets. The best
performance is achieved when the representational dimension is set to
128 on Tmall dataset and Diginetica dataset. Nevertheless, 64 is the
best on RetailRocket dataset.

5.8. Complexity comparison

We chose SR-GNN which is designed based on simple graph, SHARE
and DHCN which are designed based on hypergraph to test the com-
plexity of the proposed HyperS2Rec. For fairness, we conducted exper-
iments on the same GPU server and recorded their resource consump-
tion, respectively. Table 4 presents the resource consumption on three

datasets.
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Fig. 5. The performance of HyperS2Rec on different hypergraph convolutional layers.
Fig. 6. The performance of HyperS2Rec on different representational dimensions.
Table 4
Space and time consumption of the proposed HyperS2Rec and three baselines over three datasets.

Methods Tmall RetailRocket Diginetica

Mem. GPU Mem. Time Mem. GPU Mem. Time Mem. GPU Mem. Time

SR-GNN 4813MB 2219MB 248s 5018MB 2695MB 895s 5222MB 2321MB 402s
SHARE 5939MB 2397MB 286s 6554MB 3567MB 1107s 5939MB 2887MB 461s
DHCN 5278MB 2371MB 579s 6349MB 2795MB 1563s 5427MB 2531MB 1147s
HyperS2Rec 5171MB 2324MB 312s 6298MB 2706MB 1204s 5338MB 2355MB 844s
As shown in Table 4, SHARE, DHCN and HyperS2Rec consume more
space and time than that of SR-GNN. The main reason is that the former
models are designed based on hypergraphs, while the latter is based
on simple graph. Particularly, SR-GNN has the smallest space and time
consumption on three datasets. Although SHARE and DHCN consume
more memory and training time, they both improve the recommending
performance to a certain extent. Due to the calculation of attention co-
efficients and the stacking of HGAT layers, SHARE has relatively more
space and time consumption. In addition, DHCN constructs two kinds of
graphs, which inevitably bring more space and time consumption than
HyperS2Rec. From Table 4, we can see that although the space and time
consumed by HyperS2Rec are not the least, they both increase within
a reasonable range and it is capable of achieving the best performance
which has been proved in Table 3.

6. Conclusion

In this paper, we propose a novel method HyperS2Rec for session-
based recommendation. It considers both the consistency and sequen-
tial dependence between items, simultaneously. Hypergraph-structured
information captured by HGCN and sequential information captured
by GRU are exploited to jointly model the preferences of users. The
reversed position embedding mechanism and soft attention mechanism
are combined to obtain session representations. Experimental results on
three real-world datasets demonstrate that the proposed HyperS2Rec is
superior to several competitive methods.
9

Our proposed HyperS2Rec is designed based on clicking behavior,
which ignores the impact of other behaviors users generated, such as
search, add to favorites and add to cart et al. Such information may
reflect users’ real preferences from more aspects, and is helpful to
predict their intentions accurately. In future work, we will attempt to
explore methods that integrate multiple types of behaviors to improve
the performance of session-based recommendation.
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