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A B S T R A C T

Heterogeneous Graph Embedding (HGE) is receiving a great attention from researchers, as it can be widely and
effectively used to solve problems from various real-world applications. The existing HGE models mainly learn
node representation directly on the whole heterogeneous graph by aggregating neighboring information, which
unavoidably leads to the loss of useful high-order information. Another mainstream is to split heterogeneous
graphs into different homogeneous subgraphs and then learn representations separately. However, this isolated
handling way is prone to the loss of important interactions between the nodes of the same type. To address
the above challenging but interesting problems, we propose an Original graph and Subgraph aggregated
Graph Neural Network (OSGNN). Specifically, we first split the original heterogeneous graph into several
subgraphs, and then weighted combine them to get a new meaningful homogeneous graph. Finally, the
first-order and high-order information of the target node are learned from the original heterogeneous graph
and the homogeneous subgraph respectively and concatenated as the final node representation. Extensive
experiments on three real-world heterogeneous graphs demonstrate that the proposed framework significantly
outperforms the state-of-the-art methods. The source codes of this work are available on https://github.com/
ZZY-GraphMiningLab/OSGNN.
1. Introduction

Due to the remarkable achievements of graph neural networks
(GNNs) (Welling & Kipf, 2017; Wu et al., 2020) in non-Euclidean fields,
researchers are paying attention to their promotion and potential ap-
plications in the real world, such as social networks (Moscato & Sperlì,
2021; Xie et al., 2021), transportation networks (Andreoletti et al.,
2016; Zhang et al., 2018), academic networks (Atwood & Towsley,
2016; Hamilton et al., 2017) and so on (Li et al., 2022; Qian et al., 2022;
Salamat et al., 2021). To avoid the loss of the necessary information and
improve the representative ability of graph neural networks (Hamilton
et al., 2017; Velickovic et al., 2018; Welling & Kipf, 2017), the great
efforts have been made to explore heterogeneous graphs (HGs). Het-
erogeneous graph neural networks (HGNNs) (Wang et al., 2019; Yang
et al., 2020; Yun et al., 2019) have become an effective solution to
the above application scenarios because of their strong representation
ability.

However, with the natural property of multi-type nodes and edges
in heterogeneous graphs, some of the drawbacks of the graph neural
networks may be amplified. For example, different types of node fea-
tures belong to different spaces, how to effectively aggregate different
types of node representations is still an open question. In addition, due
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to the existence of heterogeneous nodes, most nodes of the same type
cannot be connected and learn from each other directly. Therefore,
when modeling and learning heterogeneous graphs, we are facing two
kinds of challenges.

Challenge 1: Semantic confusion is one of the most important
problems that limit the performance of HGNNs (Ji et al., 2023). There
are two main reasons for this phenomenon. One is that different
types of nodes belong to different spaces. If these node features are
aggregated directly without considering different spatial information,
it undoubtedly introduces more noises. The other is that when the
number of network layers of HGNNs increases, each node continu-
ously aggregates more and more noise information, resulting in the
phenomenon that representations of different nodes become similar. A
straightforward method is to convert the heterogeneous graph into ho-
mogeneous graphs by considering different metapaths (Ji et al., 2023;
Wang et al., 2019). However, it ignores heterogeneous nodes and edges,
which undoubtedly causes information loss. Another solution is to learn
the local information of nodes merely. In other words, the HGNNs
are designed with small-layer (1-layer or 2-layer) heterogeneous graph
convolution to alleviate semantic confusion. However, it leads to the
loss of the same type of higher-order information.
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Fig. 1. (a) Illustration of a 2-layer HGNN and (b) A heterogeneous graph of DBLP dataset.
Challenge 2: The nodes of the same type should be well explored
to strengthen mutual learning. Different from homogeneous graphs,
the nodes of the same type do not connect each other directly. They
are linked with multiple intermediate heterogeneous nodes, thus they
cannot learn from each other easily. Although some methods based on
metapath can directly learn high-order information (Li et al., 2023;
Wang et al., 2019), they ignore local heterogeneous information. Fig. 1
is a simple heterogeneous graph to describe the entities and rela-
tionships on DBLP dataset. Obviously, there are three kinds of nodes
(author, paper, and conference) and two types of relationships (publish
and write). Taking 𝐴𝑢𝑡ℎ𝑜𝑟1 as the target node, a 2-layer HGNN is
adopted to learn node representations. We find that the 2-layer HGNN
cannot make 𝐴𝑢𝑡ℎ𝑜𝑟1 learn the information of 𝐴𝑢𝑡ℎ𝑜𝑟5, even though
𝐴𝑢𝑡ℎ𝑜𝑟5 and 𝐴𝑢𝑡ℎ𝑜𝑟1 are the nodes with the same type. On DBLP
dataset, the author’s labels depend on the conference nodes. If 𝐴𝑢𝑡ℎ𝑜𝑟5
and 𝐴𝑢𝑡ℎ𝑜𝑟1 are used to learn from each other directly, this can further
improve the representation ability of the HGNN. This view has been
proved in heterogeneous graph attention network (HAN) (Wang et al.,
2019) and heterogeneous graph propagation network (HPN) (Ji et al.,
2023).

Generally speaking, the existing models are able to alleviate se-
mantic confusion by learning the first-order information of nodes, but
they cannot effectively learn the information of high-order nodes of the
same type. If the higher-order information is aggregated directly with
metapath or metagraph, it will bring the loss of local information of
nodes. Some recent HGNNs have made some efforts to retain both local
and high-order information at the same time. HMSG (Cai et al., 2021)
aggregates information from both homogeneous and heterogeneous
neighbors to capture structural, semantic and attribute information
in heterogeneous graphs. HGNN-AC (Cai et al., 2021) first completes
missing attributes of local nodes with attribute completion module,
and then aggregates higher-order neighbors by metapaths. However,
it has high computational complexity, and it ignores the interaction
between different metapaths. As pointed out in Wang et al. (2022), the
above methods treat each metapath as an isolated semantic data re-
source and disregard the interaction among them in learning metapath
embeddings.

To solve the above challenges, we propose an Original graph and
Subgraph aggregated Graph Neural Network (OSGNN). For Challenge
1, OSGNN learns local and high-order information from two different
perspectives and uses concatenation to maximize the retention of these
two types of information. For Challenge 2, OSGNN generates different
subgraphs from the original heterogeneous graph according to different
metapaths, then uses graph-level attention to fuse these subgraphs to
generate a new homogeneous graph. This process is able to overcome
the problem of semantic information isolation (Wang et al., 2022),
so as to capture the interaction between different metapaths. Finally,
2

the aggregate representations and initial features are weighted and
summed to obtain the final representations. The model is trained and
optimized with the loss function of downstream tasks.

The contributions of this work are summarized as follows:

• We present an original graph and subgraph aggregated graph neu-
ral network. It not only directly learns the local information from
the original heterogeneous graph, but also learns higher-order
information easily by generating a new meaningful homogeneous
graph with multiple metapaths.

• Metapath induced subgraphs are assigned to different weights
by employing graph level attention mechanism. In addition, the
semantic intensity of different metapaths is retained to capture
interactions between high-order nodes.

• We conducted experiments on three commonly used real-world
datasets. The experimental results demonstrate that the proposed
OSGNN is effective and outperforms the state-of-the-art methods
significantly.

The remainder of this paper is organized as follows. Section 2 briefly
reviews the related work. The related concepts and formal definitions
of heterogeneous graphs are introduced in Section 3. In Section 4, we
present the framework and the algorithm of the OSGNN. Section 5
evaluates the effectiveness of the OSGNN with the experimental results
and analysis. Finally, Section 6 summarizes the research work of this
paper.

2. Related work

2.1. Graph Neural Network (GNN)

The purpose of GNNs is to learn the low dimensional vector rep-
resentation of nodes by aggregating the topological information of the
graph and the node features. The existing methods are mainly classified
into two categories: spectral GNNs (Bruna et al., 2014; Defferrard
et al., 2016) and spatial GNNs (Gilmer et al., 2017; Hamilton et al.,
2017; Monti et al., 2017). For spectral GNNs, they learn the node
representation by convolution in the Fourier domain of the graph.
Graph convolution network (GCN) (Welling & Kipf, 2017) is the pi-
oneer of GNN models, which uses the first-order approximation of
spectral convolution to simplify ChebNet (Bruna et al., 2014). However,
the drawback of spectral GNNs is that their filters depend on the
Laplace basis of the graph, which is closely related to the specific
graph structure. Spatial GNNs utilize spatially close neighbors to define
convolution operations directly on the graph. Hamilton et al. pro-
posed GraphSAGE (Hamilton et al., 2017), which can directly perform
information aggregation on fixed-size node neighbors. Graph atten-
tion network (GAT) (Velickovic et al., 2018) aggregates node features
with an attention mechanism and assigns different weights to different

nodes.
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The above GNNs are only applicable to homogeneous graphs. Con-
sidering that the node features in heterogeneous graphs are not in the
same space, these GNNs cannot model them directly.

2.2. Heterogeneous Graph Neural Network (HGNN)

HGNNs are mainly used to model heterogeneous graphs. They can
learn more complete node representations with a variety of heteroge-
neous node information. The existing HGNNs are mainly divided into
two categories: one is to aggregate neighbor information directly based
on edge type, and the other is to aggregate higher-order information
based on metapath or metagraph.

HGNNs based on edge type: Graph transformer networks (GTN)
(Yun et al., 2019) uses the adjacency matrix of multiple edge sub-
graphs and matrix multiplication to find and generate valuable meta-
path neighborhood graphs in heterogeneous graphs, and then en-
codes the graphs using GCN. Metapath extracted graph neural network
(MEGNN) (Chang et al., 2022) leverages heterogeneous convolution
to combine different relation subgraphs corresponding to edge types
into a new graph structure. Heterogeneous graph neural networks with
denoising (HGNND) (Dong et al., 2022) uses attention to learn more
important information on heterogeneous graph convolution. Then it
filters out potential noisy nodes with denoising operations to further
enhance the node representation. Heterogeneous graph structural at-
tention neural network (HetSANN) (Hong et al., 2020) aggregates
neighborhood node information with a specific graph attention layer,
thus avoiding the manual selection of metapaths. Heterogeneous graph
structure learning (HGSL) (Zhao et al., 2021) generates a heterogeneous
graph with a more perfect structure by aggregating feature graph,
semantic graph, and original graph.

HGNNs based on metapath or metagraph: HAN (Wang et al., 2019)
is an improved model based on GAT (Velickovic et al., 2018). It
first converts a heterogeneous graph into multiple homogeneous sub-
graphs with different metapaths and then uses GAT to learn the target
node representations. Finally, it aggregates the representations of dif-
ferent subgraphs with the attention mechanism to obtain the final
representation. Its disadvantage is that it ignores other types of node
information, resulting in information loss. Metapath aggregated graph
neural network (MAGNN) (Fu et al., 2020) is regarded as an improved
HAN (Wang et al., 2019) model, which divides the original graph
into multiple bipartite graphs according to different metapaths. Un-
like HAN, it retains the information of intermediate heterogeneous
nodes. CHEST (Wang et al., 2023) uses heterogeneous subgraph trans-
former to capture metapath semantics, and performs pre-training of
node embedding with three kinds of generative losses. Higher-order
attribute-enhancing (HAE) (Li et al., 2023) learns the importance of
higher-order information with metagraph, and then aggregates them
by node-level attention. HPN (Ji et al., 2023) is similar to HAN in that
it preserves the original information with hyper-parameters to avoid
semantic confusion.

However, most models (such as HAE (Li et al., 2023), HPN (Ji et al.,
2023), HIGCN (Chen et al., 2022), and so on) are based on metapath or
metagraph, and they capture high-order information (second order and
above information) of nodes by converting the heterogeneous graph
into homogeneous subgraphs. As shown in Fig. 3, the academic coau-
thor heterogeneous network is converted into a homogeneous network
which is composed of author nodes. Hence, the features of the paper
nodes and the conference nodes are discarded. The models which are
based on edge type (such as HetSANN (Hong et al., 2020), HGSL (Zhao
et al., 2021), and so on) can directly capture the local information
of nodes. However, the high-order information has to be captured by
stacking network layers, leading to the problem of semantic confusion
stated in challenge 1. Therefore, the model proposed in this paper is
able to learn the local information of nodes to effectively avoid seman-
tic confusion on the one hand, and learn the interactive information
3

between high-order nodes on the other hand.
3. Preliminary

In this section, we first define some notations used in this paper,
as shown in Table 1. We then introduce some basic concepts and
formulate the problem to be solved in this paper.

Definition 1 (Heterogeneous Graph (HG)). A heterogeneous graph
(Sun & Han, 2012) (a.k.a., Heterogeneous Information Network) is
denoted as a network 𝐺 = (𝑉 ,𝐸). It is composed of node set 𝑉 and
edge set 𝐸, including node type mapping function 𝛷 ∶ 𝑉 → 𝑇 and
edge type mapping function 𝛶 ∶ 𝐸 → 𝑅, where 𝑇 and 𝑅 represent the
set of node type and edge type respectively, |𝑇 | + |𝑅| > 2.

Definition 2 (Metapath). A metapath (Sun & Han, 2012; Sun et al.,
2011) is defined as a path in the heterogeneous graph 𝐺: 𝑣1

𝑟1
⟶ 𝑣2

𝑟2
⟶

⋯
𝑟𝑙
⟶ 𝑣𝑙+1, where 𝑣 ∈ 𝑇 , 𝑟 ∈ 𝑅. It describes the composite relationship

𝑟 = 𝑟1◦𝑟2◦⋯◦𝑟𝑙 between node 𝑣1 and node 𝑣𝑙+1, where ◦ represents
the compound operator on relationships. Fig. 2 shows three common
metapaths on citation networks, named: 𝑎𝑝𝑎, 𝑎𝑝𝑐𝑝𝑎, and 𝑎𝑝𝑎𝑝𝑎.

Definition 3 (Metapath Induced Subgraph). Given a heterogeneous
graph 𝐺 = (𝑉 ,𝐸), we define the metapath induced subgraph 𝐺𝑃 as
a subgraph of 𝐺. All its nodes are of the same type, and nodes are
selected based on metapath 𝑃 ∶ 𝑣1

𝑟1
⟶ 𝑣2

𝑟2
⟶ ⋯

𝑟𝑙
⟶ 𝑣𝑙+1. In other

words, the ‘‘metapath induced subgraph’’ is a homogeneous graph that
is extracted from 𝐺 according to a specific metapath.

Taking the DBLP network in Fig. 1(a) as an example, two metapaths
{𝑎𝑝𝑎, 𝑎𝑝𝑐𝑝𝑎} are selected to construct the metapath induced subgraphs.
The results are shown in the right part of Fig. 3. It can be seen that the
metapath induced subgraphs maintain different semantics well.

Definition 4 (Semantic Intensity). Semantic intensity 𝐸𝑖𝑗 represents the
importance of node 𝑣𝑖 to node 𝑣𝑗 on the metapath induced subgraph.
Since the adjacency matrix in the metapath induced subgraph is sym-
metric, the semantic intensity is the same for the same pair nodes, that
is, 𝐸𝑖𝑗 = 𝐸𝑗𝑖. The semantic intensity 𝐸𝑖𝑗 is determined by the number
of metapaths between the target node 𝑣𝑖 and its neighbor node 𝑣𝑗 . The
more the number of metapaths passed between a pair of nodes, the
stronger their semantic intensity is which implies a strong relevance.

For instance, Fig. 3 is a subgraph generated via 𝑎𝑝𝑎 metapath. As
𝐴𝑢𝑡ℎ𝑜𝑟2 and 𝐴𝑢𝑡ℎ𝑜𝑟3 collaborate on 𝑃𝑎𝑝𝑒𝑟1 and 𝑃𝑎𝑝𝑒𝑟3, their semantic
intensity is defined as 𝐸23 = 𝐸32 = 2.

With the above definitions, we formalize the problem of heteroge-
neous graph embedding as follows.

Problem (Heterogeneous Graph Embedding).. Given a heterogeneous
graph 𝐺 = (𝑉 ,𝐸) as input, the goal is to learn a mapping function
𝑓 ∶ 𝑣 → 𝑧𝑣 ∈ R𝑑 , where 𝑧𝑣 is a low-dimensional dense vector learned
for node 𝑣, and 𝑑 is the dimension of the learned embedding, 𝑑 ≪ |𝑉 |.
The function 𝑓 aims to preserve both the topological information and
multi-typed features in the heterogeneous graph simultaneously.

4. The proposed method

In this section, we first propose the framework of the OSGNN, then
present each component in detail. Finally, we propose the algorithm
for our model.

The overall framework of the OSGNN is shown in Fig. 4. It mainly
consists of two components: Subgraph generation of target nodes;
Node information propagation and embedding connection.

Given a heterogeneous graph 𝐺 and node features 𝑋 as input, we
first construct a subgraph 𝐺𝑆 composed of target node types with the

𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡𝑎𝑟𝑔𝑒𝑡 𝑛𝑜𝑑𝑒𝑠. Then OSGNN learns the graph 𝐺
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Fig. 2. An example of three types of metapaths.
Fig. 3. The generation of metapath induced subgraph.
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Table 1
The notations used in this paper.

Notations Descriptions

𝐺 The original heterogeneous graph.
𝑉 , 𝐸 The set of nodes/edges in network 𝐺.
𝐺𝑃𝑚

The subgraph induced by the metapath 𝑃𝑚.
𝐺𝑆 The subgraph as the input of the heterogeneous graph embedding.
ℎ𝑣𝑖 The initial feature of node 𝑣𝑖.
𝛼𝑣𝑖 ,𝑣𝑗 Attention weight between node 𝑣𝑖 and node 𝑣𝑗 .
ℎ′
𝑣𝑖 |𝐺

The hidden layer embedding learned by node 𝑣𝑖 in graph 𝐺.
ℎ′′
𝑣𝑖

The new representation of node 𝑣𝑖 after concatenation.
𝛾 The hyper-parameter as initial feature weight.
𝑧𝑣𝑖 The final representation of node 𝑣𝑖.
𝑌𝐿 The set of node index with labels.
𝑌𝑃 The set of positive node pairs.
𝑌𝑁 The set of negative node pairs.

and subgraph 𝐺𝑆 respectively, and obtains two kinds of node represen-
ations 𝑍𝐺 and 𝑍𝐺𝑆

which maximally keep information from different
spects. The next step is to aggregate the above two kinds of node
epresentations to obtain 𝑍𝐴𝑔𝑔 . Finally, the final node representation

is learned by weighting and summed with 𝑍𝐴𝑔𝑔 . The details are
resented in the following subsections.

.1. Subgraph generation of target node

As shown in Fig. 4, OSGNN requires two graphs as input: The first
ne is the original graph 𝐺. The other is the 𝐺𝑆 combined with multiple
etapath induced subgraphs {𝐺𝑃1 , 𝐺𝑃2 , ⋯, 𝐺𝑃𝑀 }. Assuming that a
eterogeneous graph 𝐺 has 𝑀 types of metapaths {𝑃1, 𝑃2,… , 𝑃𝑀}, the

set of metapath induced subgraphs are denoted by {𝐺𝑃1 , 𝐺𝑃2 , ⋯, 𝐺𝑃𝑀 }.
Its equation can be expressed as:

𝐺𝑃𝑚 = 𝑓𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝐺|𝑃𝑚), (1)

where 𝐺 is the original heterogeneous graph, 𝑃𝑚 is the 𝑚th metapath,
𝑒𝑥𝑡𝑟𝑎𝑐𝑡(⋅|⋅) is the subgraph extraction function. To preserve the semantic
ntensity in each metapath induced subgraph, we use the matrix multi-
4

lication of the relational subgraph to obtain the adjacency matrix 𝐴𝑃𝑚 e
f the metapath induced subgraph. Taking metapath 𝑎𝑝𝑎 as an example,
ts adjacency matrix 𝐴𝑃𝑎𝑝𝑎 can be expressed as:

𝑃𝑎𝑝𝑎 = 𝐴𝑃𝑎𝑝 ⋅ 𝐴𝑃𝑝𝑎 . (2)

The above subgraphs are fused to capture the potential interaction
nformation between these semantics. A very simple method is to add
hese subgraphs directly. However, it ignores the importance of differ-
nt metapaths. In this section, we introduce a graph-level attention to
et the importance of each metapath induced subgraph, and then fuse
hem as a new graph.

𝑆 = 𝛹 ([𝐴𝑃1 , 𝐴𝑃2 ,… , 𝐴𝑃𝑀 ]), (3)

here 𝛹 is a graph-level attention layer with parameters 𝑊𝛹 ∈ R1×1×𝑀

epresents the importance of different metapath induced subgraphs. 𝐴𝑆
s the adjacency matrix of the target node subgraph. To facilitate the
raining of the model, we use 𝐿2 normalization to constrain 𝐴𝑆 :

̃= ‖𝐴𝑆‖2. (4)

In addition, subgraph generation can expand and integrate various
ypes of metapath induced subgraphs. We have expanded more types
f metapaths in ablation study.

.2. Node information propagation

It is a fact that different types of nodes contain different feature
nformation and feature dimensions. Therefore, it is necessary to map
ifferent types of features into the same feature space with transforma-
ion projection. Heterogeneous feature transformation can be described
s:

𝑣𝑖 = 𝑊𝐴 ⋅ 𝑥𝑣𝑖 (5)

here 𝑊𝐴 is the learnable weight matrix and 𝑥𝑣𝑖 is the initial feature
f the node 𝑣𝑖.

In the original heterogeneous graph, OSGNN aims to capture the in-
ormation of local heterogeneous nodes, so node-level attention (Wang
t al., 2019) is able to effectively accomplish this task.
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Fig. 4. The framework of the OSGNN model.
Given a node pair (𝑣𝑖, 𝑣𝑗 ), we learn the node-level importance 𝑒𝑣𝑖 ,𝑣𝑗
of node 𝑣𝑗 ∈ 𝑁𝑣𝑖 to target node 𝑣𝑖 with the self-attention mecha-
nism (Velickovic et al., 2018), and its equation is expressed as follows:

𝑒𝑣𝑖 ,𝑣𝑗 = 𝜎(𝑝𝑇 [𝑊𝛼ℎ𝑣𝑖 ∥ 𝑊𝛼ℎ𝑣𝑗 ]), (6)

where 𝜎(⋅) indicates the activation function, ∥ is the row-wise concate-
nation operation, ℎ𝑣𝑖 ∈ R𝑑0 is the initial feature of node 𝑣𝑖, 𝑊𝛼 ∈ R𝑑×𝑑0

is the linear transformation matrix of node features, 𝑑 denotes the
transformed dimension, 𝑝 ∈ R2𝑑 is the parameterized attention vector.

With the importance of each node to the target node 𝑣𝑖, we use
𝑠𝑜𝑓𝑡𝑚𝑎𝑥 for normalization (Velickovic et al., 2018):

𝛼𝑣𝑖 ,𝑣𝑗 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑒𝑣𝑖 ,𝑣𝑗 ) =
𝑒𝑥𝑝(𝑒𝑣𝑖 ,𝑣𝑗 )

∑

𝑣𝑛∈𝑁𝑣𝑖
𝑒𝑥𝑝(𝑒𝑣𝑖 ,𝑣𝑛 )

, (7)

ℎ′𝑣𝑖|𝐺 = 𝜎(
∑

𝑣𝑗∈𝑁𝐺
𝑣𝑖

𝛼𝑣𝑖 ,𝑣𝑗 ⋅𝑊𝑎ℎ𝑣𝑗 ). (8)

Therefore, the target node representation of the original graph 𝐺 is
expressed as 𝑍𝐺 = {ℎ′𝑣1|𝐺 , ℎ

′
𝑣2|𝐺

,… , ℎ′𝑣𝑛|𝐺}.
For the target node subgraph 𝐴𝑆 , it is regarded as a weighted graph

to learn the node representation. When generating metapath induced
subgraphs, the semantic intensity under each pair of nodes is preserved
and used as the weight between nodes. Specifically, we put 𝐴𝑆 into
GCN (Welling & Kipf, 2017) for learning:

ℎ′𝑣𝑖|𝐺𝑆
= 𝜎(

∑

𝑣𝑗∈𝑁
𝐺𝑆
𝑣𝑖

𝐴𝑣𝑖 ,𝑣𝑗 ⋅𝑊𝑐ℎ𝑣𝑗 ), (9)

where 𝑁𝐺𝑆
𝑣𝑖 denotes the neighbors of node 𝑣𝑖 under subgraph 𝐺𝑆 . The

node representation of the subgraph 𝐺𝑆 is 𝑍𝐺𝑆
= {ℎ′𝑣1|𝐺𝑆

, ℎ′𝑣2|𝐺𝑆
,… ,

ℎ′𝑣𝑛|𝐺𝑆
}.

Since ℎ′𝑣𝑖|𝐺 and ℎ′𝑣𝑖|𝐺𝑆
learn heterogeneous graph information from

different perspectives, aggregating these two kinds of embeddings with
𝑚𝑒𝑎𝑛 or 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (Wang et al., 2019) leads to loss of information
independence (Yang et al., 2022). Therefore, we adopt a simple but
effective operation named concatenation to preserve the independence
of two kinds of information (He et al., 2022):

ℎ′′𝑣𝑖 = ℎ′𝑣𝑖|𝐺 ∥ ℎ′𝑣𝑖|𝐺𝑆
, (10)

where ∥ stands for the concatenation operation, which can overcome
the interference between different graphs and maintain the information
independence of the two graphs. After that, the node representation is
denoted as 𝑍𝐴𝑔𝑔 = {ℎ′′𝑣1 , ℎ

′′
𝑣2

, ⋯ , ℎ′′𝑣𝑛}.

4.3. Retention of initial node feature

In the end, we reconnect 𝑍𝐴𝑔𝑔 to the ℎ𝑣𝑖 to further enhance the
representation ability. We first transform the initial features to the same
5

dimension as 𝑍𝐴𝑔𝑔 with nonlinear transformation, and then conduct
weighted summation with the node representation 𝑍𝐴𝑔𝑔 :

𝑧𝑣𝑖 = (1 − 𝛾) ⋅ ℎ′′𝑣𝑖 + 𝛾 ⋅ 𝑡𝑎𝑛ℎ(𝑊𝛾ℎ𝑣𝑖 + 𝑏𝛾 ), (11)

where 𝛾 is an adjustable hyperparameter, the interval is set to [0,1], 𝑊𝛾
and 𝑏𝛾 are trainable weight and bias, and the final node representation
set can be expressed as 𝑍 = {𝑧𝑣1 , 𝑧𝑣2 ,… , 𝑧𝑣𝑛}.

4.4. Loss function and algorithm

We evaluate the OSGNN with different downstream tasks. For semi-
supervised node classification, we minimize the cross entropy of the
real and predicted values of all labeled nodes and apply back propa-
gation and gradient descent methods to optimize the parameters of all
nodes:

𝐿𝑜𝑠𝑠 = −
∑

𝑙∈𝑌𝐿

𝑌𝑣𝑙 ⋅ 𝑙𝑛(𝐶 ⋅ 𝑧𝑣𝑙 ), (12)

where 𝑌𝐿 is a set of node index with labels, 𝐶 is the classifier parameter,
𝑌𝑣𝑙 and 𝑧𝑣𝑙 are the labels and embedding vector of node 𝑣𝑙, respectively.

For link prediction, we optimize the model weights by minimizing
similarity between positive links:

𝐿𝑜𝑠𝑠 = −
∑

(𝑣,𝑢)∈𝑌𝑃

log 𝜎(ℎ⊤𝑣 ⋅ ℎ𝑢) −
∑

(𝑣,𝑤)∈𝑌𝑁

log 𝜎(−ℎ⊤𝑣 ⋅ ℎ𝑤) (13)

where 𝜎(⋅) is the sigmoid function, 𝑌𝑃 is the set of positive node pairs,
𝑌𝑁 is the set of negative node pairs sampled from all unobserved node
pairs.

The overall process of OSGNN is shown in Algorithm 1. In terms
of time complexity, OSGNN needs to calculate the time consumption
of three processes. The time complexity of feature transformation is

(

|𝑉 | × 𝑑1𝑑2
)

, where 𝑑1 represents the initial dimension of the fea-
ture, 𝑑2 represents the dimension of hidden layer. In the original
heterogeneous graph, the time complexity of information propagation
is (|𝑉 | × 𝑑22 + |𝐸| × 𝑑2). In the subgraph, the time complexity of
information propagation is 

(

|𝑉𝑆 | × 𝑑22
)

, where 𝑉𝑆 is the node set of
the subgraph 𝐺𝑆 . OSGNN is highly efficient because it can perform
parallel computation on the original graph and subgraph. Therefore,
the time complexity of OSGNN is 

(

|𝑉 | (𝑑1𝑑2 + 𝑑22) + |𝐸| 𝑑2
)

.

5. Experiments

In this section, we conduct experiments and demonstrate the results
to prove the performance of this work. In particular, we show the merits
of our method with node classification, node clustering, visualization,
and link prediction. The source code of our method is available on

https://github.com/ZZY-GraphMiningLab/OSGNN.

https://github.com/ZZY-GraphMiningLab/OSGNN
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Algorithm 1 The overall learning algorithm of OSGNN
Input: the heterogeneous graph 𝐺 = (𝑉 ,𝐸), the node feature 𝑋 =

{𝑥𝑣1 , 𝑥𝑣2 ,⋯ , 𝑥𝑣𝑖}, the metapath set {𝑃1, 𝑃2,⋯ , 𝑃𝑀}, the adjustable hyper-
parameter 𝛾.

Output: the final node representation 𝑍.
1: for 𝑃𝑖 ∈ {𝑃1, 𝑃2,⋯ , 𝑃𝑀} do
2: Generate the metapath induced subgraph 𝐺𝑃𝑚

;
3: end for
4: Merge subgraphs to generate 𝐺𝑆 according to Eq. (3);
5: for 𝑣𝑖 ∈ 𝑉 do
6: Find the node neighbors 𝑁𝐺

𝑣𝑖
;

7: for 𝑣𝑗 ∈ 𝑁𝐺
𝑣𝑖
do

8: Calculate the importance of node pair 𝛼𝑣𝑖 ,𝑣𝑗 according to Eq. (6);
9: end for

10: Calculate the graph 𝐺 embedding ℎ′
𝑣𝑖 |𝐺

according to Eq. (8);
11: Find the node neighbors 𝑁𝐺𝑆

𝑣𝑖 ;
12: for 𝑣𝑗 ∈ 𝑁𝐺𝑆

𝑣𝑖 do
13: Calculate the graph 𝐺𝑆 embedding ℎ′

𝑣𝑖 |𝐺𝑆
according to Eq. (9);

14: end for
15: end for
16: Aggregate the embedding of the original graph and subgraph according to

Eq. (10);
17: Weighted calculation with node representation according to Eq. (11);
18: Return 𝑍.

5.1. Experimental datasets

Three real-world heterogeneous graph datasets are used to evaluate
our model. The statistics of the datasets are described in Table 2.

• ACM1: This is a subset of the ACM dataset, which contains 4019
papers (p), 7167 authors (a) and 60 conference subjects (s). The
papers belong to three categories: database, wireless communi-
cation, and data mining. The feature of each node is a word
bag composed of keywords. {𝑝𝑠𝑝, 𝑝𝑎𝑝} is selected to generate
metapath induced subgraphs.

• DBLP2: This is a subset of the DBLP dataset, which contains
14,328 papers (p), 4057 authors (a), 7723 terms (t) and 20 confer-
ences (c). The author can be classified into four fields: database,
data mining, machine learning, and information retrieval. The
authors’ feature is a word bag composed of the author’s rele-
vant paper keywords. {𝑎𝑝𝑎, 𝑎𝑝𝑡𝑝𝑎, 𝑎𝑝𝑐𝑝𝑎} is selected to generate
metapath induced subgraphs.

• IMDB3: It is a movie network consisting of 4780 movies (m),
5841 actors (a) and 2269 directors (d). The movies are considered
as the target nodes and they are categorized as: action, comedy,
and drama. {𝑚𝑎𝑚,𝑚𝑑𝑚} is selected to generate metapath induced
subgraphs.

• Yelp4: It is a social network consisting of 2614 business (b), 1286
users (u), 4 serves (s), and 9 levels (l). The business nodes are
labeled by their category. {𝑏𝑢𝑏, 𝑏𝑙𝑏, 𝑏𝑠𝑏} is selected to generate
metapath induced subgraphs.

5.2. Baselines

We compare OSGNN with the state-of-the-art models, including
two representative homogeneous graph neural network models and six
representative heterogeneous graph neural network models:

1 https://dl.acm.org/
2 https://dblp.uni-trier.de
3 http://www.imdb.com/
4
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https://www.yelp.com/dataset/
• GCN (Welling & Kipf, 2017): It is a semi-supervised graph convo-
lution network designed for homogeneous graphs. It updates its
own information by uniformly aggregating the information of its
neighborhood.

• GAT (Velickovic et al., 2018): It is a GNN considering the atten-
tion mechanism, which can adjust the importance of neighbor
nodes according to the attention mechanism. Like GCN, it is
designed for homogeneous graphs.

• HAN (Wang et al., 2019): It applies graph attention network
on multiplex network considering the inter- and intra-network
interactions, which exploit manually selected metapaths to learn
node embedding.

• GTN (Yun et al., 2019): It multiplies the adjacency matrix of
multiple subgraphs to obtain the neighborhood graphs of differ-
ent metapaths, so it can automatically find valuable metapaths
without manual selection.

• MAGNN (Fu et al., 2020): It realizes learning heterogeneous
graph representations with intra-metapath aggregation and inter-
metapath aggregation. For simplicity, we denote it as MAGN.

• ie-HGCN (Yang et al., 2023): It contributes to metapath discov-
ery of in heterogeneous graphs by specific type-level attention
mechanism. For simplicity, we denote it as ieHG.

• HGSL (Zhao et al., 2021): It is a state-of-the-art heterogeneous
GNN, which jointly performs heterogeneous graph structure
learning and GNN parameter learning for node classification.

• HMSG (Cai et al., 2021): It decomposes the HG into multiple
metapath-based subgraphs to comprehensively capture structural,
semantic and feature information from multi-view.

• HGNN-AC (Jin et al., 2021): Heterogeneous graph neural network
via attribute completion (HGNN-AC) completes the node features
with the pre-trained topology and takes the new features as input
to MAGNN to learn the node representation. For simplicity, we
denote it as HGAC.

5.3. Experimental settings

To ensure the fairness of the experiment, the embedding dimension
of the hidden layer is set to 64. The multi-head number is set to 8
for models (Fu et al., 2020; Jin et al., 2021; Velickovic et al., 2018;
Wang et al., 2019) as suggest by references. For the HGNNs that require
metapaths (Fu et al., 2020; Wang et al., 2019; Zhao et al., 2021) and our
model OSGNN, we use the same metapath set {𝑝𝑎𝑝, 𝑝𝑠𝑝}, {𝑎𝑝𝑎, 𝑎𝑝𝑡𝑝𝑎,
𝑎𝑝𝑐𝑝𝑎}, {𝑚𝑎𝑚, 𝑚𝑑𝑚}, and {𝑏𝑢𝑏, 𝑏𝑙𝑏, 𝑏𝑠𝑏}.

The learning rate of all models is set to 0.001, the weight decay is
et to 0.0005, the dropout is set to 0.5, and the patience value of early
topping is set to 20. All models are randomly initialized the parameters
nd used Adam (Kingma & Ba, 2015) optimization models.

.4. Semi-supervised node classification

We evaluate the performance of OSGNN on the task of semi-
upervised node classification. The target node representations in the
est set are fed into the Support Vector Machine (SVM) (Suykens, 2001)
or classification. All experiments are repeated five times, with the
verage results being the final outcome. Macro-F1 (Ma-F1) and Micro-
1 (Mi-F1) are adopted as evaluation indicators. The results are shown
n Table 3, in which the best results are bold and the second best results
re underlined.

From this table, we can find that OSGNN has achieved outstanding
erformance on the three datasets. Specifically, compared with HAN,
SGNN improves Ma-F1 and Mi-F1 scores by 2.02% and 1.98% on
CM dataset, 1.63% and 1.47% on DBLP dataset, 1.32% and 1.18% on

MDB dataset. The main reason is that OSGNN considers different types
f nodes and learns the information between heterogeneous nodes,
hile HAN directly learns the interaction between target nodes with

he metapath, ignoring the role of other types of nodes. Compared

https://dl.acm.org/
https://dblp.uni-trier.de
http://www.imdb.com/
https://www.yelp.com/dataset/
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Table 2
Statistics of the datasets.
Dataset Nodes Edges Number Target Label Task

ACM 11246 pa/ap 13407 p (4019) 3 node classification
ps/sp 4019 node clustering

DBLP 26128
ap/pa 19645

a (3257) 4
node classification

pc/pc 14328 node clustering
pt/tp 85810

IMDB 11616 ma/am 12828 m (4278) 3 node classification
md/dm 4278 node clustering

Yelp 3913

bu/ub 30838

bb (1905) – link predictionbl/lb 2614
bs/sb 2614
bb 1905
Table 3
Performance evaluation on node classification (%).
Dataset Metrics Training GCN GAT HAN GTN MAGN ieHG HGSL HMSG HGAC OSGNN

ACM

Ma-F1

20% 90.51 89.09 90.71 90.88 90.02 91.35 92.43 91.69 91.62 92.63
40% 90.68 89.32 91.33 91.36 91.39 92.14 92.58 92.41 93.05 93.29
60% 90.80 89.43 91.73 91.74 92.18 92.59 92.73 92.66 93.63 93.72
80% 90.58 89.33 91.91 91.81 92.67 92.79 92.83 92.81 93.79 93.83

Mi-F1

20% 90.49 89.20 90.59 90.76 89.94 91.27 92.38 91.63 91.51 92.55
40% 90.68 89.40 91.22 91.24 91.38 92.11 92.54 92.24 93.09 93.14
60% 90.79 89.49 91.60 91.61 92.13 92.53 92.69 92.58 93.65 93.62
80% 90.56 89.40 91.76 91.70 92.61 92.73 92.77 92.72 93.87 93.74

DBLP

Ma-F1

20% 89.04 89.76 92.63 93.32 92.93 92.73 93.72 93.07 94.12 94.00
40% 89.05 89.75 92.87 94.06 93.32 93.57 93.65 93.43 94.25 94.27
60% 89.01 89.77 93.05 94.15 93.69 93.66 93.81 93.71 94.27 94.47
80% 89.17 89.83 93.16 94.26 94.01 94.09 94.09 93.96 94.38 94.79

Mi-F1

20% 89.71 90.53 93.20 94.25 93.45 93.24 94.19 93.51 94.53 94.44
40% 89.72 90.53 93.43 94.53 93.82 94.00 94.09 94.04 94.65 94.69
60% 89.70 90.56 93.61 94.60 94.18 94.10 94.23 94.18 94.68 94.88
80% 89.85 90.61 93.69 94.70 94.48 94.47 94.52 94.40 94.76 95.16

IMDB

Ma-F1

20% 49.03 58.60 58.11 57.26 57.87 58.24 58.16 59.72 59.67 59.52
40% 49.15 58.67 58.56 57.90 59.23 59.33 58.04 60.13 60.18 60.36
60% 49.71 58.78 58.73 58.04 59.72 59.65 58.19 60.42 60.60 60.76
80% 41.94 58.66 58.88 58.84 59.94 59.87 58.76 60.57 60.75 60.99

Mi-F1

20% 49.43 58.74 58.14 57.12 57.89 58.16 58.54 59.73 59.84 59.53
40% 49.63 58.84 58.58 57.81 59.29 59.26 58.49 60.14 60.38 60.40
60% 49.95 58.92 58.72 57.89 59.80 59.57 58.56 60.39 60.79 60.80
80% 50.12 58.80 58.91 58.74 60.06 59.82 59.09 60.59 60.98 61.03
.

with HMSG, OSGNN improves Ma-F1 and Mi-F1 scores by 1.02%
and 0.98% on ACM dataset, 0.19% and 0.21% on IMDB dataset. The
outstanding performance of HMSG also proves the necessity of simul-
taneously learning local information and higher-order information in
heterogeneous graphs. OSGNN exploits metapath induced subgraphs
thus it improves the computational efficiency. Compared with HGNN-
AC, OSGNN only improves Ma-F1 scores by 0.04% on ACM dataset,
0.41% on DBLP dataset, and 0.24% on IMDB dataset. This is because
HGNN-AC completes the missing features, and excellent node features
will help the model learn better node representation.

In general, OSGNN achieves the best performance. This implies that
the information of nodes can effectively complement each other with
learning from the two perspectives of subgraph and original graph,
which overcomes the single perspective of the existing HGNNs. In
addition, the performance of our model does not decrease significantly
as the training ratio decreases on three datasets, which further shows
that OSGNN is more stable than others.

5.5. Node clustering and visualization

The learned node embeddings are clustered with K-means with
average normalized mutual information (NMI) and adjusted rand index
(ARI) as metrics. The results are shown in Table 4, from which we get
the following observations.

Compared with MAGNN, OSGNN improves NMI and ARI scores
7

by 2.30% and 2.37% on ACM dataset, 2.95% and 2.47% on DBLP
Table 4
Performance of the proposed OSGNN and the competitors on the task of node clustering

Dataset ACM DBLP IMDB

NMI ARI NMI ARI NMI ARI

HAN 0.7026 0.7415 0.7278 0.7833 0.1196 0.1197
GTN 0.6845 0.7195 0.7782 0.8269 0.1223 0.1258
MAGN 0.7016 0.7214 0.7867 0.8402 0.1308 0.1267
ieHG 0.5947 0.5489 0.5233 0.6721 0.1308 0.1304
HGSL 0.7025 0.7425 0.7763 0.8247 0.0621 0.0878
HMSG 0.7047 0.7277 0.7695 0.8276 0.1482 0.1514
HGAC 0.7176 0.6891 0.7880 0.8426 0.1368 0.1450
OSGNN 0.7246 0.7451 0.8162 0.8649 0.1599 0.1818

dataset, and 2.91% and 5.51% on IMDB dataset. It indicates that local
information and higher-order information are helpful to improve the
clustering performance. Compared with HMSG, OSGNN improves NMI
and ARI scores by 1.99% and 1.74% on ACM dataset, 4.67% and 3.73%
on DBLP dataset. All these results further proves the effectiveness of
OSGNN.

For a more intuitive comparison, we use t-SNE (Van der Maaten &
Hinton, 2008) to project the node embeddings into two-dimensional
space, and color them according to their labels. Fig. 5 shows the
visualization results of all the methods on DBLP dataset. Specifically,
although ie-HGCN performs well in node classification, the nodes of
the same type are scattered and not dense enough in visualization.
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Fig. 5. Visualization of the author node embeddings on DBLP dataset.
Table 5
Performance of OSGNN on the task of link prediction.
Dataset Metrics HAN GTN MAGN ieHG HGSL HMSG HGAC OSGNN

Yelp AUC 0.6787 0.5961 0.7083 0.5558 0.5885 0.7169 0.7384 0.7399
AP 0.6343 0.5727 0.6521 0.5246 0.5525 0.6657 0.6716 0.6836
The nodes of each type in HGSL are densely distributed, but their
boundaries are not clear enough. Compared with OSGNN, HGNN-AC
is the most competitive. We guess this is because HGNN-AC focuses on
completing the missing node features. The heterogeneous graph after
feature completion contains more useful information. However, OSGNN
shows denser cluster structures and a clearer boundary to distinguish
different classes.

5.6. Link prediction

In this section, we conduct the task on Yelp dataset to evaluate
the performance of OSGNN and other baselines in link prediction. We
treat the connected business–business (bb) pair as positive node pairs,
and consider all unconnected business–business links as negative node
pairs. The performance is evaluated by the area under the ROC curve
(AUC) and average precision (AP) scores. The results are shown in
Table 5, in which the best results are in bold.

From Table 5, the performance of metapath based models (HAN,
MAGNN, HMSG, HGAC, and OSGNN) is significantly better than that
of other models (GTN, ieHG, and HGSL). It indicates that higher-
order information (metapath) is able to explore the potential similarity
between nodes. Compare with HAN, OSGNN improves AUC and AP
scores by 6.12% and 4.93%. Compare with HGAC, OSGNN improves
AUC and AP scores by 0.15% and 1.20%. This result supports further
proves that local information and higher-order information in HG are
important to the node embeddings.

5.7. Ablation study

To examine the effect of different components of our OSGNN model,
we compare several variants of it in an ablation study:

• OSGNN−𝑤∕𝑜−𝛾 : It refers to a variant of OSGNN model that does
not retain the initial features.

• OSGNN−𝑤∕𝑜−𝑂: Original heterogeneous graph learning is removed
from the OSGNN model. Thus, it learns representations merely
from subgraphs.

• OSGNN−𝑤∕𝑜−𝑆 : Subgraphs learning is removed from the OSGNN
model. It means that this model learns information from the
original heterogeneous graph merely and ignores the information
from the subgraphs.

• OSGNN−𝑤∕𝑜−𝐴𝑡𝑡: The mean aggregation is used in fusing metapath
induced subgraphs in this model. Thus it is a variant that ignores
the significance of different subgraphs.

The results are shown in Fig. 6. We can observe that the perfor-
mances of the ablated models decrease unanimously, which demon-
strates the utility of these components. Specifically, we can derive the
following interesting conclusions from the results:

(1) For all datasets, the performance decreases obviously after
the removal of subgraphs learning (OSGNN ). This phenomenon
8

−𝑤∕𝑜−𝑆
indicates that the subgraphs are helpful in learning the potential high-
order information. In fact, the model HAN learns high-order interaction
information between target nodes also performs well on three datasets.
It further proves the importance of high-order information.

(2) The performance decreases when the information of the original
graph is removed from OSGNN (OSGNN−𝑤∕𝑜−𝑂), especially on the ACM
dataset. This indicates that local information also plays an essential
role in heterogeneous graph learning. GCN and GAT are such models
that only learn the local information of nodes, and have nevertheless
achieved good results on the ACM dataset.

(3) Among all variants, OSGNN−𝑤∕𝑜−𝛾 achieves the best perfor-
mance. A possible reason is that the learning of the original graph is
able to effectively preserve the information of the nodes themselves.
We will analyze this parameter in detail in Section 5.9.

In addition, we add three high-order metapaths to verify the neces-
sity of high-order information on ACM and IMDB datasets:

• OSGNN-2: It is a variant of OSGNN model that uses two common
metapaths. Two metapaths 𝑝𝑎𝑝 and 𝑝𝑠𝑝 are selected on ACM
dataset, and 𝑚𝑎𝑚 and 𝑚𝑑𝑚 are selected on IMDB dataset.

• OSGNN-3: It is a variant of the OSGNN model that uses three
metapaths. {𝑝𝑎𝑝, 𝑝𝑠𝑝, 𝑝𝑎𝑝𝑠𝑝} are selected to generate the subgraph
on ACM dataset, and {𝑚𝑎𝑚,𝑚𝑑𝑚,𝑚𝑎𝑚𝑑𝑚} are selected on IMDB
dataset.

• OSGNN-41: It is a variant of the OSGNN model that uses four
metapaths. We choose metapath set {𝑝𝑎𝑝, 𝑝𝑠𝑝, 𝑝𝑎𝑝𝑠𝑝, 𝑝𝑠𝑝𝑠𝑝} and
metapath set {𝑚𝑎𝑚, 𝑚𝑑𝑚, 𝑚𝑎𝑚𝑑𝑚, 𝑚𝑎𝑚𝑎𝑚} on ACM and IMDB
datasets respectively.

• OSGNN-42: It is a variant of the OSGNN model that uses four
metapaths. We choose metapath set {𝑝𝑎𝑝, 𝑝𝑠𝑝, 𝑝𝑎𝑝𝑠𝑝, 𝑝𝑎𝑝𝑎𝑝} and
metapath set {𝑚𝑎𝑚, 𝑚𝑑𝑚, 𝑚𝑎𝑚𝑑𝑚, 𝑚𝑑𝑚𝑑𝑚} on ACM and IMDB
datasets respectively.

• OSGNN-5: It is a variant of the OSGNN model that uses five kinds
of metapaths. We choose metapath set {𝑝𝑎𝑝, 𝑝𝑠𝑝, 𝑝𝑎𝑝𝑠𝑝, 𝑝𝑎𝑝𝑎𝑝,
𝑝𝑠𝑝𝑠𝑝} and metapath set {𝑚𝑎𝑚, 𝑚𝑑𝑚, 𝑚𝑎𝑚𝑑𝑚, 𝑚𝑑𝑚𝑑𝑚, 𝑚𝑎𝑚𝑎𝑚}
on ACM and IMDB datasets respectively.

The results are shown in Table 6. It can be observed that the
higher-order metapaths has further improved the performance. On
ACM dataset, OSGNN-5 has achieved outstanding performance. It is be-
cause that subgraph 𝐺𝑆 is able to fuse more effective interactive infor-
mation, with the help of more high-order metapaths. However, metap-
ath based models such as HAN (Wang et al., 2019) and MAGNN (Fu
et al., 2020) cannot effectively extend and integrate the informa-
tion in multiple high-order metapaths. On IMDB dataset, OSGNN-3
and OSGNN-42 achieved similar performances. It implies that different
kinds of metapaths contain different information, and the noises may be
amplified on some metapaths such as 𝑚𝑎𝑚𝑎𝑚. In a word, the addition of
high-order metapaths can indeed improve the performance of OSGNN,
but the selection of metapaths is still a problem worth considering.
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Fig. 6. The results of ablation study.
Table 6
The results of OSGNN under different metapaths (%).
Datasets Metrics Training OSGNN-2 OSGNN-3 OSGNN-41 OSGNN-42 OSGNN-5

ACM

Ma-F1

20% 92.63 92.71 92.31 92.98 93.02
40% 93.29 93.39 92.93 93.62 93.66
60% 93.72 93.83 93.40 94.01 94.07
80% 93.83 93.86 93.50 94.09 94.10

Mi-F1

20% 92.55 92.58 92.19 92.86 92.88
40% 93.14 93.27 92.84 93.53 93.54
60% 93.62 93.70 93.29 93.91 93.95
80% 93.74 93.72 93.40 93.99 93.97

IMDB

Ma-F1

20% 59.52 60.00 59.68 59.97 59.95
40% 60.36 60.78 60.46 60.71 60.68
60% 60.76 61.01 60.70 61.15 61.00
80% 60.99 61.12 60.77 61.33 61.06

Mi-F1

20% 59.53 60.90 59.79 60.02 60.02
40% 60.40 60.90 60.62 60.79 60.79
60% 60.80 61.12 60.86 61.25 61.11
80% 61.03 61.23 60.94 61.43 61.18
5.8. Importance study of graph-level attention based fusion

In this section, we visualize the attention coefficient allocated by
graph-level attention when fusing subgraphs. As shown in Fig. 7, OS-
GNN assigns different weights to different subgraphs. On ACM datasets,
OSGNN assigns nearly the same weight to each metapath induced sub-
graph. However, the subgraph under 𝑝𝑎𝑝 metapath is more important
because different papers written by the same author have more similar
research types. On DBLP datasets, OSGNN assigns higher weights to
the subgraphs under the 𝑎𝑝𝑐𝑝𝑎 metapath, which can be explained
because the labels of the author nodes are divided according to the
conference type. On IMDB dataset, the subgraph under 𝑚𝑑𝑚 metapath
is more important than 𝑚𝑎𝑚. As an actor tends to play different roles in
different movies, the styles of the two movies connected by 𝑚𝑎𝑚 may
be different. However, various movies made by the same director tend
to present similar styles.

5.9. Parameter analysis

In this section, we demonstrate and analyze the impact of parameter
𝛾 on OSGNN results as shown in Table 7. The scores of Mi-F1 first
increase and then decrease with the growth of 𝛾. This phenomenon
indicates that preserving initial features can further alleviate semantic
confusion. On IMDB dataset, OSGNN gets the best performance when
the parameter 𝛾 is set to 0. This is because the original features on IMDB
dataset may be noisy, and preserving the original features will add
redundant information to the node representation. In addition, when
the parameter is changed to 1, the result of OSGNN decreases signif-
icantly. This is because OSGNN only learns node feature information
and completely loses the graph structure information.
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Fig. 7. The results of graph-level attention.

5.10. Complexity analyses

In this section, we visualize the time and memory consumption of
OSGNN and baselines on the ACM dataset. The visualization results
are shown in Fig. 8. The horizontal axis represents the average time
required for the model to train an epoch, and the vertical axis repre-
sents the memory required for the training model. All experiments are
conducted on a Windows computer with an Intel Core i7-10875H CPU.

From Fig. 8, we have the following observations. Among all models,
ie-HGCN has the smallest time and memory consumption. This is be-
cause ie-HGCN discards the calculation of attention coefficient between
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Table 7
Parameter Analysis.
𝛾 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ACM 93.71 93.74 93.55 93.63 93.42 93.43 92.98 92.68 92.34 90.84 87.86
IMDB 61.03 60.93 60.36 60.21 60.07 59.75 59.26 59.29 58.68 57.28 51.17
DBLP 94.58 94.67 95.16 95.09 94.70 94.81 94.56 94.27 94.26 92.62 78.91
Fig. 8. Comparison of computational complexity between OSGNN and baseline models.

nodes, which greatly saves the computational overhead. Meanwhile,
OSGNN performs the most competitive in all metapath based models,
because subgraph fusion can fuse multiple metapath induced subgraphs
into a more informative graph.

6. Conclusion

In this paper, we first highlight two challenges faced by heteroge-
neous graph neural networks, and then propose the OSGNN model to
resolve these two challenges. The proposed OSGNN is able to learn both
local information from the original heterogeneous graph and high-order
information from the new constructed meaningful graph. Extensive
experiments are conducted on real-world datasets and the results prove
that the proposed OSGNN outperforms the state-of-the-art methods.

In addition, the baseline (Jin et al., 2021) proves the advantage of
feature completion. In the future, we will focus on designing HGNN
model by optimizing the graph structure and node features together.
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