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Heterogeneous graph convolutional networks have gained great popularity in tackling various network analytical tasks on

heterogeneous graph data, ranging from link prediction to node classiication. However, most existing works ignore the

relation heterogeneity with multiplex networks between multi-typed nodes and the diferent importance of relations in

meta-paths for node embedding, which can hardly capture the heterogeneous structure signals across diferent relations. To

tackle this challenge, this work proposes aMultiplexHeterogeneous Graph Convolutional Network (MHGCN+) for multiplex

heterogeneous network embedding. Our MHGCN+ can automatically learn the useful heterogeneous meta-path interactions of

diferent lengths with diferent importance in multiplex heterogeneous networks through multi-layer convolution aggregation.

Additionally, we efectively integrate both multi-relation structural signals and attribute semantics into the learned node

embeddings with both unsupervised and semi-supervised learning paradigms. Extensive experiments on seven real-world

datasets with various network analytical tasks demonstrate the signiicant superiority of MHGCN+ against state-of-the-art

embedding baselines in terms of all evaluation metrics. The source code of our method is available at: https://github.com/

FuChF/MHGCN-plus.

CCS Concepts: · Mathematics of computing→ Graph algorithms; · Computing methodologies→ Learning latent

representations.

Additional Key Words and Phrases: Network Embedding, Graph Representation Learning, Multiplex Heterogeneous Networks,

Graph Convolutional Networks

1 INTRODUCTION

Network representation learning is emerging as a new paradigm of learning to embed a complex network in a

lower-dimensional space, while preserving the proximities of the nodes, both in the topological structure and in the

intrinsic properties of the network. Efective network representation facilitates various network analytical tasks,

ranging from link prediction [4, 20, 26], node classiication [8, 21, 22, 39], to recommendation [14, 15, 30, 44, 51].

In recent years, Graph Convolutional Networks (GCNs) [17], a class of neural networks designed to learn graph
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representation for complex networks with rich feature information, have been successfully applied to many

online services, such as E-commerce [42], social media platforms [40] and advertising [10].

While many eforts have been made to study the representation learning over homogeneous graphs [8, 17, 27,

32, 47], the exploration of preserving network heterogeneous properties in graph representation paradigms has

attracted much attention in recent studies, e.g., metapath2vec [5], HIN2Vec [6], and HERec [30]. Inspired by the

strength of Graph Neural Networks (GNNs) in aggregating contextual signals from neighboring nodes, various

graph neural network models have been introduced to tackle the challenge of heterogeneous graph learning,

such as HAN [34], MAGNN [7] and HetGNN [49].

Albeit the efectiveness of existing heterogeneous network embedding approaches [5, 13, 15, 24, 29, 35], these

works are generally designed for heterogeneous networks with a single view. In real-world scenarios, however,

many networks are much more complex, comprising not only multi-typed nodes and diverse edges even between

the same pair-wise nodes but also a rich set of feature attributes [2]. For example, in E-commerce networks,

there are two types of nodes (i.e., users and items), and multiple relations (e.g., click, purchase, add-to-cart, or

add-to-preference) between the same pairs of users and items [41]. The connections between multiple types of

nodes in such networks are often heterogeneous with relation diversity, which yields networks with multiple

diferent views. It is worth noting that the multiplicity of the network is fundamentally diferent from the

heterogeneity of the network. Two types of nodes, users and items, in an E-commerce network, relect the

heterogeneity of the network. At the same time, users may have several types of interactions (e.g., click, purchase,

add-to-cart) with items [38], which relects the multiplex relationships of the network. Because diferent user-item

interactions exhibit diferent views of the user and item, and thus should be treated diferently. We term this

kind of networks with multiplex network structures with multi-typed nodes and node attribute information as

atributed multiplex heterogeneous networks (AMHENs).

Performing representation learning on the AMHENs is of great importance to network mining tasks, yet it is

very challenging due to such complicated network structures and node attributes. While some recent studies

propose to solve the representation learning problem on multiplex heterogeneous network [2, 21, 25, 43, 48],

several key limitations exist in those methods: i) The success of current representation learning models largely

relies on the accurate design of meta-paths. How to design an automated learning framework to explore the

complex meta-path-based dependencies over the multiplex heterogeneous graphs, remains a signiicant challenge.

ii) Unlike the homogeneous node aggregation scheme, with the heterogeneous node types and multiplex node

relationships, each meta-path can be regarded as a relational information channel. An efective meta-path

dependency encoder is a necessity to inject both the relation heterogeneity and multiplexity into the node

representations.

To address the aforementioned challenges, we propose a new Multiplex Heterogeneous Graph Convolutional

Network, namedMHGCN, for AMHEN embedding. Particularly, we irst decouple the multiplex network into

multiple homogeneous and bipartite sub-graphs, and then re-aggregate the sub-graphs with the exploration of

their importance (i.e., weights) in node representation learning. To automatically capture meta-path information

across multi-relations, we tactfully design a multilayer graph convolution module, which can efectively learn

the useful heterogeneous meta-path interactions of diferent lengths in AMHENs through multilayer convolution

aggregation in both unsupervised and semi-supervised learning paradigms. To improve the model eiciency,

we endow our MHGCN with a simpliied graph convolution for feature aggregation, in order to signiicantly

reduce the model computational cost. Our evaluations are conducted on several real-world graph datasets to

evaluate the model performance in both link prediction and node classiication tasks. Experimental results show

that our MHGCN framework can obtain substantial performance improvement compared with state-of-the-art

graph representation techniques.
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In this paper, we further extend MHGCN to a more powerful framework, MHGCN+, which explores the more

eicient aggregation methods for heterogeneous multi-relations in AMHENs to solve the conlicting issue of the

importance of diferent meta-paths.

We summarize the contributions of this paper as follows:

• We propose an efective multiplex heterogeneous graph neural network, MHGCN+, which can automatically

capture the useful relation-aware topological structural signals between nodes for heterogeneous network

embedding.

• MHGCN+ integrates both network structures and node attribute features in node representations, and

gains the capability to eiciently learn network representation with a simpliied convolution-based message

passing mechanism.

• We conduct extensive experiments on seven real-world datasets to verify the superiority of our proposed

model in both link prediction and node classiication when competing with state-of-the-art baselines.

While this work is based on our previous conference article [46], the scope of the proposed work has been

signiicantly extended. Our new experimental results show that compared to MHGCN, our extended MHGCN+

signiicantly improves the performance on link prediction and node classiication by 7.47% and 3.24% in terms

of F1 score and Macro-F1 score across all datasets, respectively. The diferences between this work and the

conference paper are summarized as follows:

• We extend MHGCN by exploring the more efective multiplex relation aggregation methods for AMHENs

and optimizing the multilayer graph convolution module.

• We conduct additional experiments to demonstrate the efectiveness of the extended MHGCN+ framework

on one new real-world multiplex network. Results show MHGCN+ is signiicantly better than MHGCN in

the previous conference. The new experimental results are shown in Table 3 and Table 4.

• We add the ablation study to verify the efectiveness of the proposed four independent aggregations. We

also visualize the learned relation weights to illustrate the diference between MHGCN+ and MHGCN.

Experimental results are shown in Figure 6, Figure 7 and Figure 8.

• We also re-perform the experiments for parameter sensitivity of the extended MHGCN+. Experimental

results are shown in Figure 10.

• We also add and discuss the diferences and connections between our model and the recent related works

in Sec. 5.

2 RELATED WORK

Graph Neural Networks. The goal of a GNN is to learn a low-dimensional vector representation for each node,

which can be used for many downstream network mining tasks. Kipf et al. [17] propose to perform convolutional

operations over neighboring nodes for information aggregation. GraphSAGE [9] is an inductive GNN framework,

which uses the general aggregating functions for the eicient generation of node embeddings. To diferentiate

the inluence of neighboring nodes, GAT [33] is proposed as an attentive message-passing mechanism to learn

the explicit weights of neighbor node embeddings. R-GCN [28] considers the inluence of diferent edge types on

nodes, and uses weight sharing and coeicient constraints to apply to multi-graphs with large numbers of relations.

To simplify graph convolutional network, SGC [39] removes nonlinear transformation and training parameters

in GCN, and LightGCN [11] omits the embedding projection with non-linearity during the message passing.

Additionally, AM-GCN [36] is proposed to adaptively learn deep correlation information between topological

structures and node features. However, all algorithms mentioned above are developed for homogeneous networks,

and thus cannot efectively preserve the heterogeneous and multiplex graph characteristics for the network

representation task.

ACM Trans. Intell. Syst. Technol.
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Heterogeneous Graph Representation. Modeling the heterogeneous context of graphs has already received

some attention [5, 23, 30, 49]. For example, some works leverage random walk sampling to construct meta-paths

over the heterogeneous graph for node embeddings, including metapath2vec [5] and HERec [30]. As GNN has

become a popular choice for encoding graph structures, many heterogeneous graph neural network models are

designed to enhance the GNN architecture with the capability of capturing the node and edge heterogeneous

contextual signals. For example, HetGNN [49] jointly encodes the graph topology and context heterogeneity

with an attention mechanism for node embedding. HAN [34] extends GAT to heterogeneous networks through

meta-path based neighbor discovery strategy and hierarchical attention mechanism. HeGAN [12] incorporates

generative adversarial networks (GAN) for heterogeneous network representation learning. NARS [45] irst

generates relation subgraphs and learns node embeddings by 1D convolution on the generated subgraphs, and

then aggregates the learned embeddings. Fu et al. [7] perform both the intra- and inter-metapath aggregation so

as to distill the meta-path-based relational context for learning node representations. However, most of those

approaches rely on selecting useful meta-paths to guide the process of heterogeneous representation learning,

which may need external domain knowledge for constructing appropriate meta-paths.

In addition, there exist some recent studies [31, 37] attempting to relax the requirement of meta-path construc-

tion for heterogeneous network embedding. For example, HGT [13] proposes to incorporate self-attention into

the graph-based message-passing mechanism for modeling the dynamic dependencies among heterogeneous

nodes. HPN [15] eliminates semantic confusion by mapping nodes in meta-path to semantic space, and then

aggregates the embeddings of nodes under diferent meta-paths to obtain the inal representation. However, most

of the above heterogeneous graph embedding models ignore the multiplex relational context of real-life graph

data, in which multi-typed relationships exist among nodes.

Multiplex Heterogeneous Network Embedding. Real-world graphs are often inherently multiplex, which

involves various relations and interactions between two connected nodes. To tackle this challenge, many multiplex

network embedding techniques are proposed to project diverse node edges into latent representations. In particular,

PMNE [19] uses three general aggregation models to obtain one overall node embedding for multiplex networks.

MNE [50] introduces a global transformation matrix for each layer of the network to align the embeddings with

diferent dimensions for each relation type. GATNE [2] learns base embedding, edge embedding as well as attribute

embedding to generate the overall node representation. Motivated by the mutual information maximization

scheme, DMGI [25] is proposed to minimize the diference among relation-aware node representations in an

unsupervised learning manner. HGSL [53] irst obtains the node representation based on meta-paths, and then

uses GNN to obtain the inal node embedding through heterogeneous graph structure learning optimization.

However, the generality of the above methods is limited by their manual construction of meta-paths.

Recently, FAME [21] proposes a spectral graph transformation component to aggregate information from

sub-networks by preserving relation-aware node dependencies. However, this model is built on random projection

and sacriices the adaptive parameter learning in exchange for fast embedding projection. GTN [48] computes the

convex combinations of adjacency matrices of sub-networks with diferent weights to obtain candidate adjacency

matrices to generate useful meta-paths. Furthermore, to learn the node embeddings of multiplex bipartite graph,

DualHGCN [43] irstly generates two sets of homogeneous hypergraphs and then performs the information

propagation with the spectral hypergraph convolutions. Jing et al. [16] propose the HDMI framework that

explores the high-order mutual information to construct the supervision signals for learning node embedding on

multiplex networks.

Although some previous methods can directly or indirectly use meta-paths to learn the characteristics of

heterogeneity in heterogeneous networks, it can be seen that most of these methods need to specify special

meta-paths artiicially. When the selected meta-path is inappropriate, the performance of the methods will be

greatly afected. To solve this problem, We want to design a model to learn the importance of various meta-paths

adaptively, thereby avoiding human inluence and making the method more stable.

ACM Trans. Intell. Syst. Technol.
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3 PROBLEM DEFINITION

Table 1. Main notations and their definitions.

Notation Deinition

G the input network

V, E the node/edge set of G

O,R the node/edge type set of G

X the node attribute matrix of G

G� the sub-network w.r.t. edge type �

A� the adjacency matrix of G�
A the aggregated adjacency matrix

Â� the aggregated adjacency matrix of �-length meta-paths

H
(� ) the hidden representation for the �-th layer

H the node embeddings

� the dimension of embeddings

�,� the number of nodes/attributes

W
(� ) the learnable weight matrix for the �-th layer

In this section, we irst introduce key concepts used in this paper and then formally deine the studied problem.

We deine graph G = {V, E} with the set of nodesV and edges E. Each edge in E represents a relationship

between two nodes.

Definition 1 (Attributed Multiplex Heterogeneous Network, or AMHEN). An attributed heterogeneous

network is a network G = {V, E,X} associated with a node type mapping function � : V → O and an edge type

mapping function� : E → R, where X ∈ R�×� is the attribute feature matrix, and O and R are the set of all node

types and the set of all edge types, respectively. Each node � ∈ V belongs to a particular node type, and each edge

� ∈ E is categorized into a speciic edge type. With the consideration of node and edge heterogeneity, if |O| + |R| > 2,

the network is heterogeneous. Additionally, with the consideration of edge multiplexity, if multiple types of edges

exist between the same node pairs, the network is atributed multiplex heterogeneous.

Definition 2 (Meta-path). A meta-path P is deined as a path in the form of �1
�1
−→ �2

�2
−→ · · ·

��−1
−−−→ �� which

describes a composite relation � = �1 ◦ �2 · · · ��−1 between node types �1 and �� , where ◦ denotes the composition

operator on relations.

For example, ����
�����
−−−−→ ����

���
−−−→ ���� is a 2-length meta-path, and �1

�����
−−−−→ �2

���
−−−→ �2 is a meta-path

sample of the meta-path����
�����
−−−−→ ����

���
−−−→ ���� .

Based on the above deinitions, we formally present the representation learning task over the multiplex

heterogeneous graph as follows:

Problem (Attributed Multiplex Heterogeneous Graph Representation). The objective of our representa-

tion learning task over the attributed multiplex heterogeneous graph G = {V, E,X} is to learn a low-dimensional

latent embedding (with the hidden dimensionality of � , � ≪ |V|) for each node � ∈ V , with the preservation of node

and edge heterogeneity and multiplexity.

The key notations used in this work are summarized in Table 1.

ACM Trans. Intell. Syst. Technol.
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Fig. 1. The overview of the proposed MHGCN.
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Fig. 2. Illustration of meta-paths with importance for a toy example

4 METHODOLOGY

In this section, we present our framework MHGCN with the overall architecture shown in Figure 1. Speciically,

ourMHGCN consists of two key components: (i)multiplex relation aggregation and (ii)multilayer graph convolution

module. Multiplex relation aggregation aims to aggregate the multi-relations among heterogeneous nodes in

multiplex heterogeneous networks by diferentiating each relation with importance. Multilayer graph convolution

module can automatically capture the heterogeneous meta-paths of diferent lengths across multi-relations by

aggregating neighboring nodes’ characteristics to learn the low-dimensional representation of nodes.

ACM Trans. Intell. Syst. Technol.
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4.1 Multiplex Relation Aggregation

As deined in Sec. 3, there exist diferent types of nodes and multiple types of edges between these nodes in

AMHENs, and each type of edge has a diferent role and impact on node representation. Therefore, following [21],

we irst generate multiple sub-graphs by diferentiating the types of edge connections between nodes in the

multiplex and heterogeneous graph. Thereafter, we aggregate the relation-aware graph contextual information

with diferent importance weights.

We denote our generated sub-graphs as {G� |� = 1, 2, . . . , |R |} with the corresponding adjacent matrix {A� |� =

1, 2, . . . , |R |}. Considering the scenario of multiplex user-item relations in online retailers (e.g., click, purchase,

add-to-cart), the decomposed sub-graph corresponds to the individual type of relationship between user and item.

For instance, for graph representation learning in E-commerce platforms, diferent relationships (diferent edge

types) between user and item nodes exhibit various dependency semantics. For example, the diverse behaviors of

users (e.g., click, add-to-favorite, purchase) relect diferent preferences of users over items. Hence, multiplex

user-item interactions with various relation semantics will have diferent impacts on the learning process of user

representations. To capture such multi-typed node dependencies, our proposed MHGCN learns the relation-aware

weights �� to aggregate edge-type-speciic sub-graph adjacent matrix as: A =

∑ | R |
�=1 ��A� . Notice that the set

of weights {�� |� = 1, 2, . . . , |R |} should not be a set of hyperparameters but should be dynamically changed

according to diferent tasks, so we set them as trainable parameters to be learned in model training.

4.2 Multilayer Graph Convolution Module

Diferent from homogeneous networks, heterogeneous networks contain diferent types of nodes and edges.

The speciied types of edges and nodes form a meta-path, which has an obvious efect on the representation

learning of heterogeneous networks. Previous works require manually deined meta-paths and learning node

representations on the sampled heterogeneous meta-paths. However, setting and sampling meta-paths artiicially

is a complex task. In a large-scale network, the number of meta-paths is very large. It takes a long time to

sample such a large number of meta-paths. At the same time, aggregating meta-paths into meta-path graph

also requires a lot of memory overhead. Additionally, the type of meta-paths has an important impact on node

representation, which almost determines the performance of network embedding in various downstream tasks.

The number of types of heterogeneous meta-paths is also very large, involving diferent lengths and diferent

relation interactions. Therefore, it is diicult to select the appropriate meta-path types for heterogeneous network

embedding methods based on meta-path aggregation. Our MHGCN efectively solves the above problems. We

now present our multilayer graph convolution module that automatically captures the short and long meta-paths

across multi-relations in AMHENs.

It is worth noting that ourmodel employs amulti-layer fusion GCN. As shown in Figure 1, our graph convolution

module consists of multiple graph convolutional layers. Its purpose is to capture meta-path information of diferent

lengths. Next, we take a two-layer GCN as an example to illustrate how our model captures meta-path information.

For a single-layer GCN:

H
(1)

= A · X ·W(1) , (1)

where H(1) ∈ R
�×� is the output of irst layer (i.e., hidden representation of network), X ∈ R

�×� is the node

attribute matrix, and W
(1) ∈ R�×� is the learnable parameter matrix. Notice that our convolution adopts the

idea of SGC [39], that is, no non-linear activation function is used.

For the two-layer GCN, the message-passing process can be represented as below:

H
(2)

= A · H(1) ·W(2)

= A · (A · X ·W(1) ) ·W(2)

= A
2 · X ·W(1) ·W(2) ,

(2)

ACM Trans. Intell. Syst. Technol.
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whereW(2) ∈ R�×� is the learnable parameter matrix for the second layer.

Figure 2 illustrates a toy example of an E-commerce network, where we only consider two relations (e.g.,

buy and click) between user and item nodes in this case. As shown in Figure 2, the aggregated matrix A can be

regarded as a meta-path matrix generated by the 1-length meta-paths with importance (i.e., all connected node

pairs across all edge types with weights). For example, A(1,3) = 1.5 represents two 1-length meta-path samples

with weights, i.e.,�1

1∗���
−−−−→ �1 : 1 and�1

0.5∗�����
−−−−−−−→ �1 : 0.5. Therefore, the single-layer GCN can efectively learn the

node representation that contains 1-length meta-path information. Similarly, the second power ofA automatically

captures the 2-length meta-path information with importance weights for all node pairs. For example, A2
(1,1)

= 2.5

implies ive 2-length meta-path samples across multi-relations with importance, i.e.,�1

1∗���
−−−−→ �1

1∗���
−−−−→ �1 : 1,

�1

1∗���
−−−−→ �1

0.5∗�����
−−−−−−−→ �1 : 0.5, �1

0.5∗�����
−−−−−−−→ �1

0.5∗�����
−−−−−−−→ �1 : 0.25, �1

0.5∗�����
−−−−−−−→ �1

1∗���
−−−−→ �1 : 0.5, and �1

0.5∗�����
−−−−−−−→

�2
0.5∗�����
−−−−−−−→ �1 : 0.25. The sum of the importance of these ive meta-path samples is 2.5. Therefore, in Eq. (2),

two-layer GCN can capture the 2-length meta-path information in H
(2) .

At the same time, considering that the inluence of meta-paths with diferent lengths on node embedding

should also be diferent, the learnable parameter matrices W(� ) in our multilayer graph convolution module can

just play this role. Eventually, we fuse the outputs of single-layer GCN and two-layer GCN:

H =

1

2
(H(1) + H(2) ). (3)

The embedding H ∈ R�×� contains all 1-length and 2-length meta-path information.

To capture longer heterogeneous meta-paths, we can extend it to �-layer:

H
(� )

= A · H(�−1) ·W(� )

= A · (A · H(�−2) ·W(�−1) ) ·W(� )

= A · · · (A
︸   ︷︷   ︸

�

·X ·W(1) ) · · ·W(� )

︸            ︷︷            ︸
�

= A
� · X ·W(1) · · ·W(� )︸           ︷︷           ︸

�

(4)

Finally, we fuse outputs of all layers to capture all meta-path information of diferent lengths across multi-

relations:

H =

1

�

�︁

�=1

H
(� ) . (5)

4.3 Model Learning

This section presents the objective function to train our model to learn the inal node representation. Depending

on the requirements of diferent downstream tasks and the availability of node labels, we can train MHGCN in

two major learning paradigms, i.e., unsupervised learning and semi-supervised learning.

ACM Trans. Intell. Syst. Technol.
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For unsupervised learning, we minimize the following binary cross-entropy loss function through negative

sampling to optimize the model parameters:

L��� = −
︁

(�,�) ∈Ω

log� (< H
T
�,H� >)

−
︁

(�′,�′ ) ∈Ω−

log� (− < H
T
�′ ,H�′ >),

(6)

where H� is the representation of node � , T denotes matrix transposition, � (·) is the sigmoid function, <, > is

the vector similarity measure function (e.g., inner product), Ω is the set of positive node pairs, Ω− is the set of

negative node pairs sampled from all unlinked node pairs.

For semi-supervised node classiication, we can optimize the model parameters by minimizing the cross entropy

via backpropagation and gradient descent. The cross-entropy loss over all labeled nodes between the ground

truth and the prediction is formulated as:

L��� = −
︁

�∈V���

Y� ln(C · H� ), (7)

whereV��� is the set of node indices that have class labels, Y� is the label of the �-th node, C is the node classiier

parameter, and H� is the representation of the �-th node. With the guide of a small fraction of labeled nodes, we

can optimize the proposed model and then learn the embeddings of nodes for semi-supervised classiication.

Notice that {W(� ) |� = 1, 2, . . . , �} and {�� |� = 1, 2, . . . , |R |} in our model can be learned during training phase.

The pseudo-code of our proposed MHGCN is shown in Algorithm 1.

Algorithm 1 The Learning Process of MHGCN

Input: Input AMHEN G, node feature matrix X, embedding dimension � , the number of convolution layers �

Output: Embedding results H

1: Decouple the attributedmultiplex heterogeneous network into homogeneous networks and bipartite networks

to obtain the adjacency matrices {A� |� = 1, 2, . . . , |R |}

2: Calculate A =

∑ | R |
�=1 ��A�

3: for � = 1 to � do

4: Calculate H(� ) ← A · H(�−1) ·W(� )

5: end for

6: H =
1
�
(H(1) + · · · + H(� ) )

7: Calculate L using Eq. (6) or Eq. (7);

8: Back propagation and update parameters in MHGCN

9: Return H

5 CONNECTION WITH PREVIOUS WORKS

The works most relevant to our proposed model are FAME [21] and GTN [48], and thus we discuss the diferences

and connections between our model and them in this section.

5.1 FAME

Multiplex relation aggregation of our MHGCN is inspired by FAME. FAME mainly includes two key components:

spectral graph transformation and fast random projection embedding.

ACM Trans. Intell. Syst. Technol.
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The spectral graph transformation process is similar to our multiplex relation aggregation A =

∑ | R |
�=1 ��A� , but

the weights �� of diferent relations in FAME are given in the form of hyperparameter. To capture the high-order

proximities between nodes, a spectral graph transformation on A is performed: � (A) =
∑�
�=1 ��A

� , where �� is the

weight for the �-th order proximity, and � is the highest order. Both weights �� and �� are set as hyperparameters

in FAME, which are tuned by optuna [1], a Bayesian hyperparameter optimization method.

In the process of random projection embedding, FAME irst obtains a random projection matrix R, and then

incorporates � (A) with node attribute features and inally gets the low-dimensional embeddings of nodes by

random projection:

H = � (A) · X · R

=

�︁

�=1

��A
� · X · R

=

�︁

�=1

�� (

| R |︁

�=1

��A� )
� · X · R.

(8)

Since the weights �� and �� in FAME are given in the form of hyperparameters, its multiplex aggregation efect

may not be optimal or sub-optimal. Therefore, in our MHGCN, we set the aggregation weights �� as learnable

parameters to obtain the importance of diferent relations through model training, so as to achieve a better

aggregation efect.

In addition, it can be seen that the aggregated adjacency matrices composed of meta-paths of diferent lengths

are not projected respectively, but share the same random projection matrix R. To achieve better dimensionality

reduction, we use a learnable weight matrix to replace the random projection matrix, so as to obtain better node

embedding. Moreover, we also ind that the most suitable weight matrices for node embeddings obtained by

meta-paths of diferent lengths are not the same. Therefore, in our MHGCN, for each length of meta-paths, i.e.,

each order � , we set a diferent learnable weight matrix W
(� ) . It should be noted that since we set a diferent

weight matrix W
(� ) for each layer, it is not necessary to set the parameters �� like FAME, because �� can be

absorbed by W
(� ) to achieve the same efect.

5.2 GTN

GTN reconstructs a multiplex heterogeneous information network into a new graph composed of meta-paths of

various lengths and then uses GCN to learn node embedding from the new graph. GTN can also be divided into

two stages: meta-path generation and graph transformer networks.

In the meta-path generation stage, similar to our multiplex relation aggregation, GTN irst decouples multiplex

heterogeneous networks into multiple sub-networks, each of which contains only one relation. Then, meta-paths

of diferent lengths can be obtained by the multiplications of the aggregated adjacency matrices:

A
(� )

= (

| R |︁

�=0

�1,�A� ) · · · (

| R |︁

�=0

��,�A� ) (9)

where A0 is an identity matrix, and ��,� denotes the weight for � -th relation at �-th step of meta-path. Therefore,

A
(� ) represents the graph obtained by aggregating all meta-paths from length 0 to length � with diferent weights.

It can be seen that each aggregation in GTN uses an independent set of weights, while the same set of weights

�� is used in MHGCN. We will discuss this diference in the next section.

ACM Trans. Intell. Syst. Technol.
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After obtaining the adjacency matrix of meta-paths, i.e., A(� ) , GTN feeds A(� ) into GCN to obtain node

embeddings:

H = � (D̃(−1) · Ã(� ) · X ·W), (10)

where Ã(� ) = A
(� ) + I and D̃ is the degree matrix of Ã(� ) .

It can be seen that in GTN, similar to FAME, the same weight matrix (i.e., W) is used for meta-paths of

diferent lengths, which limits the improvement of its performance. To address the defects of GTN, MHGCN

irstly considers the inluence and importance of meta-paths of diferent lengths on node representation learning,

instead of the same GCN network. Additionally, to further improve eiciency, MHGCN also adopts the idea of

simplifying GCN, removing the non-linear activation function.

6 MODEL EXTENSION

In this section, we irst analyze the multiplex relation aggregation module and then extend the module to improve

model performance. According to the independence between diferent meta-paths, we divide the multiplex

relation aggregation into four levels: primary independent aggregation, secondary independent aggregation, tertiary

independent aggregation, and fully independent aggregation.

add-to-cart
buy

E-commerce 
Network

user

item

U

I

click

add-to-collect

I2

U1

I1

I2

U1

I1 I3

I2

U1

I1 I3

I4

(a) (b) (c)

Fig. 3. Illustration of meta-paths with conflicting importance

6.1 Primary Independent Aggregation

Primary independent aggregation refers to the fact that the same set of weights is used for diferent relations in

meta-paths during the multiplex relation aggregation:

Â� = A
�
= (

| R |︁

�=1

��A� )
� . (11)

where Â� represents the aggregated adjacency matrix of �-length meta-paths. This aggregation is adopted in both

FAME and our MHGCN. In this aggregation, |R | learnable parameters are used to aggregate diferent types of

relations to obtain the combined adjacency matrix A, which represents the adjacency matrix by aggregating all

1-length meta-paths with diferent importance.

The biggest advantage of this aggregation is that it introduces fewer learnable parameters. Additionally, the

impact of overitting during training is also minimal.
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Nonetheless, this weight setting may bring conlicting issues regarding the importance of diferent meta-paths.

For example, as shown in Figure 3(a), if both purchase and click relations are important in the 1-length meta-

paths, i.e., the value of ���� and ������ are going to be large. Since the weight of the longer meta-path is derived

by multiplying the weight of the 1-length meta-path, which makes the importance of the 2-length meta-path

�
���
−−−→ �

�����
−−−−→ � , ���� ∗ ������ , must also be large.

6.2 Secondary Independent Aggregation

Secondary independent aggregation refers to the aggregation of multiplex relations with independent weight

settings at diferent steps of meta-paths, which is deined as:




Â1 = (

| R |︁

�=1

�1,�A� )

Â2 = (

| R |︁

�=1

�2,�A� )Â1

...

Â� = (

| R |︁

�=1

��,�A� )Â�−1

(12)

In the secondary independent aggregation, there are � ∗ |R| learnable parameters for capturing meta-paths of

maximum � length.

Secondary independent aggregation is an extension of the primary independent aggregation, which can

efectively address the conlicting problem in the primary independent aggregation. For instance, even though

both purchase and click relations are important in 1-length meta-paths (i.e., both �1,��� and �1,����� are large), the

2-length meta-path �
���
−−−→ �

�����
−−−−→ � can also get a lower weight by setting independent lower weight �2,����� for

click relation on the second step.

However, secondary independent aggregation still has certain limitations. As shown in Figure 3(b), when

purchase relation is important (i.e., �1,��� is large), but add-to-cart relation is not (i.e., �1,���� is small) in the

1-length meta-paths, and the 2-length meta-path �
����
−−−→ �

�����
−−−−→ � is important, the weight �2,����� must be large,

which leads to the greater importance of the 2-length meta-path �
���
−−−→ �

�����
−−−−→ � (i.e., �1,��� ∗ �2,����� ). Namely,

secondary independent aggregation can solve the weight conlict between 1-length meta-paths and 2-length

meta-paths, but it cannot solve the weight conlict between two 2-length meta-paths.

GTN adopts the secondary independent aggregation and efectively extends secondary independent aggregation

by introducing an identity matrix at each multiplex relation aggregation on each step.

6.3 Tertiary Independent Aggregation

The tertiary independent aggregation is extended from the secondary independent aggregation, so that the

weights used for meta-paths of diferent lengths are completely independent, which can efectively solve the
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weight-conlicting problem in the secondary independent aggregation:




Â1 = (

| R |︁

�=1

�1,1,�A� )

Â2 =

2∏

�=1

(

| R |︁

�=1

�2,�,�A� )

...

Â� =

�∏

�=1

(

| R |︁

�=1

��,�,�A� )

(13)

As depicted in Eq. (13), there are
∑�
�=1 � ∗ |R| learnable parameters for aggregating diferent relations to obtain

the combined adjacency matrices. Speciically, the sets of weights {��,�,� |� = 1, . . . , �, � = 1, . . . , |R |} used in

diferent adjacency matrices Â� are independent of each other, rather than the weights of shorter meta-paths

inherited by longer meta-paths like secondary independent aggregation.

In the tertiary independent aggregation, since the weights of the longer meta-paths are not limited by the

weights of the shorter meta-paths, the weight conlict in Figure 3(b) can be solved.

Although tertiary independent aggregation solves the weight-conlicting problem in secondary independent

aggregation, it still cannot fundamentally solve the conlicting problem of diferent meta-paths. For example, as

shown in Figure 3(c), there are four 2-length meta-paths, i.e., �
���
−−−→ �

�����
−−−−→ � , �

���
−−−→ �

�������
−−−−−→, �

����
−−−→ �

�����
−−−−→ � ,

and �
����
−−−→ �

�������
−−−−−→ � . If �

���
−−−→ �

�����
−−−−→ � and �

����
−−−→ �

�������
−−−−−→ � are very important, while �

���
−−−→ �

�������
−−−−−→ � and

�
����
−−−→ �

�����
−−−−→ � are not in 2-length meta-paths. At this time, �

���
−−−→ �

�����
−−−−→ � (important) and �

����
−−−→ �

�����
−−−−→ �

(not important) share �
�����
−−−−→ � , thus this requires that the weight �2,1,��� is relatively large, and the weight

�2,1,���� is relatively small. Similarly, since �
���
−−−→ �

�������
−−−−−→ � (not important) and �

����
−−−→ �

�������
−−−−−→ � (important)

shares�
�������
−−−−−→ � , this requires the weight �2,1,��� is relatively small, and the weight �2,1,���� is relatively large. It

can be seen that the problem of weight conlict occurs again in this case.

In fact, this weight conlict is caused by our attempt to multiply two 1 ∗ � vectors to simulate the � ∗ � matrix.

Although the weight matrices of all 2-length meta-paths can be obtained by multiplying the two vectors, the

weights of any two rows in the weight matrix have a strong linear relationship, which leads to the weight-

conlicting problem of tertiary independent aggregation.

6.4 Fully Independent Aggregation

Fully independent aggregation is an aggregation method used to completely solve the weight conlict between

diferent meta-paths. In the fully independent aggregation, various types of relations are not aggregated according

to the weight irst, but the adjacency matrices formed by various types of meta-paths are calculated irst, and
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Extension of Multilayer Graph Convolution Module

�(�) = �� ∙ � ∙ �(�)
…

�(�) = �� ∙ � ∙ �(�)

�(�) = �� ∙ � ∙ �(�)
U I

I

U I

U U I

… �
U I U…

…

���
������
���������

���
������
���������

���
������
���������

�(�)

∑�(�)

�(�)

���
������
���������

ℒ

ℒ

Unsupervised

Semi-supervised

… …
U I U

U I U I U I

I U I

Fig. 4. The extended multilayer graph convolution module

then are aggregated according to their weights:





Â1 =

| R |︁

�=1

��A�

Â2 =

| R |︁

�=1

| R |︁

�=1

��, �A�A�

...

Â� =

| R |︁

�=1

· · ·

| R |︁

�=1

��,· · · , � A� · · ·A�
︸    ︷︷    ︸

�

(14)

Through fully independent aggregation, the weight dependency between diferent meta-paths can be eliminated,

and thus the weight conlict between meta-paths can be completely solved.

In the fully independent aggregation, total
∑�
�=1 |R |

� learnable parameters are used to aggregate diferent

relations to obtain the combined adjacency matrices, and the weights of all meta-paths of diferent lengths are

independent of each other, so as to solve the three weight conlicts mentioned above.
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6.5 Extension of Multilayer Graph Convolution

Figure 4 shows the extended multilayer graph convolution module in MHGCN+. MHGCN adopts the primary

independent aggregation. To capture the heterogeneous meta-path information of diferent lengths, the multi-

layer graph convolution module contains multiple GCNs of diferent layers. In MHGCN+, we employ the fully

independent aggregation, which has obtained the adjacency matrices of heterogeneous meta-paths of diferent

lengths. Therefore, for MHGCN+, the multilayer graph convolution module is extended to consist of multiple

one-layer GCNs, i.e., we can obtain node representations that fuse heterogeneous meta-paths of diferent lengths

through multiply one-layer GCNs:

H
(� )

= Â� · X ·W
(� ) ,

H =

1

�

�︁

�=1

H
(� ) ,

(15)

where H(� ) is the hidden representation corresponding to Â� , i.e., the aggregated adjacency matrix of �-length

meta-paths.

Table 2. Statistics of Datasets

Dataset #nodes #edges #node types #edge types #features Multiplex network

Retailrocket 4012 20000 2 3 4012 ✓

Alibaba 21,318 41,676 2 4 19 ✓

Amazon 10,166 148,865 1 2 1,156 ✓

AMiner 58,068 118,939 3 3 8 ×

IMDB 12,772 18,644 3 2 1,256 ×

DBLP 26,128 119,783 4 3 4,635 ×

AMiner-M 10,000 2,412,266 1 3 8 ✓

7 EXPERIMENT

7.1 Datasets

Seven publicly available real-world datasets are used in experimental evaluation. Alibaba dataset1 includes

four types of edges between user and item nodes. We use the category of items as the class label in node

classiication. Amazon dataset2 includes one node type of products in the Electronics category, and co-viewing

and co-purchasing links between products. AMiner dataset3 is a citation network, which contains three types of

nodes: author, paper, and conference. The domain of papers is considered the class label. IMDB dataset4 contains

three types of nodes, i.e., movie, actor, and director, and labels are genres of movies. Node features are given

as bag-of-words representations of plots. DBLP dataset5 contains four types of nodes, i.e., author, paper, term,

and venue. We use the authors’ research ield as a label for classiication. Retailrocket dataset6 is generated from

1https://tianchi.aliyun.com/competition/entrance/231719/information/
2http://jmcauley.ucsd.edu/data/amazon/
3https://github.com/librahu/
4https://github.com/seongjunyun/Graph_Transformer_Networks
5https://www.dropbox.com/s/yh4grpeks87ugr2/DBLP_processed.zip?dl=0
6https://www.kaggle.com/datasets/retailrocket/ecommerce-dataset
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an online shopping site-Retailrocket over 4 months, to record three types of user behaviors, i.e., purchase, page

view, and add-to-cart. Based on AMiner dataset, we also construct a multiplex dataset, AMiner-M, including a

type of paper nodes and three types of edges: co-author, co-conference, and reference. The domain of papers is

considered as the class label. Since some baselines cannot scale to the whole Alibaba network, we evaluate all

models on a sampled dataset from Alibaba. The statistics of these seven datasets are summarized in Table 2.

7.2 Baselines

We compare our model against the following eighteen graph embedding baselines, which are divided into three

categories.

Homogeneous network embedding methods:

• node2vec [8] - node2vec is a network embedding method that samples short biased random walks.

• RandNE [52] - RandNE is a network embedding approach based on Gaussian random projection, which

preserves the high-order proximities between nodes.

• FastRP [3] - FastRP is an extension of RandNE by using sparse random projection.

• SGC [39] - SGC is a simpliied version of GCN, which only uses the product of high-order adjacency

matrices and attribute matrix, without nonlinear transformation.

• AM-GCN [36] - AM-GNN is an adaptive multi-channel graph convolutional network for semi-supervised

classiication.

Heterogeneous network embedding methods:

• R-GCN [28] - R-GCN further considers the inluence of diferent edge types on nodes, and uses weight

sharing and coeicient constraints to apply to heterogeneous networks.

• HAN [34] - HAN applies graph attention network on multiplex network considering the inter- and

intra-network interactions, which exploit manually selected meta-paths to learn node embedding.

• NARS [45] NARS decouples heterogeneous networks according to the type of edge, and then aggregates

neighbor features on the decoupled subgraphs.

• MAGNN [7] - MAGNN is a meta-path aggregated graph neural network for heterogeneous graphs.

• HPN [15] - HPN designs a semantic propagation mechanism to alleviate semantic confusion and a semantic

fusion mechanism to integrate rich semantics.

Multiplex Heterogeneous network embedding methods:

• PMNE [19] - PMNE contains three diferent models to merge the multiplex network to generate one overall

embedding for each node, which are denoted as PMNE-n, PMNE-r, and PMNE-c, respectively.

• MNE [50] - MNE obtains the inal embedding by combining the high-dimensional common embedding

and the low-dimensional hierarchical embedding.

• GATNE [2] - GATNE includes two variants GATNE-T and GATNE-I. We use GATNE-I as our baseline

method in experiments.

• GTN [48] - GTN transforms a heterogeneous graph into multiple meta-path graphs and then learns node

embeddings via GCN on the meta-path graphs.

• DMGI [25] - DMGI integrates node embeddings from multiple graphs by introducing a consensus regular-

ization framework and a universal discriminator.

• FAME [21] - FAME is a random projection-based network embedding for AMHENs, which uses spectral

graph transformation to capture meta-paths, and improves eiciency through random projection.

• HGSL [53] - HGSL is a state-of-the-art heterogeneous GNN, which jointly performs heterogeneous graph

structure learning and GNN parameter learning for classiication.

• DualHGNN [43] - DualHGCN uses a dual hypergraph convolutional network to learn node embeddings

for multiplex bipartite networks.
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Table 3. Link prediction performance comparison of diferent methods on six datasets

Method
AMiner Alibaba IMDB Amazon DBLP Retailrocket

R-AUC P-AUC F1 R-AUC P-AUC F1 R-AUC P-AUC F1 R-AUC P-AUC F1 R-AUC P-AUC F1 R-AUC P-AUC F1

node2vec 0.594 0.663 0.602 0.614 0.580 0.593 0.479 0.568 0.474 0.946 0.944 0.880 0.449 0.452 0.478 0.501 0.559 0.626

RandNE 0.607 0.630 0.608 0.877 0.888 0.826 0.901 0.933 0.839 0.950 0.941 0.903 0.492 0.491 0.493 0.504 0.513 0.498

FastRP 0.620 0.634 0.600 0.927 0.900 0.926 0.869 0.893 0.811 0.954 0.945 0.893 0.515 0.528 0.506 0.492 0.505 0.493

SGC 0.589 0.585 0.567 0.686 0.708 0.623 0.826 0.889 0.769 0.791 0.802 0.760 0.601 0.606 0.587 0.796 0.742 0.756

R-GCN 0.599 0.601 0.610 0.674 0.710 0.629 0.826 0.878 0.790 0.811 0.820 0.783 0.589 0.592 0.566 0.775 0.748 0.695

MAGNN 0.663 0.681 0.666 0.961 0.963 0.948 0.912 0.923 0.887 0.958 0.949 0.915 0.690 0.699 0.684 0.847 0.847 0.772

HPN 0.658 0.664 0.660 0.958 0.961 0.950 0.900 0.903 0.892 0.949 0.949 0.904 0.692 0.710 0.687 0.796 0.805 0.733

PMNE-n 0.651 0.669 0.677 0.966 0.973 0.891 0.674 0.683 0.646 0.956 0.945 0.893 0.672 0.679 0.663 0.605 0.544 0.689

PMNE-r 0.615 0.653 0.662 0.859 0.915 0.824 0.646 0.646 0.613 0.884 0.890 0.796 0.637 0.640 0.629 0.531 0.503 0.613

PMNE-c 0.613 0.635 0.657 0.597 0.591 0.664 0.651 0.634 0.630 0.934 0.934 0.868 0.622 0.625 0.609 0.567 0.521 0.672

MNE 0.660 0.672 0.681 0.944 0.946 0.901 0.688 0.701 0.681 0.941 0.943 0.912 0.657 0.660 0.635 0.635 0.574 0.632

GATNE OOT OOT OOT 0.981 0.986 0.952 0.872 0.878 0.791 0.963 0.948 0.914 OOT OOT OOT 0.502 0.627 0.523

DMGI OOM OOM OOM 0.857 0.781 0.784 0.926 0.935 0.873 0.905 0.878 0.847 0.610 0.615 0.601 0.555 0.502 0.651

FAME 0.687 0.747 0.726 0.993 0.996 0.979 0.944 0.959 0.897 0.959 0.950 0.900 0.642 0.650 0.633 0.646 0.634 0.636

DualHGNN / / / 0.974 0.977 0.966 / / / / / / / / / 0.790 0.869 0.815

HGTN 0.695 0.732 0.721 0.989 0.992 0.983 0.951 0.947 0.895 0.960 0.950 0.897 0.687 0.702 0.675 0.836 0.854 0.778

MHGCN 0.711 0.753 0.730 0.997 0.997 0.992 0.967 0.966 0.959 0.972 0.974 0.961 0.718 0.722 0.703 0.839 0.908 0.839

MHGCN+ 0.811 0.853 0.786 0.999 0.999 0.999 0.970 0.952 0.964 0.973 0.965 0.965 0.899 0.954 0.899 0.903 0.965 0.903

OOT: Out Of Time (36 hours). OOM: Out Of Memory. R-AUC: ROC-AUC, P-AUC: PR-AUC.

• HGTN [18] - HGTN uses hypergraphs to capture heterogeneous information in heterogeneous information

networks.

For homogeneous network embedding methods and heterogeneous network embedding methods to deal

with multiplex networks, we feed separate graphs with a single-layer view into them to obtain diferent node

embeddings, then perform mean pooling to generate inal node embedding. Since DualHGNN is designed only

for multiplex bipartite networks, it can only work on Alibaba and Retailrocket networks.

7.3 Experimental Seting

For link prediction, we randomly sample 85%, 5%, and 10% of edges as training set, validation set, and test set. At

the same time, we also randomly sample the same number of negative node pairs (i.e., unlinked node pairs) to

add into the training set, validation set, and test set. Notice that we predict each type of edge using all types of

edges in datasets, and inally take the average of all edges as the inal result. For node classiication, we randomly

take 80% of the nodes as the training set, 10% as the validation set, and 10% as the test set. Notice that we repeat

each experiment 10 times to report average results.

Following [21], we set � to 200 for all the methods. For baselines, we use the source code released by their

authors or OpenHGNN7, and adopt the parameter settings recommended in their papers and ine-tune them to

be optimal. For our MHGCN and MHGCN+, we set the number of convolution layers � to 2 (i.e., the length of

meta-paths � for MHGCN+), tune learning rate in {0.01, 0.05, 0.001, 0.005, 0.0001, 0.0005}, and weight-decay to

0.0005.

We evaluate the eiciency evaluation for all methods on a machine with Intel Xeon E5-2660 (2.2GHz) CPU,

80GB memory, and 2 × GeForce RTX 2080 (8G).

7https://github.com/BUPT-GAMMA/OpenHGNN
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7.4 Link Prediction

We irst evaluate the model performance on the unsupervised link prediction task by comparing our MHGCN

and MHGCN+ with ifteen baselines. The experimental results are shown in Table 3, where the best is shown in

bold and the best among baselines is underlined. The irst seven baselines are homogeneous or heterogeneous

network embedding methods, and the last nine are multiplex network embedding methods.

As we can see, MHGCN signiicantly outperforms all baselines in terms of all evaluation metrics on six datasets.

To be speciic, MHGCN achieves average gains of 5.68% F1 score in comparison to the best performed GNN

baselines across all datasets (i.e., FAME, MAGNN, and HPN). Our MHGCN realizes a high accuracy of more

than 96% on three datasets (Alibaba, Amazon, and IMDB), especially more than 99% prediction performance on

Alibaba network. This is because MHGCN automatically captures efective multi-relational topological structures

through multiplex relation aggregation and multilayer graph convolution on the generated meta-paths across

multiplex relations. Particularly, compared with GATNE and MAGNN, our model has achieved better results,

showing the ability of our model to automatically capture meta-paths compared with manually setting meta-paths.

FAME which uses spectral graph transformation to achieve the second-best performance on most datasets also

veriies the ability of multiplex relation aggregation to automatically capture useful heterogeneous meta-paths.

However, MHGCN obtains better performance than FAME on all networks as our MHGCN learns meaning node

representations for AMHENs using multilayer graph convolution in a learning manner. Moreover, MHGCN also

shows signiicant performance advantages on general heterogeneous networks (e.g., IMDB and DBLP). This may

be because MHGCN uses a weighted approach to diferentiate the efects of diferent types of relations on node

representation, which cannot be achieved by traditional meta-path sampling.

Additionally, our extended MHGCN+ also signiicantly improves MHGCN for link prediction on all tested

datasets. In particular, except for the three datasets where MHGCN’s prediction performance exceeds 96%,

MHGCN+ improves MHGCN by 7.67%, 27.88%, and 7.63% in terms of F1 score on AMiner, DBLP, and Retailrocket,

respectively. These results demonstrate that the proposed full independent aggregation used in MHGCN+ more

efectively captures the importance of heterogeneous meta-paths of diferent lengths for node representation

learning in both multiplex and heterogeneous networks.

7.5 Node Classification

We next evaluate the efectiveness of our model on the semi-supervised node classiication task compared with

state-of-the-art baselines. The results are reported in Table 4, where the best is shown in bold and the best

among baselines is underlined. The irst eight baselines are unsupervised embedding methods, and the rest are

semi-supervised embedding methods.

We can see that MHGCN also achieves state-of-the-art performance on all tested heterogeneous networks. In

particular, our MHGCN outperforms the state-of-the-art GNN model HGSL on average by 11.22% and 14.49% in

terms of Macro-F1 and Micro-F1 across all datasets. This performance improvement achieved by our MHGCN is

remarkable considering that reported performance gains for node classiication in some recent work [7, 53] are

usually around 2-4%. This experiment validates the beneits of our framework, which models the multi-relational

structure and node properties of AMHENs using multiplex relation aggregation and labeled data-guided multilayer

graph convolution module. Furthermore, we also observe that MHGCN performs much better than competitor

methods on general heterogeneous networks with multi-typed nodes (e.g., IMDB and DBLP), achieving 23.23%

and 22.19% improvement in Macro-F1 and Micro-F1 on IMDB network. The possible reason behind this is that

our MHGCN efectively learns node representations for classiication by exploring all meta-path interactions

across multiple relations with diferent importance (i.e., weights), which is ignored by the heterogeneous network

embedding approaches based on manually setting meta-path sampling as they cannot realize the importance of

diferent relations within each selected meta-path.

ACM Trans. Intell. Syst. Technol.
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Table 4. Node classification performance comparison of diferent methods on four datasets

Method
AMiner-M Alibaba IMDB DBLP

Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1

node2vec 0.522 (0.0032) 0.532 (0.0051) 0.238 (0.0125) 0.347 (0.0093) 0.363 (0.0237) 0.382 (0.0703) 0.352 (0.0103) 0.351 (0.0112)

RandNE 0.641 (0.0074) 0.672 (0.0064) 0.319 (0.0170) 0.358 (0.0093) 0.373 (0.0143) 0.392 (0.0185) 0.351 (0.0153) 0.372 (0.0150)

FastRP 0.650 (0.0086) 0.690 (0.0074) 0.301 (0.0180) 0.392 (0.0119) 0.363 (0.0236) 0.381 (0.0140) 0.343 (0.0201) 0.375 (0.0199)

MNE 0.643 (0.0069) 0.686 (0.0045) 0.289 (0.0155) 0.390 (0.0021) 0.374 (0.0153) 0.382 (0.0680) 0.366 (0.0117) 0.384 (0.0109)

GATNE 0.772(0.0097) 0.753(0.0064) 0.291 (0.0086) 0.390 (0.0014) 0.369 (0.0132) 0.333 (0.0005) OOT OOT

DMGI 0.473 (0.0155) 0.626 (0.0093) 0.220 (0.0214) 0.392 (0.0026) 0.548 (0.0190) 0.544 (0.0189) 0.781 (0.0303) 0.787 (0.0235)

FAME 0.722 (0.0114) 0.727 (0.0091) 0.323 (0.0154) 0.393 (0.0060) 0.593 (0.0135) 0.594 (0.0143) 0.842 (0.0183) 0.868 (0.0127)

DualHGNN / / 0.347 (0.0114) 0.402 (0.0127) / / / /

SGC 0.516 (0.0047) 0.587 (0.0157) 0.286 (0.0231) 0.361 (0.0175) 0.489 (0.0106) 0.563 (0.0133) 0.622 (0.0009) 0.623 (0.0009)

AM-GCN 0.702 (0.0175) 0.713 (0.0223) 0.307 (0.0232) 0.399 (0.0156) 0.610 (0.0021) 0.640 (0.0013) 0.867 (0.0105) 0.878 (0.0112)

R-GCN 0.690 (0.0078) 0.692 (0.0106) 0.265 (0.0326) 0.381 (0.0125) 0.544 (0.0172) 0.572 (0.0145) 0.862 (0.0053) 0.870 (0.0070)

HAN 0.690 (0.0149) 0.726 (0.0086) 0.275 (0.0327) 0.392 (0.0081) 0.552 (0.0112) 0.568 (0.0078) 0.806 (0.0078) 0.813 (0.0100)

NARS 0.722(0.0103) 0.721(0.0097) 0.297 (0.0201) 0.392 (0.0195) 0.565 (0.0037) 0.574 (0.0048) 0.794 (0.0255) 0.804 (0.0320)

MAGNN 0.755 (0.0105) 0.757 (0.0133) 0.348 (0.0488) 0.398 (0.0405) 0.614 (0.0073) 0.615 (0.0089) 0.881 (0.0284) 0.895 (0.0396)

HPN 0.710(0.0612) 0.732(0.0490) 0.263 (0.0346) 0.392 (0.0405) 0.578 (0.0023) 0.584 (0.0021) 0.822 (0.0201) 0.830 (0.0201)

GTN 0.749(0.0124) 0.751(0.0132) 0.255 (0.0420) 0.392 (0.0071) 0.615 (0.0108) 0.616 (0.0093) 0.852 (0.0137) 0.868 (0.0125)

HGSL 0.754 (0.0100) 0.758 (0.0103) 0.338 (0.0121) 0.398 (0.0238) 0.620 (0.0048) 0.638 (0.0030) 0.893 (0.0284) 0.902 (0.0396)

HGTN 0.765(0.0057) 0.738(0.0129) 0.331 (0.0213) 0.387 (0.0156) 0.617 (0.0087) 0.628 (0.0106) 0.825 (0.0098) 0.832 (0.0104)

MHGCN 0.868 (0.0186) 0.875 (0.0152) 0.351 (0.0204) 0.458 (0.0160) 0.764 (0.0145) 0.782 (0.0138) 0.945 (0.0221) 0.952 (0.0203)

MHGCN+ 0.903 (0.0137) 0.908 (0.0142) 0.369 (0.0198) 0.461 (0.0146) 0.784 (0.0192) 0.796 (0.0144) 0.956 (0.0124) 0.960 (0.0123)

OOT: Out Of Time (36 hours), OOM: Out Of Memory. The standard deviations are reported in parentheses.

From the experimental results, we again see that our extended MHGCN+ improves the performance of the

previous MHGCN for node classiication. Speciically, MHGCN+ performs better than MHGCN by an average of

3.24% and 1.76% in terms of Macro-F1 and Micro-F1 across all tested datasets. The reason for this improvement is

that MHGCN+ overcomes the shortcoming of importance conlict of meta-paths in MHGCN, so it can obtain

more appropriate weights for diferent meta-paths.

0.6

0.7

0.8

0.9

1

AMiner Alibaba IMDB DBLP

MHGCN

MHGCN-R

MHGCN-L

0.2

0.25

0.3

0.35

0.4

(a) Macro-F1 score

0.4

0.42

0.44

0.46

0.48

0.6

0.7

0.8

0.9

1

AMiner Alibaba IMDB DBLP

MHGCN

MHGCN-R

MHGCN-L

(b) Micro-F1 score

Fig. 5. Experimental results of ablation study
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Fig. 6. Link prediction performance of four multiplex relation aggregations on AMiner, Alibaba, and DBLP

7.6 Ablation Study

To validate the efectiveness of each component of our model, we further conduct experiments on diferent model

variations. Here MHGCN-R does not consider the importance of diferent relations, that is, we set the weights

�� to 1; MHGCN-L uses only a two-layer GCN to obtain the embedding, so it can only capture the 2-length

meta-paths. We report the results of the ablation study on four datasets for node classiication in Figure 5, where

the performance on Alibaba refers to the right-ordinate axis.

It can be seen from the results that the two key components both contribute to the performance improvement

of our MHGCN. The comparison between MHGCN-R and MHGCN highlights the efectiveness of the importance

of diferent relations. We can observe that MHGCN-R performs worse than MHGCN on all datasets in terms

of both Macro-F1 and Micro-F1 metrics, reducing 9.68% performance in Macro-F1 score on Alibaba, which

demonstrates the crucial role of our designed multiplex relation aggregation module in capturing the importance

of diferent relations for node representation learning. The comparison between MHGCN-L and MHGCN relects

the importance of our multilayer graph convolution module. Compared with MHGCN-L, MHGCN improves

2.97%, 18.98%, 4.09%, and 1.51% over MHGCN-L in terms of Macro-F1 on AMiner-s, Alibaba, IMDB, and DBLP,

respectively. This indicates that our proposed multilayer graph convolution module efectively captures useful

meta-paths of diferent lengths across multiplex relations.

To evaluate the efectiveness of the proposed four multiplex relation aggregations, we further perform ex-

periments on MHGCN+ variations for link prediction. We report the experimental results on three datasets

in Figure 6, where MHGCN-sec and MHGCN-ter adopt the secondary independent aggregation and tertiary

independent aggregation in multiplex relation aggregation, respectively.

From the results in Figure 6, we can see that MHGCN+ achieves the best performance, while MHGCN performs

the worst performance in terms of all evaluation metrics on three datasets. MHGCN-ter is slightly better than

MHGCN-sec in most cases. In particular, MHGCN+ outperforms MHGCN by 25.21%, 32.13%, and 27.88% in terms

of ROC-AUC, PR-AUC, and F1 score on DBLP network, respectively. The comparison between these variants

adequately demonstrates the efectiveness of our proposed four independent aggregation methods in learning

the importance of diferent meta-paths and the superiority of the fully independent aggregation adopted by our

MHGCN+.

7.7 Visualization of Learned Relation Weights

To further illustrate the diference between MHGCN+ and MHGCN, we visualize the learned relation (or meta-

path) weights in the link prediction task on AMiner and DBLP datasets. Experimental results are depicted in

Figure 7 and Figure 8, where P, A, C, T and V denote Paper, Author, Conference, Term, and Venue, respectively.
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Fig. 7. Visualization of relation weights on AMiner
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Fig. 8. Visualization of relation weights on DBLP

Since MHGCN uses primary independent aggregation, i.e., each aggregation shares the same set of parameters

{�� |� = 1, 2, . . . , |R |}. Therefore, MHGCN only learns the weight of each relation, and the weights of length-2

meta-paths are determined by {�� |� = 1, 2, . . . , |R |}. As shown in Figure 7(a) and Figure 8(a), the weights of

length-2 meta-paths are related to {�� |� = 1, 2, . . . , |R |} and are symmetric. For example, on AMiner, the weights

of P-A, P-C, and P-P relations have determined the weights of nine length-2 meta-paths (e.g., A-P-A, A-P-C, A-P-P,

C-P-C, C-P-P, P-P-P). MHGCN+ uses fully independent aggregation, i.e., each type of meta-path is associated

with an independent weight. Therefore, MHGCN+ can capture the importance of diferent types of meta-paths,

including those of diferent lengths. As shown in Figure 8, MHGCN+ learns similar weights as MHGCN for

diferent relations (i.e., P-A, P-T, and P-V), but for length-2 meta-paths, MHGCN+ can learn independent weights

in link prediction task independent of the weights of the diferent relations. This is also the main reason why our

extended MHGCN+ further outperforms MHGCN on link prediction.

7.8 Model Eficiency Analysis

MHGCN mainly consists of two computing modules: Multiplex Relation Aggregation Module and Multilayer

Graph Convolution Module. The time complexity of Multiplex Relation Aggregation Module is� ( |R|�2), and the

time complexity of graph convolution is � (�2�� + ��� + ��2 (� − 1)), so the total time complexity of MHGCN is

� (�2 ( |R| + ��) + ��� + ��2 (� − 1)).

MHGCN+ is also divided into two modules, the Multiplex Relation Aggregation Module and the Multilayer

Graph Convolution Module. The time complexity of the Multiplex Relation Aggregation Module is � ( |R|��2),

and the time complexity of the Multiplex Relation Aggregation Module is � (�2�� + ��� + ��2 (� − 1)), the total

time complexity of MHGCN is � (�2 ( |R|� + ��) + ��� + ��2 (� − 1)). It can be seen that MHGCN and MHGCN+

are in the same order of magnitude in terms of time complexity.

For GTN, the adjacency matrix needs to be accumulated, and the time complexity is � (�3), the complexity of

this process is too high, making it far less computationally eicient than our method.

We also compare the eiciency of our model with other GNN baselines for semi-supervised node classiication.

We report the experimental results on four datasets in Table 5.

As can be seen from Table 5, our MHGCN achieves the fourth-best performance after three heterogeneous

network embedding methods (i.e., R-GCN, NARS and HPN). However, from the above experimental results

(Tables 3 and 4), MHGCN is signiicantly better than these three methods in both link prediction and node

classiication. MHGCN is signiicantly faster than the best performed GNN baseline in node classiication task

(i.e., HGSL) on all datasets under the same number of training rounds. More speciically, our MHGCN achieves up
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Table 5. Runtime comparison of GNN methods (Second)

Method AMiner-M Alibaba IMDB DBLP

AM-GCN 8703.71 2519.82 24280.12 2786.73

R-GCN 153.04 301.25 155.40 192.85

HAN 87105.55 4226.95 70510 22315.36

NARS 172.21 211.54 75.81 108.54

MAGNN 10361.20 2320.62 731.03 2125.33

HPN 172.82 249.47 176.64 109.49

GTN OOM 21166.83 4287.20 18233.64

HGSL 1684.03 2120.93 1758.21 2037.10

DualHGN / 11295.92 / /

MHGCN 645.20 996.52 677.23 970.29

Speedup* 135.05× 4.37× 104.15× 23.01×

Speedup** / 21.25× 6.33× 18.80×

MHGCN+ 710.64 1675.01 1045.08 5149.10

Speedup+ 122.57× 2.52× 67.47× 4.33×

Speedup++ / 12.64× 4.10× 3.54×

* Speedup of MHGCN over HAN.
** Speedup of MHGCN over GTN.
+ Speedup of MHGCN+ over HAN.
++ Speedup of MHGCN+ over GTN.

OOM: Out Of Memory.

to 135× speedup over state-of-the-art embedding method HAN. MHGCN is faster than state-of-the-art AMHEN

embedding method GTN by 21.25 times on multiplex Alibaba network. MHGCN is even 2.33 times and 16.58

times faster than state-of-the-art heterogeneous GNN model MAGNN on Alibaba and AMiner-M, respectively.

The main reason is because our MHGCN adopts the idea of simplifying graph convolutional networks, that

is, omitting non-linear activation function. Therefore, the training eiciency of MHGCN can be signiicantly

improved.

Due to the introduction of more parameters in MHGCN+, the training process consumes more time compared

to MHGCN. According to Table 5, it can be seen that the time consumed by MHGCN+ is on the same order

of magnitude as MHGCN, but there is a signiicant improvement in node classiication. Moreover, our new

MHGCN+ still shows signiicant speed improvement compared to other baseline methods such as HAN and GTN.

For example, our MHGCN+ still achieves up to 122× speedup over state-of-the-art embedding method HAN.

In fact, according to the above experimental results in Figure 9(c), our model can converge quickly within

80 rounds for node classiication on four tested datasets, that is, our model does not need to be trained for 200

rounds set in our experimental evaluation and thus can achieve faster eiciency.

7.9 Parameter Sensitivity

We inally investigate the parameter sensitivity of our MHGCN and MHGCN+ with respect to the number of

layers � (i.e., the length of meta-paths � for MHGCN+), embedding dimension � , and the number of training

rounds. We show the Macro-F1 score on the node classiication task with diferent parameter settings on four

datasets in Figure 9 and Figure 10. Notice that the performance on Alibaba refers to the right-ordinate axis, and
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Fig. 9. Parameter sensitivity of proposed MHGCN w.r.t. #layers, dimension � , and #rounds.

0.2

0.25

0.3

0.35

0.4

0.6

0.7

0.8

0.9

1

1 2 3 4 5

M
a
cr
o
-F
1

IMDB DBLP

AMiner-M Alibaba

(a) Macro-F1 score w.r.t. #lengths

0.1

0.2

0.3

0.4

0.7

0.8

0.9

1

64 128 200 256 512

M
a
cr
o
-F
1

IMDB DBLP

AMiner-M Alibaba

(b) Macro-F1 score w.r.t. dimension �

0.27

0.32

0.37

0

0.2

0.4

0.6

0.8

1

5 10 20 40 60 80 120 200

M
a
cr
o
-F
1

IMDB DBLP

AMiner-M Alibaba

(c) Macro-F1 score w.r.t. #rounds

Fig. 10. Parameter sensitivity of proposed MHGCN+ w.r.t. #lengths, dimension � , and #rounds.

the number of training rounds on AMiner-M dataset is multiplied by ive and three for MHGCN and MHGCN+,

respectively.

As we see, the extended MHGCN+ exhibits the same performance trend as MHGCN with respect to the three

parameters on four datasets. From the results in Figure 9(a) and Figure 10(a), we can observe that the performance

of MHGCN and MHGCN+ irst increases as � increases, and then the performance begins to decline when � ≥ 2.

This is mainly because 1-length and 2-length meta-path interactions already efectively capture the topological

structures of networks for node classiication, while longer meta-paths would not lead to performance gains. As

the number of GCN layers grows, the representation of nodes would be lattened after multiple convolutions,

resulting in performance degradation.

Then we analyze the impact of embedding dimension on model performance. As shown in Figure 9(b) and

Figure 10(b), the performance of MHGCN and MHGCN+ irst gradually rises and then decreases slightly as

dimension � increases, and achieves the best performance when embedding dimension � = 128 on the four

datasets. This is because when the dimension � is small, the features of all nodes are compressed into a small

embedding space, so it is diicult to preserve the feature proximities of all node pairs. On the contrary, a larger

dimension would also latten the distance between all node embeddings, which fails to relect the proximity

between nodes.

Figure 9(c) and Figure 10(c) illustrate the performance of our MHGCN and MHGCN+ with respect to the

number of training rounds for model learning. We can conclude that our methods can converge quickly, and

eiciently to achieve stable performance within 80 rounds on almost all test datasets, which relects the high

eiciency of our model.
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8 CONCLUSION

In this paper, we propose a novel graph neural network model MHGCN+ for attributed multiple heterogeneous

network embedding. Our model mainly consists of two key components: multiplex relation aggregation and

multilayer graph convolution module. Through multiple relation aggregation, MHGCN+ can distinguish the

importance of diferent relations in diferent meta-paths in multiplex heterogeneous networks. With the multilayer

graph convolution module, MHGCN+ can automatically capture short and long meta-path interactions across

multiple relations, and learn meaningful node embeddings through model parameter learning during the training

phase. Experimental results on seven real-world datasets demonstrate the superiority of the proposed MHGCN+

in both link prediction and node classiication. As future work, we will focus on investigating more eicient

graph neural networks for large-scale heterogeneous network embedding.

ACKNOWLEDGMENTS

This work is partially supported by the National Natural Science Foundation of China under grant Nos. 62176243,

61773331, and 41927805, and the National Key Research and Development Program of China under grant Nos.

2018AAA0100602 and 2019YFC1509100.

REFERENCES

[1] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. 2019. Optuna: A next-generation hyperparameter

optimization framework. In Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining.

2623ś2631.

[2] Yukuo Cen, Xu Zou, Jianwei Zhang, Hongxia Yang, Jingren Zhou, and Jie Tang. 2019. Representation Learning for Attributed Multiplex

Heterogeneous Network. In KDD. 1358ś1368.

[3] Haochen Chen, Syed Fahad Sultan, Yingtao Tian, Muhao Chen, and Steven Skiena. 2019. Fast and Accurate Network Embeddings via

Very Sparse Random Projection. In CIKM. 399ś408.

[4] Hongxu Chen, Hongzhi Yin, Weiqing Wang, Hao Wang, Quoc Viet Hung Nguyen, and Xue Li. 2018. PME: projected metric embedding

on heterogeneous networks for link prediction. In KDD. 1177ś1186.

[5] Yuxiao Dong, Nitesh V Chawla, and Ananthram Swami. 2017. metapath2vec: Scalable representation learning for heterogeneous

networks. In KDD. 135ś144.

[6] Tao-yang Fu, Wang-Chien Lee, and Zhen Lei. 2017. Hin2vec: Explore meta-paths in heterogeneous information networks for represen-

tation learning. In CIKM. 1797ś1806.

[7] Xinyu Fu, Jiani Zhang, Ziqiao Meng, and Irwin King. 2020. Magnn: Metapath aggregated graph neural network for heterogeneous

graph embedding. In WWW. 2331ś2341.

[8] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for networks. In KDD. ACM, 855ś864.

[9] William L. Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive Representation Learning on Large Graphs. In NeurIPS. 1025ś1035.

[10] Li He, Hongxu Chen, DingxianWang, Shoaib Jameel, Philip Yu, and Guandong Xu. 2021. Click-Through Rate Prediction with Multi-Modal

Hypergraphs. In CIKM. 690ś699.

[11] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng Wang. 2020. Lightgcn: Simplifying and powering graph

convolution network for recommendation. In SIGIR. 639ś648.

[12] Binbin Hu, Yuan Fang, and Chuan Shi. 2019. Adversarial Learning on Heterogeneous Information Networks. In KDD. 120ś129.

[13] Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. 2020. Heterogeneous graph transformer. In WWW. 2704ś2710.

[14] Chao Huang, Huance Xu, Yong Xu, Peng Dai, Lianghao Xia, Mengyin Lu, Liefeng Bo, Hao Xing, Xiaoping Lai, and Yanfang Ye. 2021.

Knowledge-aware coupled graph neural network for social recommendation. In Proceedings of the AAAI conference on artiicial intelligence,

Vol. 35. 4115ś4122.

[15] Houye Ji, Xiao Wang, Chuan Shi, Bai Wang, and S Yu Philip. 2021. Heterogeneous graph propagation network. IEEE Transactions on

Knowledge and Data Engineering 35, 1 (2021), 521ś532.

[16] Baoyu Jing, Chanyoung Park, and Hanghang Tong. 2021. Hdmi: High-order deep multiplex infomax. In The Web Conference. 2414ś2424.

[17] Thomas Kipf and Max Welling. 2016. Semi-Supervised Classiication with Graph Convolutional Networks. ArXiv abs/1609.02907 (2016).

https://api.semanticscholar.org/CorpusID:3144218

[18] Mengran Li, Yong Zhang, Xiaoyong Li, Yuchen Zhang, and Baocai Yin. 2023. Hypergraph transformer neural networks. ACM Transactions

on Knowledge Discovery from Data 17, 5 (2023), 1ś22.

ACM Trans. Intell. Syst. Technol.

https://api.semanticscholar.org/CorpusID:3144218


MHGCN+: Multiplex Heterogeneous Graph Convolutional Network • 25

[19] Weiyi Liu, Pin-Yu Chen, Sailung Yeung, Toyotaro Suzumura, and Lingli Chen. 2017. Principled multilayer network embedding. In

ICDMW. IEEE, 134ś141.

[20] Zhijun Liu, Chao Huang, Yanwei Yu, and Junyu Dong. 2021. Motif-preserving dynamic attributed network embedding. In WWW.

1629ś1638.

[21] Zhijun Liu, Chao Huang, Yanwei Yu, Baode Fan, and Junyu Dong. 2020. Fast Attributed Multiplex Heterogeneous Network Embedding.

In CIKM. 995ś1004.

[22] Zhijun Liu, Chao Huang, Yanwei Yu, Peng Song, Baode Fan, and Junyu Dong. 2020. Dynamic representation learning for large-scale

attributed networks. In CIKM. 1005ś1014.

[23] Xiaoling Long, Chao Huang, Yong Xu, Huance Xu, Peng Dai, Lianghao Xia, and Liefeng Bo. 2021. Social Recommendation with

Self-Supervised Metagraph Informax Network. In CIKM. 1160ś1169.

[24] Yuanfu Lu, Chuan Shi, Linmei Hu, and Zhiyuan Liu. 2019. Relation structure-aware heterogeneous information network embedding. In

AAAI. 4456ś4463.

[25] Chanyoung Park, Donghyun Kim, Jiawei Han, and Hwanjo Yu. 2020. Unsupervised Attributed Multiplex Network Embedding. In AAAI.

5371ś5378.

[26] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. DeepWalk: online learning of social representations. In KDD. 701ś710.

[27] Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Chi Wang, Kuansan Wang, and Jie Tang. 2019. Netsmf: Large-scale network embedding as

sparse matrix factorization. In WWW. 1509ś1520.

[28] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan Titov, and Max Welling. 2018. Modeling relational data

with graph convolutional networks. In European semantic web conference. Springer, 593ś607.

[29] Jingbo Shang, Meng Qu, Jialu Liu, Lance M Kaplan, Jiawei Han, and Jian Peng. 2016. Meta-path guided embedding for similarity search

in large-scale heterogeneous information networks. arXiv preprint arXiv:1610.09769 (2016).

[30] Chuan Shi, Binbin Hu, Wayne Xin Zhao, and S Yu Philip. 2018. Heterogeneous information network embedding for recommendation.

TKDE 31, 2 (2018), 357ś370.

[31] Yu Shi, Huan Gui, Qi Zhu, Lance M. Kaplan, and Jiawei Han. 2018. AspEm: Embedding Learning by Aspects in Heterogeneous Information

Networks. In SDM. 144ś152.

[32] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. 2015. Line: Large-scale information network embedding.

In WWW. 1067ś1077.

[33] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, Yoshua Bengio, et al. 2017. Graph attention networks.

stat 1050, 20 (2017), 10ś48550.

[34] Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and Philip S Yu. 2019. Heterogeneous Graph Attention Network. In

WWW. ACM, 2022ś2032.

[35] Xiao Wang, Yuanfu Lu, Chuan Shi, Ruijia Wang, Peng Cui, and Shuai Mou. 2020. Dynamic heterogeneous information network

embedding with meta-path based proximity. IEEE Transactions on Knowledge and Data Engineering 34, 3 (2020), 1117ś1132.

[36] Xiao Wang, Meiqi Zhu, Deyu Bo, Peng Cui, Chuan Shi, and Jian Pei. 2020. Am-gcn: Adaptive multi-channel graph convolutional

networks. In KDD. 1243ś1253.

[37] Yueyang Wang, Ziheng Duan, Binbing Liao, Fei Wu, and Yueting Zhuang. 2019. Heterogeneous Attributed Network Embedding with

Graph Convolutional Networks. In AAAI. 10061ś10062.

[38] Wei Wei, Chao Huang, Lianghao Xia, Yong Xu, Jiashu Zhao, and Dawei Yin. 2022. Contrastive meta learning with behavior multiplicity

for recommendation. In KDD. 1120ś1128.

[39] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, et al. 2019. Simplifying Graph Convolutional Networks. In ICML.

6861ś6871.

[40] Yongji Wu, Defu Lian, Yiheng Xu, Le Wu, and Enhong Chen. 2020. Graph convolutional networks with markov random ield reasoning

for social spammer detection. In Proceedings of the AAAI conference on artiicial intelligence, Vol. 34. 1054ś1061.

[41] Lianghao Xia, Chao Huang, Yong Xu, Peng Dai, Bo Zhang, and Liefeng Bo. 2020. Multiplex Behavioral Relation Learning for Recommen-

dation via Memory Augmented Transformer Network. In SIGIR. 2397ś2406.

[42] Lianghao Xia, Yong Xu, Chao Huang, Peng Dai, and Liefeng Bo. 2021. Graph meta network for multi-behavior recommendation. In

SIGIR. 757ś766.

[43] Hansheng Xue, Luwei Yang, Vaibhav Rajan, Wen Jiang, Yi Wei, and Yu Lin. 2021. Multiplex bipartite network embedding using dual

hypergraph convolutional networks. In WWW. 1649ś1660.

[44] Yuhao Yang, Chao Huang, Lianghao Xia, Yuxuan Liang, Yanwei Yu, and Chenliang Li. 2022. Multi-behavior hypergraph-enhanced

transformer for sequential recommendation. In KDD. 2263ś2274.

[45] Lingfan Yu, Jiajun Shen, Jinyang Li, and Adam Lerer. 2020. Scalable Graph Neural Networks for Heterogeneous Graphs. CoRR

abs/2011.09679 (2020). arXiv:2011.09679 https://arxiv.org/abs/2011.09679

[46] Pengyang Yu, Chaofan Fu, Yanwei Yu, Chao Huang, Zhongying Zhao, and Junyu Dong. 2022. Multiplex Heterogeneous Graph

Convolutional Network. In KDD. 2377ś2387.

ACM Trans. Intell. Syst. Technol.

https://arxiv.org/abs/2011.09679
https://arxiv.org/abs/2011.09679


26 • Fu and Yu, et al.

[47] Yanwei Yu, Huaxiu Yao, Hongjian Wang, Xianfeng Tang, and Zhenhui Li. 2018. Representation learning for large-scale dynamic

networks. In DASFAA. Springer, 526ś541.

[48] Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and Hyunwoo J. Kim. 2019. Graph Transformer Networks. In NeurIPS.

11960ś11970.

[49] Chuxu Zhang, Dongjin Song, Chao Huang, Ananthram Swami, and Nitesh V Chawla. 2019. Heterogeneous graph neural network. In

KDD. 793ś803.

[50] Hongming Zhang, Liwei Qiu, Lingling Yi, and Yangqiu Song. 2018. Scalable multiplex network embedding. In IJCAI, Vol. 18. 3082ś3088.

[51] Jiani Zhang, Xingjian Shi, Shenglin Zhao, and Irwin King. 2019. STAR-GCN: stacked and reconstructed graph convolutional networks

for recommender systems. In Proceedings of the 28th International Joint Conference on Artiicial Intelligence (Macao, China) (IJCAI’19).

AAAI Press, 4264ś4270.

[52] Ziwei Zhang, Peng Cui, Haoyang Li, Xiao Wang, and Wenwu Zhu. 2018. Billion-Scale Network Embedding with Iterative Random

Projection. In ICDM. 787ś796.

[53] Jianan Zhao, Xiao Wang, Chuan Shi, Binbin Hu, Guojie Song, and Yanfang Ye. 2021. Heterogeneous graph structure learning for graph

neural networks. In Proceedings of the AAAI conference on artiicial intelligence, Vol. 35. 4697ś4705.

ACM Trans. Intell. Syst. Technol.


	Abstract
	1 Introduction
	2 Related Work
	3 Problem Definition
	4 Methodology
	4.1 Multiplex Relation Aggregation
	4.2 Multilayer Graph Convolution Module
	4.3 Model Learning

	5 Connection with Previous Works
	5.1 FAME
	5.2 GTN

	6 Model Extension
	6.1 Primary Independent Aggregation
	6.2 Secondary Independent Aggregation
	6.3 Tertiary Independent Aggregation
	6.4 Fully Independent Aggregation
	6.5 Extension of Multilayer Graph Convolution

	7 Experiment
	7.1 Datasets
	7.2 Baselines
	7.3 Experimental Setting
	7.4 Link Prediction
	7.5 Node Classification
	7.6 Ablation Study
	7.7 Visualization of Learned Relation Weights
	7.8 Model Efficiency Analysis
	7.9 Parameter Sensitivity

	8 Conclusion
	Acknowledgments
	References

