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Abstract—Real-time traffic monitoring becomes an essential part of an intelligent city. In recent years, the adoption of surveillance

cameras is rapidly growing because they are helpful to manage and control the traffic. However, it is impossible to install cameras on

every road in a city due to the high costs of deployment and maintenance. Given the information from limited surveillance cameras,

can we infer the citywide traffic volume accurately? This is a challenging question because we have no historical data on the roads

without cameras. It requires us to design a method that goes beyond the inference using nearby traffic data. Moreover, a nice property

of surveillance camera data is that these AI-equipped cameras can recognize individual vehicles. So we can recover incomplete

trajectories for vehicles using plate numbers in surveillance camera records. However, for road segments without cameras, we do not

know whether those vehicles pass through them or not. How can such incomplete trajectories be effectively used to help citywide

traffic inference? In this paper, we propose a framework named CityVolInf to infer citywide traffic volume based on surveillance

camera records. Our framework combines a semi-supervised learning-based similarity module with a novel simulation module to

address the above challenges. While the similarity module focuses on spatiotemporal correlations of traffic volume between road

segments, the simulation module utilizes incomplete trajectories to model transitions of traffic volume between adjacent road

segments. Our framework bridges the conventional data-driven approach and transportation domain knowledge from the simulator.

We conduct extensive experiments on a real-world dataset, containing 405,370,631 camera records collected from 1,704 surveillance

cameras over a period of 31 days in Jinan, China. The experimental results demonstrate the effectiveness of CityVolInf compared

with existing methods.

Index Terms—Traffic volume inference, spatiotemporal data, urban computing

Ç

1 INTRODUCTION

REAL-TIME traffic monitoring can benefit a variety of urban
applications such as traffic management, route planning,

and public safety. In recent years, surveillance cameras are
widely deployed to monitor traffic situations. As shown in
Fig. 1a, more than a thousand surveillance cameras are
installed in Jinan, China. Fig. 1b gives an example of such sur-
veillance cameras on the road. These AI-equipped cameras
can recognize individual vehicle information (e.g., license
plate, speed, driving direction, etc.) and count the overall
traffic volume. They are also used to automatically detect vio-
lations such as speeding. In addition, police can monitor the
traffic conditions of the whole city and quickly respond to
abnormal events (e.g., traffic accidents and congestion).

Despite the growing adoption of traffic surveillance cam-
eras, their coverage in the city is still limited because of
the cost of installment and maintenance. The traffic surveil-
lance system requires high-resolution cameras, a high-speed

interconnection network, and video processing techniques.
For example, only about 1,700 of more than 5,000 major
road segments in Jinan, China are monitored by surveil-
lance cameras. Can we infer the city-wide traffic volume
using camera records collected from a small portion of road
segments?

In this paper, we aim to address the problem of traffic
volume inference using the surveillance cameras records.
This problem falls into the category of spatiotemporal miss-
ing data inference. The most naive approach is to estimate
the missing values by linear interpolation [1], [2], [3], [4].
However, those simple approaches fail to optimize the
problem globally and do not well utilize spatiotemporal
characteristics obtained from historical data. Another fre-
quently used method is to infer the missing values with col-
laborative filtering approach [5]. The method treats each
location as a user, each timestamp as an item, and the traffic
volume of a location at a time as the values for the user-item
matrix. Traffic volume values for the missing locations can
be estimated using the similar locations (measured by his-
torical similarity). However, in our problem definition,
there is no historical information for unmonitored road seg-
ments at all. Thus collaborative filtering cannot be applied
to our problem because it relies on historical information to
define similar road segments.

Recent spatiotemporal data inference study [6] proposes
to construct an affinity graph, which defines nodes as loca-
tions, edge weights as the similarities between pairs of loca-
tions, and values on nodes as the traffic volume values. The
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objective is to minimize the aggregated differences between
the values of two nodes, weighted by the edge weights,
using graph-based semi-supervised approach. However, it
is extremely difficult to incorporate some important road
properties, such as the number of left-turn lanes and speed
limits, when defining similarities in the semi-supervised
learning framework.

Traffic surveillance cameras enable us to consider the
transitions of traffic volume between road segments. This is
possible because the cameras can recognize vehicle license
plates.We can construct the trajectory for any specific vehicle
by concatenating the locations where the vehicle is recog-
nized in chronological order. Millions of such trajectories
obtained from surveillance camera records can be used to
estimate the transitions. However, such trajectories do not
cover the road segments without cameras. We need to
address the challenge of estimating the complete routes
based on the incomplete camera based trajectories. Note
that, some existing literature [4], [6], [7], [8] use densely sam-
pled trajectory data (e.g., trajectories tracked by GPS embed-
ded in vehicles) for traffic volume inference. However, those
dense trajectories are sampled from specific kinds of vehicles
(e.g., taxi trajectories used in [6]), leading to biases compared
with the actual distribution of trajectories.

In this paper, we propose a novel framework named Cit-
yVolInf for citywide traffic volume inference with surveil-
lance camera data. CityVolInf leverages the spatiotemporal
similarities and transitions of traffic volume for inference.
On the one hand, we introduce a similarity module that uti-
lizes graph-based semi-supervised learning method to
model spatiotemporal similarities of traffic volume between
road segments. On the other hand, we propose a simulation

module to leverage the incomplete trajectories recognized
by cameras. The simulation module incorporates a traffic
simulator (i.e., SUMO [9]), which can simulate multiple
vehicles’ movements jointly at a citywide scale. When esti-
mating complete routes using SUMO, many properties of
the road network, such as the effect of multiple left-turn
lanes and speed limits, can be modeled precisely and effec-
tively through the simulation. Conventional data-driven
approaches are not capable of handling those heteroge-
neous properties and factors, given data from limited cam-
eras. Further learned transitions from those routes benefit
the traffic volume inference.

Combining the similarity module and the simulation
module, our proposed CityVolInf bridges data-driven meth-
ods and transportation domain knowledge. To the best of
our knowledge, this is the first attempt to utilize incomplete
trajectories for citywide traffic volume inference, and the
first attempt to combine simulators with existing data-
driven approaches in this problem.

We use a large-scale real-world dataset collected from
Jinan, China during the whole August 2016. The 405,370,631
camera records contain more than 11 million unique
vehicles, identified by plate numbers. We conduct compre-
hensive experiments to demonstrate the effectiveness of our
proposed method.

To summarize, we make the following contributions:

� We propose CityVolInf for citywide traffic volume
inference with surveillance camera records data.

� We design a similarity module by constructing an
affinity graph to model spatiotemporal similarities
of traffic volume between road segments.

� We propose a novel simulation module that lever-
ages SUMO and incomplete camera based trajecto-
ries for modeling traffic volume transitions between
adjacent road segments.

� We conduct extensive experiments on a large-scale
real-world traffic surveillance dataset. Experimental
results demonstrate that our proposed framework
outperforms state-of-the-art methods.

The remainder of this article is organized as follows. We
discuss related work which is related to our method in next
section. We define the necessary concepts and formulate the
focal problem of this paper in Section 3. We present our pro-
posed CityVolInf framework in Section 4. Section 5 reports the
experimental observations. Section 6 concludes the article.

2 RELATED WORK

Many prior studies focus on data-driven approach for
modeling city traffic. For example, to predict future traffic
flow, autoregressive integrated moving average (ARIMA)
and its variants have been widely applied [10], [11], [12],
[13], [14]. Further studies start leveraging external context
data such as venue information, weather conditions, and
local events [3], [15], [16], [17], [18]. Recently, deep learning
based methods [19], [20], [21], [22] reveal their strong capa-
bilities in modeling complex non-linear spatiotemporal rela-
tions in traffic flow data. However, all these models are region-
based traffic prediction, which is completely different from our
problem. A line of studies are conducted to model urban
human mobility based GPS records or geo-social data [23],

Fig. 1. Traffic surveillance cameras in Jinan, China.
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[24], [25]. Such methods aim to model human mobility with users’
check-ins, which is also completely different from our problem.

Varieties of research focus on filling-in missing value in
spatiotemporal data. Basic methods learn a linear model to
estimate the missing values. Some studies [1], [2], [3] use lin-
ear regression models to infer missing traffic speed or travel
time based on taxi trajectories. Aslam et al. [4] learn a regres-
sion model with taxi GPS trajectories to estimate traffic vol-
ume. However, regression methods require a great amount of
labeled training data, which is unavailable in our problem setting.

Another category of prior studies apply principal compo-
nent analysis (PCA) (e.g., [26], [27], [28], [29]) or collabora-
tive filtering (CF) (e.g., [5], [30], [31]) to fill in missing values
in spatiotemporal data. PCA-based methods extract traffic
patterns from observed data using various PCA techniques,
such as Bayesian PCA [26], Probabilistic PCA [27], [28] and
FPCA [29]. CF-based methods recover missing values by
decomposing spatiotemporal data into the product of low-
rank matrices. However, both PCA-based and CF-based methods
rely on historical data when filling in. They are unable to handle
our problem since traffic volume of unmonitored road segments
are totally missing.

Semi-supervised learning (SSL) method [32] has been
widely applied for unlabeled data inference, which can be
used for inferring missing values. Label propagation [33], a
classic semi-supervised method, infers unobserved labels
by propagating existing labels on an affinity graph. Other
SSL based methods [34], [35], [36] have been proposed to
model the similarities of vertices in the affinity graph.
Although SSL methods can be applied to our problem, they only
consider the similarities between vertices. Therefore, they fail to
utilize rich traffic flow information for volume inference.

Other existing work aim to infer traffic volume values of
road segments using loop detector [6], [37], [38], surveillance
cameras [39], [40], or float car trajectories [4], [7], [8]. [41] tries
to model the characteristics of urban vehicular mobility
using camera vehicular mobility images. But they only
extract traffic densities from the images by simply counting
the number of pixels in the images. [42] aims to understand
urban mobility patterns by identifying the most popular
routes through GPS trajectory clustering. Studies [37], [38],
[39] tackle the volume estimation of a single road segment
with loop detectors or surveillance cameras. Thus their
methods cannot infer citywide traffic volume. Zhan et al. [7]
propose a method to estimate citywide traffic volume using
probe taxi trajectories. They estimate travel speeds for vol-
ume inference using full taxi trajectories. Recently, Meng
et al. [6] propose ST-SSL that predicts city-wide traffic vol-
ume values using loop detector incorporating taxi trajecto-
ries. However, both [7] and ST-SSL [6] require full observation of
trajectories, which is not available from surveillance system. There-
fore, those methods cannot be applied to tackle our problem.

Several methods have been proposed to predict complete
trajectories frompartial observations. Zheng et al. [43] investi-
gate how to reduce the uncertainty in low-sampling-rate tra-
jectories. More specially, they aim to infer the possible routes
for a given low-sampling-rate trajectory. Banerjee et al. [44]
infer uncertain trajectories from network-constrained partial
observations by summarizing all probable routes in a holistic
manner. Yang et al. [45] investigate the problem of recon-
structing hidden trajectories from a collection of separate

spatial-temporal points where trajectory links are unknown.
However, these methods require historical trajectories as input,
which cannot be applied to recovering routes in our problem.

3 DATA AND PROBLEM

In this section, we first introduce the data used in this paper,
then formulate the traffic volume inference problem.

3.1 Data

We use a real-world dataset collected from Jinan, China.
The data consists of two parts: road network and surveil-
lance camera records.

� Road Network. The road network contains heteroge-
neous information such as road structures, road prop-
erties, traffic signals, etc. We obtain the road network
from OpenStreetMap [46], which is public-available.
The road network information is used for learning
similarity and simulating citywide vehicle move-
ments in our framework.

� Surveillance Camera Records. Surveillance camera
records contain all vehicles detected by all surveil-
lance cameras in the traffic monitoring system. When
any vehicle passes by a camera, the camera will send
a record containing recognized information about the
vehicle to the server. The format of each record fol-
lows hvehid; camid; tsi, which represents a vehicle
with plate id vehid passing the road segment moni-
tored by camera camid at timestamp ts. Note that due
to limitations in computer vision techniques, a small
portion of vehicle plates are not recognized. A virtual
plate number (i.e., unknown) is assigned to those
vehicles. In our collected dataset, about 88 percent of
records contain a real vehicle plant number.

3.2 Problem Definition

We first define the key data structures and notations used in
the paper. We define road segment as follows:

Definition 1 (Road Segment). We split roads into short road
segments. We use intersections as natural separations of roads.
Each road segment connects two adjacent intersections. Note that
road segments are directed. Let R ¼ fr1; r2; . . .; rMg denote all
road segments in a city, whereM is the number of road segments.

Each camera is deployed at a corresponding road seg-
ment, namely, the vehicles captured by camera camid pass
through its corresponding road segment. Since the camera
can recognize vehicles and their license plate number, traffic
volume of road segments can be identified by aligning cam-
eras with road segments.

We define time interval as follows:

Definition 2 (Time Interval). We split time as N non-
overlapping equal-length time intervals and use T ¼ ft1; t2; . . .;
tNg to denote all time intervals.

Definition 3 (Traffic Volume). The traffic volume for road
segment ri during time interval tj is defined as the total number
of vehicles passing through ri during the time interval tj.

Definition 4 (Camera Based Trajectory). The camera-based
trajectory of a vehicle with plate number id is a sequence of
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tuples in chronological order, denoted by fhid; r; tsig, where
each tuple hid; r; tsi represents that the vehicle id appears on
road segment r at timestamp ts.

Obviously, camera-based trajectories of vehicles are
incomplete because only partial road segments are deployed
with surveillance cameras.

We now state our problem as below:

Problem 1 (Citywide Traffic Volume Inference). Given
the road network, camera-based trajectories, and observed traffic
volume, our goal is to infer citywide traffic volume of any road
segment at any time interval.

4 THE FRAMEWORK OF CITYVOLINF

4.1 Overview

Fig. 2 illustrates the overall framework of CityVolInf, which
takes the road network and surveillance camera records as
input, and outputs the inference result of citywide traffic
volume values. In particular, our framework consists of
three key components: (1) data preprocessing module that
extracts road network features, traffic volume values and
camera-based trajectories from the raw input data; (2) simi-
larity module, which utilizes graph-based semi-supervised
learning method to model spatiotemporal similarities of
traffic volume between road segments, and (3) simulation
module, which generates transitions between adjacent road
segments using SUMO and observed incomplete trajectories
to enhance inference results.

In what follows, the data preprocessing module is intro-
duced in Section 4.2. Then the similarity module is pre-
sented in Section 4.3. Next in Section 4.4 we discuss the
simulation module. Finally, we elaborate the optimization
in Section 4.5.

4.2 Data Preprocessing Module

The first step ofCityVolInf is to preprocess the raw input data.
That is, we extract road network features, traffic volume
values and camera-based trajectories using road network

information from Openstreetmap and collected surveillance
camera records.

� Road Network Features.We extract features from the
road network. More specifically, we identify several
types of features from the heterogeneous OpenStreet-
Map data for each road segment, including starting/
ending locations, road segment length, road width,
road type, and speed limit. Let F ¼ ff1; f2; . . . ; fMg
denote the feature vector set,where fi is the feature vec-
tor of road segment ri.

� Traffic Volume Values.According to Definition 3 in
Section 3.2, the traffic volume values for a given road
segment are counted using captured vehicles at the
aligned camera during each time interval. Because
vehicle detection technique is very accurate, counted
traffic volume can be used as ground truths. The traf-
fic volume value of road segment ri during time inter-
val tk is represented as xk

i , which is a non-negative
integer. Moreover, let Xk 2 RM�1 denote the traffic
volume vector for all road segments at time interval
tk, and X 2 RM�N denote traffic volume values for
all segments in all time intervals. Namely, X ¼ ½X1;
X2; . . . ;XN �.

� Camera Based Trajectories.We extract large amounts of
camera-based trajectories from the records with
valid real plate numbers. More specifically, the tra-
jectory Vid for vehicle id can be identified by listing
all surveillance camera records containing the same
id in chronological order. We use V ¼ fVidg to
denote all such camera based trajectories.

4.3 Similarity Module

Spatial and temporal correlations on road network play
important roles in the traffic inference. In other words, the
traffic volume values of different road segments are corre-
lated with each other in spatial and temporal perspectives.
For example, the traffic volume value of one road segment
tends to be larger if all neighboring road segments have
higher volume at the same time. The traffic volume of one
road segment is likely to be lower during a time interval if
we observed low traffic volume during the corresponding
time interval in the past several days. Inspired by above
observations, we build an affinity graph to describe the cor-
relations between road segments, where each road segment
during a time interval is a node in the graph. The edges in
the affinity graph represent correlations and similarities
between road segments at different time intervals. After
defining the affinity graph, we can infer city-wide traffic
volume values by using graph-based semi-supervised
learning approach [33]. We will first introduce how to build
the affinity graph, then infer city-wide traffic volume values
using graph-based semi-supervised learning approach.

Affinity Graph: an affinity graph can be represented by a
multi-layer weighted graph G ¼ hV; E;Wi (as shown in
Fig. 3). V ¼ fV1; . . . ;VNg is the set of all road segments at all
time intervals, where Vk ¼ fvk1; vk2; . . . ; vkMg is a layer that
contains all nodes at time interval tk, and vki represent road
segment ri at time interval tk. E is the set of all edges, which
can be divided into two types. The first type is spatial edges
between nodes at the same time interval. This type of edges

Fig. 2. Overall framework of CityVolInf.
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reflect spatial correlations between road segments. The sec-
ond type is temporal edges between two nodes that represent
the same road segment at different time intervals (i.e., edges
between different vki and vk�1i ). Those edges represent tem-
poral similarities of the same road segment at different time
intervals.W is the set of weights on the edges E. For simplic-
ity, let V ¼ L

S
U, where L denotes the set of road segments

with observed traffic volume (labeled nodes), and U is the
set of road segments without traffic volume information
(unlabeled nodes). Traffic volume for the nodes in U need
to be further inferred.

To construct edges in the affinity graph, we consider the
following five types of correlations from spatial and tempo-
ral perspectives. Fig. 3 shows an example of the affinity
graph. We build multiple layers to model spatiotemporal
similarities.

� Edges between adjacent road segments. Previous study [6]
tells that traffic volume patterns of adjacent road seg-
ments are more similar to each other because vehicles
traverse between them frequently. For example, a
traffic peak on a certain road segment would affect its
neighbors via vehicle movements. Therefore, traffic
volume values of adjacent road segments in the same
time interval are likely to be similar. Inspired by this,
we add an edge for each pair of nodes which repre-
sent adjacent road segments.

� Edges between reachable road segments. In addition to
adjacency, reachable road segments are likely to have
similar traffic patterns. For example, two nearby road
segments may have similar traffic volume patterns

even if they are not adjacent, especially when vehicles
can traverse from one to another easily.

To model the similarities between reachable road
segments, we first find reachable road segments
using euclidean distance. Thenwe select top � nearest
neighbors for each unmonitored road segment, and
add edges between the road segment and selected
neighbors.

� Edges between same type road segments. According to
domain experts, road segments that belong to the
same type (e.g., highway, trunk, primary.) tend to
have similar traffic patterns. For example, Fig. 4 illus-
trates the traffic volume values of several randomly
chosen road segments with “primary” type in the
same week. Obviously, their traffic volume patterns
are very similar, especially during peak hours.
Because we aim to leverage few road segments with
traffic volume data for inference, we connect every
unmonitored road segment to all monitored road
segments of the same type.

� Edges between recent time intervals. Traffic volume pat-
terns have strong temporal dependencies. Generally,
the volume on a certain road segment would not
change dramatically during a relatively short time
period. We connect every node to the corresponding
node in the previous time intervals.

� Edges between periodical time intervals. Daily traffic
patterns have strong temporal periodicity. The traffic
volume at a specific time interval should be close to
its relevant time intervals in previous time (e.g.,
daily, weekly and monthly periods). For example,
Fig. 5 shows the traffic volume of a road segment in
two weeks. We observe the strong daily and weekly
periodicities from the traffic volume pattern. To
incorporate such periodicities, we connect each node
to previous corresponding ones with the most peri-
odic similarities (e.g., nodes one day before, one
week before, etc.). In this paper, we consider daily
and weekly periodicity.

The next step of building affinity graph is to learn
weights on edges, which represent similarities between
nodes. If two nodes are more similar, the weight on the
edge between them should be larger. We use features on
nodes to learn weights, following three steps:

1) Feature Scaling: To avoid the similarity being gov-
erned by any particular features, we first standardize
F by applying Z-normalization on the values of all
feature vectors so that the values have zero-mean
and one-variance.

Fig. 3. An example of the affinity graph. There are five road segments,
including three monitored segments (i.e., 3, 4 and 5 in black) and two
unmonitored segments (i.e., 1 and 2 in white). The boundary color of
node indicates road type. For example, nodes 1, 4 and 5 are of the
same type. Solid lines within each layers are spatial edges, where gray,
cyan and yellow represent edges between adjacent, reachable and
same-type road segments respectively. Dash lines connecting nodes
from different layers denotes temporal edges, where purple ones are
between recent layers, and red ones are between periodical layers.

Fig. 4. Traffic volume for five road segments with same road type
“primary”.

Fig. 5. Traffic volume for Jingsan RD from south to north.
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2) Spatial Similarity: Intuitively, if the feature vectors of
two connected nodes within the same time interval
are more close, their similarity weight should be
higher. To generate weights for spatial edges within
each layer, we define a linear function over the dif-
ference of feature vectors from two nodes connected
by spatial edges. Suppose vi and vj are two nodes
from the same time interval, and fi and fj are their
normalized feature vectors respectively, we define
the weight between vi and vj as

wi;j ¼ wðfi; fjÞ ¼ exp
�� a � ðfi � fjÞ þ c

�
;

where a is a row vector of parameters, c is the bias
parameter, and “�” denotes the inner product of vec-
tors. To estimate a and c, we minimize the following
loss function that defines on the sub-network of
nodes with observed traffic volume:

a; c ¼ argmin
a;c
L0

¼ argmin
a;c

XN
k¼1

XM
i;j¼1

vk
i
;vk
j
2L

exp
�� a � ðfi � fjÞ þ c

�ðxki � xkj Þ2:

3) Temporal Similarity: Temporal similarities could be
modeled by weights on temporal edges between dif-
ferent layers of the affinity graph. To explicitly capture
temporal dependencies, we manually set all weights
to 1 on edges between different layers, which reflects
the temporal characteristic of traffic volume values.

Given the affinity graph with known weights, we can use
a graph-based semi-supervised learning model to infer city-
wide missing traffic volume values. The basic idea of this
SSL model is that if two nodes are connected by an edge
with larger weight, their traffic volume values tend to be
more similar. To model such similarities from the view of
edge weights, we propose the following loss function:

L1 ¼ LS þ aLT

¼ 1

2

XN
k¼1

XM
i;j¼1

wi;jðxk
i � xk

j Þ2 þ
a

2

XN�1
k¼1

XM
i¼1
ðxkþ1

i � xk
i Þ2;

(1)

where LS and LT are loss functions for spatial and temporal
similarities respectively, and a is the coefficient parameter.

4.4 Simulation Module

Although the similarity module successfully models spatial
and temporal similarities through graph-based semi-
supervised learning approach, it still fails to capture
dynamic characteristics of traffic volume. That is, transitions
of traffic volume between adjacent road segments are
ignored when using conventional semi-supervised learning
method. Despite similarities, traffic volume also affect each
other explicitly via a “weighted-sum” process (i.e., transi-
tion). Because a lot of vehicles are traversing continuously on
roads, most vehicles on one road segment will finally arrive
at adjacent road segments. For example, if 100 vehicles are
moving alongside one road segment towards a crossroad,
we aim to answer the following question: howmany vehicles

will go straight ahead, how many of them will turn left, and
how many of them will turn right? Suppose we can answer
the question for every road segment, we can approximate
traffic volume values by propagating those at road segments
with data.

Inspired by above discussion, we model the transition of
traffic volume in our framework. More specifically, we first
learn transition ratio matrices from camera-based trajectories, then
propose a simulation module utilizing learned transition ratios.

4.4.1 Transition Probability

To model the transition between adjacent road segments, an
intuitive approach is to generate vehicle numbers directly
from camera-based trajectories. If two adjacent road seg-
ments both are monitored by cameras, the transition
between them can be identified from counting. However, it
is unpractical to model traffic volume transitions from cam-
era-based trajectories directly. Because camera-based trajec-
tories fail to cover all vehicles in the city. Only 88 percent of
records contain valid plate numbers, some trajectories are
missing even if the vehicle (counted towards traffic volume)
is detected. Therefore, directly counting transition will pro-
duce inaccurate results.

To tackle the aforementioned limitations, CityVolInf learns
average transition probability as an alternative approach.
Transition probability can be considered as the conversion
rate of traffic volume between adjacent road segments. We
use a real value pki;j 2 ½0; 1� to represent the average transition

probability. That is, pki;j denotes the conditional probability of

vehicles traversing from rj to ri in time interval tk

pki;j ¼ P ðrinrj j rj; tkÞ ¼ # of rinrj in tk

xk
j

; (2)

where P ð�j�Þ denotes conditional probability, rinrj means

“traversing from rj to ri”.
Transition probability can be learned from partial miss-

ing trajectories. Since cameras are almost uniformly
deployed in the city, extracted camera based trajectories can
be considered as unbiased samples of all vehicle trajectories.
That is, the collected vehicle trajectories are a coarse repre-
sentation of full observed vehicle movements.

Given transition probability related to road segment ri
and its neighbors (denotes by rn1 ; rn2 ; . . .rnq ), the traffic vol-
ume of ri can be approximated using volume values of its
neighborhoods at last time interval

xk
i ¼

Xq
l¼1

pk�1i;nl
xk�1
nl

:

For simplicity, we define transition matrices as follows:
Transition Matrices. Transition matrices P ¼ fP1;P2; . . . ;

PNg are a series of matrices, where Pk 2 RM�M , Pk
i;j ¼ pki;j,

and M and N are the number of the road segments and
time intervals respectively. Namely, Pk contains transition
probability in time interval tk.

4.4.2 Learning Transition Probability

It is still unfeasible to learn transition probability directly
because camera-based trajectories only provide partial
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observations at monitored points, and details about vehicle
movements between cameras are missing if either of two
adjacent road segments is not monitored. That is, transition
probability related to any unmonitored road segments is
missing in camera-based trajectories. We use “route” to
denote detailed vehicle movements between nearby cam-
eras. Compared with camera-based trajectories, routes con-
tain detailed vehicle movements between adjacent road
segments. To bridge the gap between trajectories and routes,
our next step is to estimate missing portions of camera based
trajectories. Fig. 6 shows two examples of the route inference.
A! B and C ! D are two parts of camera based trajecto-
ries. The detail traversing routes between A and B (or C and
D) remain unknown and need further inference.

A basic approach for route inference given camera based
trajectories is formulating it as a path searching problem on
the road network. Following this direction, the shortest path
can be used as an approximation for route inference. To
improve the inference results, restrictions and constraints can
be also proposed and added to the searching algorithm to
consider complex real-world correlations. Inspired by [44],
sampling-based method can be also applied to infer possible
routes given camera-based trajectories. However, many
dynamical factors and properties of roads are hard to formu-
late in sampling, such asmultiple lanes and interchanges.

To overcome those limitations, we propose a novel
method by incorporating a traffic simulator (i.e., SUMO) for
conditional route inference. SUMO is a citywide traffic simu-
lator, which generates vehicles and models their movements
on road network in a simulatingmanner. SUMO also consid-
ers multiple factors simultaneously during the simulation,
such as real-time traffic volume, differences between lanes
and traffic signals. So the dynamicity of traffic is fully
explored. Moreover, since different routes are planned
jointly, the interactions are taken into account as well. There-
fore, routes from SUMO are more capable to represent real-
world vehicle movements. Note that although micro-view
results (e.g., one inferred route for a specific vehicle) could
be different from ground truths, macro-view statistics (e.g.,
transition ratios) collected from inferred routes are stable
and helpful because they reflect global behaviors. Our exper-
iment in Section 5 demonstrate the effectiveness of SUMO
comparedwith path searching algorithm.

Given the road network of a city and the camera-based
trajectories observed at all cameras, the simulator can gener-
ate complete routes through dynamic simulation following

three steps: (1) road network and segments of camera-based
trajectories (e.g., A! B in Fig. 6) are given as the input for
SUMO; (2) based on these input data, SUMO will generate
individual vehicles at beginnings of each partial trajectory at
corresponding time. Those vehicles will traverse towards
their destination road segments (i.e., ends of partial trajecto-
ries); (3) detail routes for each vehicle can be collected for the
outputs of SUMO after the simulation. Given inferred routes,
transition ratios in P can be estimated by Eq. (2). The transi-
tion probability inference process is showed in Algorithm 1.

Algorithm 1. Transition Probability Inference usingSUMO

Input: Road Network G and Camera Based Trajectories V.
Output: Transition Matrices P.
1: TraSeg ;
2: for Vi 2 V do
3: TraSeg TraSeg [ Split(Vi)
4: InfRout SUMOðG; TraSegÞ
5: for road segment ri do
6: for road segment rj 2 NðriÞ do
7: for time interval tk do
8: Pk

i;j  # rinrj in tkin InfRout

xk
j

4.4.3 Transition Based Volume Inference

The transition matrices P bridges traffic volume values at
the last time interval and those at the current time interval.
Namely, Xk can be linearly transformed to Xkþ1 using corre-
sponding Pk. We incorporate the transition probabilities P
in our framework to model transitions of citywide traffic
volume. Specifically, we propose the simulation module
whose loss function is formulated as below

L2 ¼ 1

2

XN�1
k¼1
kXkþ1 � PkXkk22; (3)

where k � k22 denotes l2-norm.

4.5 Optimization

Combining Eqs. (1) and (3), we have the final loss function
of the framework CityVolInf

L ¼ L1 þ bL2 ¼ 1

2

XN
k¼1

XM
i;j¼1

wi;jðxk
i � xk

j Þ2

þ a

2

XN�1
k¼1

XM
i¼1
ðxkþ1

i � xk
i Þ2 þ

b

2

XN�1
k¼1
kXkþ1 � PkXkk22;

(4)

where a and b are hyper-parameters that give different
emphases on temporal and simulation terms.

Then our goal is to find traffic volume values X for all
road segments, such that the loss function (4) is minimized

X ¼ argmin
X
L: (5)

To solve the above problem, we adopt an iterative updat-
ing algorithm, where each time all values in X are updated
incrementally. Because Eq. (4) is convex, and X belongs to a

convex set (i.e., Rþ M�N where Rþ denotes the set of non-

negative real number), X will achieve global optimal value
in the end. Specifically, the update rule for X is as follow:

Fig. 6. An example of potential routes given segments of camera based
trajectories.
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X X� h
@L
@X

;

where h is the learning rate. We repeat above steps until
convergence or reaching the maximum number of iterations
c. The final result of X contains inferred city-wide traffic
volume values.

The time complexity of the optimization is OðcNM3Þ,
where c is the maximum iteration number of optimization,
N is the total number of time intervals, andM is the number
of road segments.

5 EXPERIMENT

5.1 Datasets

We evaluate CityVolInf on a real-world large-scale dataset
collected from jinan, China. Table 1 shows the statistics of
the dataset in detail.

� Road Network. We select the downtown area
(15 km� 10 km) in Jinan as the road network. Except
road segments, the road network also contains hetero-
geneous information such as intersections, ramps,
crosswalks, etc. Note that we fix the road network for
all experiments except in Section 5.6.2, wherewe study
the performancew.r.t the size of the road network.

� Surveillance Camera Records. The dataset contains
405,370,631 records from 1,704 surveillance cameras
over the period of 08/01/2016 - 08/31/2016. More
than 88 percent records contain valid vehicle plate
number according to our statistic.

5.2 Experiment Setting

5.2.1 Preprocessing

Spatial features and contextual information are extracted
from the select road network. Discrete features such as road
type are incorporated using one-hot representation. 1,248
road segments are collected from the selected downtown area
after preprocessing, and 257 among them are labeled with
observed traffic volume during the 31 days.We filter out sam-
pleswhen ground truth traffic volumevalues are smaller than
5 when testing our framework. This is a common practice in
industry and academy [22]. Road segments with very low
traffic volume are of little interests.Moreover, 11,299,927 cam-
era-based trajectories are extracted from the records.

5.2.2 Hyper-Parameter Setting

We set the length of time intervals to 15 minutes. We ran-
domly select 80 percent monitored road segments and use
all their traffic volume as the training set. The traffic volume
from the last week (08/25/2016 to 08/31/2016) of remained
20 percent road segments is used as the testing set (the

traffic volume from the time period before 08/25/2016 are
used for neither training nor testing). We set maximum iter-
ation number c to 1,000. We set coefficient parameters a, b
and h to 4.6, 8.3, and 25, respectively based on grid search-
ing. We use the default setting of SUMO in our experiment.

5.3 Evaluation Methods and Metrics

5.3.1 Baselines

CityVolInf is compared with the following baselines: (1) two
average-based methods; (2) three regression methods; and
(3) two semi-supervised learning methods. For methods
that require features, we use the same spatial features
extracted from the road network, as described in Section 4.2.

� Spatial kNN. Spatial kNN (SkNN) simply selects near-
est top k road segments with traffic volume data,
and uses the average of their volume values at each
time interval as the prediction.

� Contextual Average. Contextual Average (CA) use the
average result of volume values from same-type road
segments (e.g., primary, and express way) as the
prediction.

� Linear Regression. Linear Regression (LR) is trained on
all road segments with traffic volume. We use the
same spatial features for this model. We train one
regression model for one time interval.

� XGBoost. XGBoost (XGB) [47] is a boosting-tree-based
method which is popular in data mining community.
Similar to LR,we train onemodel for one time interval.

� Multiple Layer Perception. Multiple Layer Perception
(MLP) is a four-layer fully connected neural net-
work. The hidden units of each layer are 64, 128, 128,
64. The training and testing of MLP are the same to
LR and XGB.

� Basic SSL [33]. We implement a classical graph-based
semi-supervised learning method with loss function
L ¼P

ai;jðxk
i � xk

j Þ2. The Basic SSL does not consider

temporal correlation. We learn the weight ai;j based
on the distance between road segments.

� Spatio-Temporal Semi-Supervised Learning (ST-SSL) [6].
ST-SSL is state-of-the-art method which applies
semi-supervised learning to inferring citywide traffic
volume with loop detector and taxi trajectories. We
remove the taxi trajectory part because dense trajec-
tories are unavailable in our problem.

5.3.2 Variations

We further propose three variations of our proposed frame-
work to study the effectiveness of the data-driven module,
the simulation module, and the simulation module with
data-driven route inference, respectively.

� CVISimi. This is a variant of CityVolInf that only
contains the Similarity module (i.e., no simulation
module).

� CVISumo. This variant of CityVolInf only maintains
the simulation module (i.e., SUMO), while excludes
the similarity module.

� CVIPS. Inspired by [44], we propose a variant ofCity-
VolInf that samples dense trajectories using Path
Searching algorithms. More specifically, we first

TABLE 1
Statistics of Surveillance Camera Dataset

Time span 08/01/2016 - 08/31/2016

Num. of surveillance cameras 1,704
Num. of records 405,370,631
Num. of total vehicles 11,299,927
Avg. num. of vehicles per day 1,155,415
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sample potential route candidates using path search-
ing algorithm (i.e., routes no longer than 1.5 times the
length of the shortest path). Then the traversing time
for each candidate is estimated using speed limits of
road segments. Next, traversing time of routes are
punished by adding a half minute per left or right
turn. Finally, the route with least traversing time is
selected. Compared to CityVolInf, the difference is
that CVIPS alters the way to generateP.

5.3.3 Metrics

We use Root Mean Square Error (RMSE) and Mean Abso-
lute Percentage Error (MAPE) of inferred traffic volume val-
ues to evaluate the performance of inference methods,
which are defined as follow:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

S

XS
l¼1
ðxl � x̂lÞ2

vuut ; MAPE ¼ 1

S

XS
l¼1

jxl � x̂lj
x̂l

;

where xl 2 fxk
i g is a test sample, x̂l is the ground truth of xl,

and S denotes the total number of test samples.
Note that RMSE focuses more on larger values, while

MAPE receives more punishments from smaller values.
Therefore, the combination of two metrics evaluates the per-
formance of inference methods more comprehensively.

5.4 Effectiveness Comparison

5.4.1 Overall Analysis

We first evaluate the overall performance of CityVolInf on
collected dataset compared with all baselines. We run all
methods 50 times and report the average result and vari-
ance for each method. Table 2 shows the comparison results
among all methods. Based on the experiment results, we
make following observations:

1) CityVolInf significantly outperforms average-based
methods (i.e., SkNN and CA) and regression meth-
ods (i.e., LR, XGB and MLP) w.r.t both RMSE and
MAPE. Obviously, those methods ignore spatiotem-
poral correlations and transition correlations, thus
resulting in poor accuracy.

2) CityVolInf is superior to the Basic SSL. The perfor-
mance of Basic SSL is limited because the distance-
based similarity fails to capture a variety of information

including temporal correlations and traffic volume
transitions.

3) CityVolInf also significantly outperforms the state-of-
the-art ST-SSL method in terms of RMSE and MAPE.
ST-SSL incorporates specific spatiotemporal character-
istics of traffic volume by building a spatiotemporal
affinity graph, thus outperforms other methods by a
considerable margin. However, CityVolInf reduces
RMSE and MAPE by 11.89 and 17.30 percent com-
pared with ST-SSL, respectively. The huge improve-
ments aremainly attributed to our simulationmodule,
which incorporates incomplete camera based trajecto-
ries for modeling dynamic transition relationships
explicitly via a traffic simulator.

5.4.2 Variations Study

We further study the effectiveness of the similarity module
and the simulation module. The results of different varia-
tions are shown in Table 3.

The performances of CVISimi and CVISumo are limited
because they both ignore important characteristic of traffic
volume. Both spatiotemporal similarities and transition rela-
tionships between road segments are essential for a higher
accurate inference. CVISimi achieves similar performance
compared with ST-SSL in MAPE, while CVISumo has a rela-
tively lower accuracy. One potential reason is that because of
the sparsity of cameras, inferring purely with transitions
may magnify existing errors, especially at road segments far
away from monitored ones. CVIPS replaces the simulator
with a path searching based route inference algorithm. As
mentioned in Section 4.4, the searching algorithm approxi-
mates volume transitions between adjacent road segments
using a naive approach, which fails to model dynamical fac-
tors. Compared to CVIPS, the simulation approach in City-
VolInf exhibits better capability in modeling complex real-
world scenarios.

5.5 Parameter Sensitivity

5.5.1 Coefficient Parameters

We explore how the performance of CityVolInf changes with
respect to regularization coefficients. To evaluate the impacts
of a and b on inference performance, we perform the experi-
ments by varying one of either a and bwhen fix another one.
The analysis of temporal parameter a in similarity module
and simulation module parameter bw.r.t. RMSE and MAPE
are shown in Fig. 7. We use the grid search method to find
the best parameter settings. As we can see, both RMSE and
MAPE of CityVolInf first decrease to the minimal values and
then increase as the coefficient parameters increasing. This is

TABLE 2
Comparison with Different Baselines

Method Metrics

RMSE MAPE

Spatial kNN (top 10) 137.441 � 0.000 0.679 � 0.000
Spatial kNN (top 100) 131.622 � 0.000 0.678 � 0.000
Contextual Average 127.107 � 0.000 0.696 � 0.000
Linear Regression 140.366 � 0.000 0.893 � 0.000
XGBoost 124.425 � 0.004 0.669 � 0.003
MLP 126.210 � 1.264 0.797 � 0.013
Basic SSL 133.661 � 0.001 0.730 � 0.000
ST-SSL 123.753 � 0.004 0.601 � 0.001
CityVolInf 109.035 � 0.003 0.497 � 0.001

TABLE 3
Comparison with Different Variations

Method Metrics

RMSE MAPE

CVISimi 126.215 � 0.000 0.621 � 0.000
CVISumo 125.264 � 0.001 0.651 � 0.001
CVIPS 122.417 � 0.001 0.561 � 0.000
CityVolInf 109.035 � 0.003 0.497 � 0.001
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intuitive because both temporal correlations and transition
relationships are essential for a precise inference. As shown
in Fig. 7a, the RMSE and MAPE reach low values when a

falls around 4.6. Similarly, the RMSE and MAPE achieve
minimumvalueswhen b is 8.3 in Fig. 7b.

In addition, it is clear that the inference error decreases rap-
idlywithb increasing from0. This suggests our proposed sim-
ulationmodule contributes a lot to the overall performance.

5.5.2 Number of Reachable Road Segments �

We study the impact of hyper-parameter � that controls the
number of reachable nearby road segments when building
affinity graph. From Fig. 8, we observe that CityVolInf nearly
keeps stable performance with respect to � in terms of both
RMSE and MAPE. This is may because CityVolInf incorpo-
rates multiple spatiotemporal factors simultaneously when
building the affinity graph, resulting in lower sensitivity
with respect to one specific kind of spatial edges. Although
the number of reachable edges is altered, other kinds of spa-
tial edges could contribute more when learning spatial
weights. Moreover, temporal correlations also play impor-
tant roles in inference as well. Finally, the entire similarity
module contributes consistently to the overall performance.

5.5.3 Training and Testing Ratio

Fig. 9 shows the results of all methods in terms of RMSE and
MAPE by varying the ratio of training set from 50 to 90 per-
cent. As we can see, our method continuously performs bet-
ter than all baselines even with very few training data.

In addition, the RMSE and MAPE values of all methods
increase as the ratio of training data increases. Although the
performances of some baseline methods (e.g., LR, XGB,
MLP) improves obviously when using more training data,
our proposed CityVolInf still exhibits significant superiority.

5.5.4 Training and Testing Length

We next evaluate the performance of our method in terms of
RMSE and MAPE by varying the length of training set from
one week to four weeks compared to SSL-based methods.
The rest of data is treated as testing data. Namely, the length
of testing data varies from three weeks to four days. Fig. 10
shows the RMSE and MAPE results of our method and SSL-
based baselines with respect to the length of training set. As
expected, our method consistently outperforms SSL-based
baselines in all cases. As the training set increases, the infer-
ence accuracy of ourmethod increases in both terms of RMSE
and MAPE, and then keeps stable when the training set
reaches about three weeks. Moreover, our method is more
better than SSL-based baselines in a training set with less
length, which demonstrates that our proposed simulation
module is useful for inferring traffic volume as an important
complement to the similaritymodule.

5.6 Scalability

We conduct experiments to study the scalability of CityVo-
lInf in terms of inference accuracy and running time by
varying the number of time intervals N and the number of
road segments M. We fix the testing set in all experiment as
described in Section 5.2, such that all results are comparable.

5.6.1 Varying the Number of Time Intervals N

First we study the scalability w.r.tN . While fixing the testing
set, the total number of time intervals in training set increases
from 672 (i.e., 7 days corresponding to testing set) to 2976
(i.e., 31 days) by 96 (i.e., one-day time span) in reverse chro-
nological order. Fig. 11 shows RMSE, MAPE and running
time ofCityVolInfwith the number of training data.

From Fig. 11a, similarly with experiment in Section 5.5.4,
both RMSE and MAPE on the testing set keep declining at
first, then convergence after N reaching a certain threshold

Fig. 7. Results of varying the coefficient parameters.

Fig. 8. Results of varying the hyper-parameter �.

Fig. 9. Results of varying the ratio of training data.

Fig. 10. Results of varying the length of training data.
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(about 3 weeks). This indicates that using about 3-week his-
torical data is sufficient for CityVolInf to model temporal
correlations and transition relationships.

Fig. 11b shows the total running time of the optimization
w.r.t. N . We can see that the running time keeps linearly
increasing. This is expected because the time complexity of
the optimization is OðcNM3Þ which is linear with the num-
ber of time interval N .

5.6.2 Varying the Number of Road SegmentsM

We further vary the size of selected road network so that the
number of road segments increases from 900 to 2,100 by 300
each time. As shown in Fig. 12, the running time nearly keeps

linear increasing w.r.t.M3, which is consistent with our pre-
vious analysis on algorithm complexity. The inference accu-
racy of CityVolInf is relatively stable w.r.t. M. The reason is
that the inference of traffic volume for a road segment does
not rely on faraway road segments. Furthermore, the simula-
tion module defines traffic transitions only on adjacent road
segments, which is not affected by size of road networks
basically. This also suggests our proposed framework is
robust and effectivew.r.t. the size of road network.

6 CONCLUSION

Surveillance cameras are widely used to monitor urban traf-
fic situations in modern cities. However, the coverage is still
limited because of high costs. In this paper, we introduce a
novel frameworkCityVolInf for citywide traffic volume infer-
encewith road network and surveillance camera records.We
first construct an affinity graph of road segments at different
time intervals according to their spatial and temporal simi-
larities. We further incorporate a novel simulation module
that utilizing rich and complex road network information
and incomplete camera based trajectories to model traffic
volume transitions between adjacent road segments, which

results in a significant improvement of accuracy. We evalu-
ate our method on a real-world large-scale traffic dataset col-
lected in Jinan, China. CityVolInf exhibits extraordinary
accuracy compared with all baselines. Experimental results
on parameter sensitivity, robustness and scalability demon-
strate the advantages of CityVolInf with respect to citywide
traffic volume inference.

In future work, we plan to extend our framework to an
online inference manner to reduce the running time for
working more efficiently in real time systems. In addition,
we would like to investigate the relation between the simi-
larity and simulation modules to be generalized to different
situations.
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