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a b s t r a c t

The detection of local outliers over high-volume data streams is critical for diverse real-time ap-
plications in the real world, where the distributions in different subsets of the data tend to be
skewed. However, existing methods are not scalable to large-scale high-volume data streams owing
to the high complexity of the re-detection of data updates. In this work, we propose a top-n local
outlier detection method based on Kernel Density Estimation (KDE) over large-scale high-volume data
streams. First, we define a KDE-based Outlier Factor (KOF) to measure the local outlierness score for
the data points. Then, we propose the upper bounds of the KOF and an upper-bound-based pruning
strategy to quickly eliminate the majority of the inlier points by leveraging the upper bounds without
computing the expensive KOF scores. Moreover, we design an Upper-bound pruning-based top-n KOF
detection method (UKOF) over data streams to efficiently address the data updates in a sliding window
environment. Furthermore, we propose a Lazy update method of UKOF (LUKOF) for bulk updates in
high-speed large-scale data streams to further minimize the computation cost. Our comprehensive
experimental study demonstrates that the proposed method outperforms the state-of-the-art methods
by up to 3,600 times in speed, while achieving the best performance in detecting local outliers over
data streams.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Outlier detection aims to identify the data points that signif-
icantly differ from the majority of the points in a data space,
which is one of the most important tasks in both the data mining
and machine learning areas. Nowadays, diverse high-speed and
huge-volume data streams are being generated from different ap-
plications (e.g., location-based online services, mobile payments,
online shopping systems, and social networks). Outlier analysis
over large-scale data streams is critical for real-time applications
ranging from fraud detection and network intrusion monitoring
to fault detection. For example, a credit card transaction for a
large amount passed in a physical location distant from where
it typically is used could be a fraud. Credit card companies must
continuously monitor the enormous number of card transactions
made by different users to discover financial frauds within an
actionable time. Therefore, it is critical to be able to efficiently
detect outliers from such huge-volume streaming data in a near
real-time fashion for multiple domains [1–3].
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In recent years, numerous studies have been conducted to
detect outliers in datasets [4,5], such as distance-based out-
lier detection [3,6–8], neighbor-based outlier detection [9,10],
distribution-based outlier detection [11,12], and cluster-based
outlier detection [13,14]. However, none of these methods can
address the outlier detection problem in skewed data; the dis-
tributions in real-world datasets tend to be skewed [4]. Hence,
the concept of local outlier factor (i.e., LOF) [15] is proposed to
detect local outliers by comparing the density difference between
a data point and its local neighborhood instead of using a global
density [7,16]. Several studies [17–19] have employed LOF to
detect local outliers from data streams. In particular, [17] pro-
poses an incremental LOF algorithm that incrementally updates
the densities of points affected by newly inserted points to detect
local outliers precisely. Because the LOF score of each point is
computed based on the local densities of the point, and the
density of each point is also based on the reachable distances
from the point to its k nearest neighbors (kNNs), the complexity
of kNNs recomputation for a large number of points is extremely
expensive in terms of time and memory space. To reduce the
memory consumption, [18] only stores the information for the
clusters of the past points to search the kNNs for the future points.
However, this method sacrifices outlier detection accuracy to save

https://doi.org/10.1016/j.knosys.2020.106186
0950-7051/© 2020 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.knosys.2020.106186
http://www.elsevier.com/locate/knosys
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2020.106186&domain=pdf
mailto:liufang0812@163.com
mailto:yuyanwei@ouc.edu.cn
mailto:pengsongseu@gmail.com
mailto:yfan.mse@gmail.com
mailto:txr@ytu.edu.cn
https://doi.org/10.1016/j.knosys.2020.106186


2 F. Liu, Y. Yu, P. Song et al. / Knowledge-Based Systems 204 (2020) 106186

Fig. 1. Example with two clusters of different densities.
Source: From [21].

memory consumption because it clusters past data using the k-
means algorithm, which does not preserve the density of the
data. Recently, [19] proposes a density summarizing incremental
LOF detection method for data streams. It reduces the memory
consumption by sampling from the past data while preserving
its density. However, the sampling process consumes a signif-
icant time resource. Therefore, existing streaming local outlier
solutions [17–19] are not scalable to high-volume data streams.

Although LOF applies more weight to the objects with small
k-distances in dense regions and less weight to points in sparse
regions, [20] determine that LOF and its variants using a heuristic
approach are not well supported by theory. [21] also verifies that
Kernel Density Estimation (KDE) based on established probability
density approximation yields a more robust local density estima-
tion than the LOF method. As in the example from [21] display in
Fig. 1, the distance from point A to Cluster 1 is similar to the k-
distances of the points in Cluster 1. The LOF method cannot easily
distinguish point A from Cluster 1 using LOF score because its
local density is similar to its neighbors’ local densities. However
the KDE-based method can clearly identify point A from Cluster 1
by adjusting the bandwidth parameter in the KDE model to obtain
a greater outlierness score than those of the points in Cluster 1.
Several studies [20,22] have been proposed in recent years to
utilize the KDE model to detect local outliers in static datasets.
Although these KDE methods can be applied to streaming data,
they are inefficient because they are not designed to detect local
outliers in the context of streaming data.

In this paper, we propose a new local outlier detection method
that uses KDE to detect the top-n local outliers for data streams
in a sliding window environment. First, we define a KDE-based
Outlier Factor (KOF) to measure the degree of outlierness for
each data point in the context of streaming data. Secondly, we
propose an upper-bound-based pruning strategy to minimize the
computation cost for the top-n local outlier detection. Thirdly,
we present an efficient top-n KOF detection method leveraging
upper-bound-based pruning over the data streams called UKOF
(Upper-bound pruning-based KOF). Moreover, to further reduce
the detection cost, we design an optimized R-tree index for each
slide in the sliding window environment, which significantly
accelerates both kNNs and reverse k nearest neighbors (RkNNs)
searches across the slides for the data points. Furthermore, we
propose a Lazy update version of UKOF, named LUKOF, for bulk

updates in a large sliding window for high-speed large-scale data
streams. Finally, extensive experiments are conducted on ten
real-world and synthetic datasets. The experiment results con-
firm that the proposed method is up to 3600 times faster than the
state-of-the-art methods, while achieving the best performance
in detecting local outliers for data streams.

To summarize, we offer the following contributions:

• We are the first to formally define the problem of top-n
local outlier detection based on defined KOF in the context
of streaming data.
• We propose the upper bounds of the KOF and an upper-

bound-based pruning strategy to efficiently eliminate the
inlier (normal) data points without computing expensive
KOF scores.
• We present an efficient top-n KOF detection method us-

ing upper-bound-based pruning over data streams with an
optimized R-tree index.
• We further propose a lazy update version of the top-n KOF

detection method for bulk updates in high-speed large-scale
data streams to minimize the computation cost.
• Experimental evaluations on ten real-world and synthetic

datasets demonstrate that the proposed method outper-
forms the state-of-the-art methods by a factor of several
thousand times in speed, and achieves the best performance
in detecting local outliers over data streams.

2. Related work

In this section, we briefly introduce the related work in three
areas: LOF and its variants in static datasets, LOF detection in
streaming data, and KDE-based local outlier detection in static
datasets.

2.1. LOF and its extensions in static datasets

Breunig et al. [15] first proposed the concept of LOF. Compared
with distance-based outlier detection [16,23] and KNN outlier
detection [24], LOF implements relative density to measure the
degree of outlierness based on the density of a data point relative
to its local neighbors. The greater the LOF score, the greater
the possibility that it is an outlier. Data points with greater LOF
scores tend to be considered as outliers. Because outliers are the
absolute minority in a dataset, Jin et al. [25] proposed the concept
of top-n local outliers, that is, the n points with the greatest LOF
scores in a dataset. Varieties of LOF variations [26–29] have been
sequentially proposed to detect local outliers in static datasets.
Tang et al. [30] proposed a Connectivity-based Outlier Factor
(COF) method, which uses the relative connectivity between data
points and their kNNs to measure the outlierness degree of the
data points. Another variant, Local Distance-based Outlier Factor
(LDOF) is proposed in [31]. LDOF uses the mean distance between
the data point and its kNNs to define the local density of the
data points, and then calculates the relative density based on its
kNNs to obtain the outlier factor. [29] proposed a simpler variant,
simplified-LOF, which directly uses the k-distance to estimate the
densities of the data points, instead of the reachable distance in
LOF, to reduce the detection cost; however it has the consequence
of yielding less stable results on inliers.

2.2. LOF in data streams

To address continuously evolving streaming data, Pokrajac
et al. [17] first proposed an incremental LOF method (iLOF) over
data streams. It incrementally updates the LOF scores of the
data points. However, all the previous points must be stored to
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compute the LOF scores for the new points, which requires a
large memory space and high time complexity. Salehi et al. [18]
proposed a memory efficient incremental local outlier detection
algorithm (MiLOF). To reduce the memory consumption of iLOF,
it uses flexible c-means based on k-means [32] to cluster the past
data points. However it computes the approximate LOF scores
for the data points, which reduces the outlier detection accuracy.
Most recently, [19] proposed a Density summarizing Incremental
LOF algorithm called DILOF. DILOF reduces the memory consump-
tion by sampling from the past data while preserving the density
of this past data. More Specifically, when the number of data
points in the current window reaches w, it selects w/4 expired
data points from the oldest w/2 data points to minimize their
density difference; thus, it is sensitive to window size and is not
suitable for large windows. Moreover, DILOF is inefficient for the
detection of local outliers in data streams owing to the high time
complexity for the density summarization for the past data.

2.3. KDE for outlier detection in static datasets

Several methods have been proposed to detect local outliers
using the KDE model [5,33,34]. Latecki et al. [21] first used KDE
to detect local outliers by extending LOF with KDE, named Local
Density Factor (LDF). However, LDF does not use the original
kernel; rather, it replaces the actual distance between a data
point and its neighbors with its local reachable distance in the
density estimation, and therefore the desired properties of the
KDE are lost. Gao et al. [33,35] proposed a Robust Kernel-based
Outlier Factor (RKOF) method, which uses a weighted neigh-
borhood density estimation to improve the robustness of the
parameter k. The outlierness score of each data point is the ratio
of its local density estimate and the weighted density estimate of
its neighbors. Schubert et al. [20] proposed the KDEOS method,
which computes the KDE values of each data point using multiple
values of parameter k, and uses the average z-score of the KDE
values of each point in its local densities to measure its outlier-
ness degree. Tang et al. [22] proposed a Relative Density-based
Outlier Score method (RDOS). The method not only uses kNNs,
it further considers the reverse nearest neighbors and shared
nearest neighbors of the data points in the density estimation.
Pavlidou and Zioutas [36] proposed a KDE-based outlier detection
method. It first computes a weighted kernel density probability
estimation for each data point. Next, the data points having
the smallest density values are reported to be outliers. In their
follow-up work [37], they proposed two algorithms for outlier
detection using KDE in skewed data, which use the Mahalanobis
distance to estimate the robust kernel density probability. The
first algorithm uses the Mahalanobis distance in the estimation
of the kernel density probability; the second uses the minimum
covariance determinant to obtain a robust covariance matrix and
then incorporates it to obtain a more robust Mahalanobis dis-
tance. Recently, [34] proposed an adaptive kernel density based
local outlier detection method. Specifically, the method selects
relatively large kernel widths in high-density regions to reduce
the difference between normal data points, and selects relatively
small kernel widths in low-density regions to intensify the abnor-
mality of anomalous data points. However the adaptive setting
actually smooths the variance of the KDE-based outlierness scores
of normal points and potential local outliers. In summary, none of
these methods is designed to address the local outlier detection
problem for data streams.

3. Problem definitions

In this section, we first define the key definitions used in the
paper and then provide a formal problem definition for KDE-
based top-n local outlier detection for data streams. In this work,
we use dist(p, q) to denote the Euclidean distance between data
points p and q.

Definition 1 (k-distance). Given a data point p and any positive
integer k, the k-distance of p is the distance from p to its kth
nearest data point, denoted as distk(p) [15].

Definition 2 (k Nearest Neighbors, kNNs). Given a data point p and
the k-distance of p, the kNNs of point p contain every point whose
distance from p is not greater than the k-distance, denoted as
Nk(p) [15].

Definition 3 (Reverse k Nearest Neighbors, RkNNs). Given a data
point p, the RkNNs of p contains all points q for which p is among
their k nearest neighbor, namely, if p ∈ Nk(q), q is a reverse
nearest neighbor of p, denoted as Nr (p) [17].

The kNNs of the kNNs of a point (or a point’s kNNs’ kNNs) is
called the second-order kNNs for the point. More specifically, for
each point q in Nk(p), all points in Nk(q) are included in p’s second-
order kNNs. For simplicity, we denote the second-order kNNs of
p as Nk(Nk(p)).

Similarly, the second-order RkNNs of a point is the RkNNs of
the RkNNs of the point. Namely, p’s second-order RkNNs contains
all points in the RkNNs of each point in Nr (p). We denote the
second-order RkNNs of p as Nr (Nr (p)).

In this paper, we use KDE to estimate the local density. KDE
is a non-parametric method to estimate the probability density
of a random variable. Following the kernel density estimator, we
define the density value for a data point pwith respect to its kNNs
as follows:

KDE(p) =
1
k

∑
q∈Nk(p)

1
hd K (

dist(p, q)
h

), (1)

where h represents the bandwidth, d is the dimension of the data
points, and K is the kernel function. Here, we adopt the Gaussian
kernel in the KDE model. The density of p is estimated by the
average density estimation with respect to all its local neighbors;
thus, if p is in a high-density area, it has a large KDE value.
Otherwise, it has a relative small KDE value.

In skewed data, the distribution of points in different subsets
is different; hence, it is unreasonable to use a fixed bandwidth
for all points. Inspired by [21], we use a different bandwidth hp
for each point p: hp = h ∗ distk(p), where h is a fixed bandwidth.
That is, we determine an adaptive bandwidth for each data point
according to its k-distance. If a data point is in a dense area, its
k-distance is relatively small, thus its bandwidth is small, which
makes its kNNs give a relatively large density estimation to it.
Conversely, if a data point is in a sparse area, its k-distance is
relatively large, thus its bandwidth is relatively large, meaning
that its kNNs also provide a density contribution but relative
less. As indicated in Fig. 2, p1 is located in a high-density area;
thus, we use a small bandwidth for p1 such that its nearest
neighbors can provide a larger density contribution. As p2 is in
a low-density area, it receives a large bandwidth, which results
in it obtaining a relative low density. In this way, the adaptive
bandwidth based on k-distance effectively differentiates the local
density estimation for data points in dense and sparse areas.

Hence, the KDE model used in our paper becomes:

KDE(p) =
1
k

∑
q∈Nk(p)

1

(2π )
d
2 ∗ (hp)d

e
−

dist(p,q)2

2(hp)2 (2)
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Fig. 2. Example for KDE of two data points with different bandwidths.

Definition 4 (KDE-based Outlier Factor, KOF). The KOF of data
point p is defined as:

KOF (p) =
1
k

∑
q∈Nk(p)

KDE(q)

KDE(p)
(3)

Similar to LOF [15], KOF is the mean ratio between the KDE
values of kNNs of each data point and its KDE value. When KOF (p)
is closer to 1, the density of p is closer to the density of its kNNs.
As discussed in [15], for the points inside a dense cluster, the LOFs
of the points is bounded, that is, the LOFs of the data points in a
dense cluster are close to 1. Similarly, the KOFs of the data points
in the dense areas also tends to 1 in our model. When KOF (p)
is greater than 1, the density of p is smaller than its kNNs, that
is, point p is located at the edge of a high-density region or in a
sparse region. Therefore, the higher the score of KOF (p), the more
likely p is a local outlier.

To capture the KDE-based local outliers over data streams, we
use the periodic sliding window semantics as proposed by [38]
to define the sub-stream of the infinite data stream. There are
two types of sliding windows: a count-based window and time-
based window. In both window types, each sliding window has a
window size w and a slide size s. For time-based sliding windows,
each window W has a starting time W .Tstart and an ending time
W .Tend = W .Tstart +w. Periodic sliding of the current window Wc
causes an increase of Wc .Tstart and Wc .Tend with s. For count-based
sliding windows, the window always maintains w data points.
Periodically, the current window Wc slides s new data points. We
model streaming data with different scales by setting different
window sizes w and slide sizes s. The greater the window size
w, the greater the scale of the streaming data. The greater the
slide size s, the faster the streaming data is updated. In this
paper, we present the proposed method using a count-based
sliding window; however, time-based sliding windows apply to
the proposed method as well.

Now, we define our problem as follows:

Problem (KDE-based Top-n Local Outlier Detection Over Data
Streams). Given a data stream DS, sliding window W , number of
nearest neighbors k, and number of outliers n, KDE-based top-
n local outlier detection outputs the top n data points with the
highest KOF scores in each window over data stream DS.

4. KDE-based top-n local outlier detection

In this section, we first introduce how to use KOF to detect
the top-n local outliers. Then, we present the upper bounds of
KOF used in this paper and how to leverage the upper bounds to
prune normal points. Finally, we introduce the proposed method
for top-n local outlier detection over data streams.

4.1. Using KOF to detect top-n outliers

As defined in our problem, we aim to detect the top-n data
points with the highest KOF scores, namely the top-n local out-
liers. A traditional method is to calculate the KOF scores of all
points and sort these KOF scores in descending order. Then, the
first n points are the top-n local outliers. However, we only focus
on quickly detecting the n points with the highest KOF scores,
thus it is not necessary to rank all the KOF scores of all the data
points. Therefore, the cutoff threshold-based method can be used
to select top-n local outliers.

Given a dataset D, n data points are first randomly selected
from D and their KOF scores are calculated. Then the smallest KOF
score is selected as the cutoff threshold, denoted as ct . Next, for
any point p in the remaining dataset, if KOF (p) < ct , p cannot be a
top-n local outlier; hence, p can be directly pruned. If KOF (p) > ct ,
p could be a top-n local outlier, and therefore, p is placed into the
top-n outlier candidate list, the point with the smallest KOF score
in the list is deleted, and ct is updated. The top-n local outliers can
be obtained by traversing the entire dataset.

However, by Definition 4, the computation complexity of the
KOF score for all data points is extremely high. In our problem,
we only wish to detect the top-n local outliers; hence, we are
not required to calculate the KOF scores for all the data points.
To minimize the computation cost, we next present the proposed
pruning strategy, which uses the upper bounds of the KOF with
less time complexity to quickly eliminate the normal data points.

4.2. Pruning strategy based on upper bound

4.2.1. Upper and lower bound of KDE
According to Eqs. (1) and (2), we first set the upper and lower

bounds of KDE with a lower computation complexity as follows:

Lemma 1 (Upper Bound of KDE). Given a data point p, it holds
that KDE(p) ≤ KDEmax(p) = 1

(hp)d
K ( dist(p,o)hp

), where o is the nearest
neighbor of p. KDEmax(p) is called the upper bound of the KDE value
for p.

Proof. ∀q ∈ Nk(p), dist(p, q) ≥ dist(p, o), therefore, by Eq. (2), we
have KDE(p) = 1

k

∑
q∈Nk(p)

1
(hp)d

K ( dist(p,q)hp
) ≤ 1

k
k

(hp)d
K ( dist(p,o)hp

)

=
1

(hp)d
K ( dist(p,o)hp

) = KDEmax(p).

Therefore, KDE(p) ≤ KDEmax(p) holds.

Lemma 2 (Lower Bound of KDE). Given a data point p, it holds that
KDE(p) ≥ KDEmin(p) = 1

(hp)d
K ( distk(p)hp

). KDEmin(p) is called the lower
bound of the KDE value for p.

Proof. This proof is similar to Lemma 1. ∀q ∈ Nk(p), dist(p, q) ≤
distk(p). Hence, KDE(p) = 1

k

∑
q∈Nk(p)

1
(hp)d

K ( dist(p,q)hp
) ≥ 1

k ∗ k ∗
1

(hp)d
K ( distk(p)hp

) = 1
(hp)d

K ( distk(p)hp
) = KDEmin(p).

Therefore, KDE(p) ≥ KDEmin(p) holds.

Based on the upper and lower bounds of KDE, we next propose
the upper bounds of the KOF for the data points.

4.2.2. Upper bounds of KOF

Lemma 3 (General Upper Bound of KOF). Given a data point p, it

holds that KOF (p) ≤ UB(p) =
1
k

∑
q∈Nk(p)

KDEmax(q)

KDEmin(p)
. UB(p) is called the

general upper bound of KOF for p.
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Proof. Because KOF (p) =
1
k

∑
q∈Nk(p)

KDE(q)

KDE(p) , and we also know
KDE(q) ≤ KDEmax(q) by Lemma 1 and KDE(p) ≥ KDEmin(p)

by Lemma 2, KOF (p) ≤
1
k

∑
q∈Nk(p)

KDEmax(q)

KDE(p) ≤

1
k

∑
q∈Nk(p)

KDEmax(q)

KDEmin(p)
.

Therefore, KOF (p) ≤ UB(p) holds.

Clearly, the time complexity of the general upper bound is
less than that of the KOF score because we only involve the
nearest neighbor and kth nearest neighbor in UB(p). The KDEmax
and KDEmin of p can be immediately obtained as long as the
kNNs of p are found; thus the complexity is the cost of the kNNs
search in the current window (i.e., O(wlogk) without any index
usage). Therefore, the complexity of UB(p) is O(kwlogk), whereas
the KOF (p)’s complexity includes the kNNs search and KDE calcu-
lation, namely O(kwlogk+k2). To reduce the computation cost, we
can use the upper bound of KOF to detect the top-n local outliers.
That is, to determine whether a point p is a top-n local outlier, we
first calculate the upper bound of p. If UB(p) < ct , it means that
p cannot be a top-n local outlier, then p can be directly pruned. If
UB(p) > ct , we must further validate the status of p by computing
its KOF score.

To prune more inlier points using the KOF upper bound, we
next propose two tighter upper bounds for the KOF based on the
previously obtained KDE values.

Lemma 4 (Tighter Upper Bounds of KOF). Given a data point p,
and data points Q ⊆ Nk(p) and their KDE values, it holds that

KOF (p) ≤ UBT1 (p) =
∑

q∈Q KDE(q)+
∑

q∈(Nk(p)−Q ) KDEmax(q)

k∗KDEmin(p)
≤ UB(p).

If the KDE value of p has been previously obtained, it holds that

KOF (p) ≤ UBT2 (p) =
∑

q∈Q KDE(q)+
∑

q∈(Nk(p)−Q ) KDEmax(q)

k∗KDE(p) ≤ UB(p).

Proof. We know that KDE(q) ≤ KDEmax(q) by Lemma 1; therefore∑
q∈Nk(p)

KDE(q) ≤
∑

q∈Q KDE(q) +
∑

q∈(Nk(p)−Q ) KDEmax(q) ≤∑
q∈Nk(p)

KDEmax(q). Because UB(p) =
1
k

∑
q∈Nk(p)

KDEmax(q)

KDEmin(p)
, and we

also know KDE(p) ≥ KDEmin(p) by Lemma 2, then KOF (p) ≤∑
q∈Q KDE(q)+

∑
q∈(Nk(p)−Q ) KDEmax(q)

k∗KDEmin(p)
≤ UB(p) holds. Namely, KOF (p) ≤

UBT1 (p) ≤ UB(p). Similarly, KOF (p) ≤ UBT2 (p) ≤ UB(p) holds.

For simplicity, we use UB(p) to refer to all upper bounds of the
KOF score for data point p below.

4.3. Local outlier detection over data streams

The data points in data streams are constantly updated; that is,
new points continuously arrive and old points constantly expire.
By Definition 3, we know that the kNNs of the RkNNs of a point o
must contain o, thus the kNNs of Nr (o) are changed if o is inserted
or deleted. Therefore, the newly arrived and expired points can
influence the KDE values of their RkNNs, which further affects
the KOF scores of their RkNNs. Furthermore, by Definition 4, to
calculate the KOF score of a point, we must calculate the KDE
values of its kNNs. Therefore, if its second-order kNNs contain
new and/or expired points, its KOF score is also changed. That is,
the KOF scores of the second-order RkNNs of the newly arrived
and expired points are changed.

The effect of the new and expired points on the upper bound
and KOF score is discussed below.

4.3.1. Effect of new point
The insertion of a new data point o influences the k-distances

of the data points that have o in their kNNs, i.e., the RkNNs of o,
the k-distances of these points must be updated. We denote the
new k-distance as distnewk (p) for data point p:

distnewk (p) =
{

dist(p, o), o is the kthNN of p,
distk−1(p), otherwise

Fig. 3. Updated k-distance of point p w.r.t new point o.

As indicated in Fig. 3(a), if the newly added point o is the
new kth nearest neighbor of p, namely, dist(p, o) < distk(p)
and dist(p, o) > distk−1(p), the new k-distance of p is dist(p, o).
Otherwise, if the distance between p and o is less than its old
(k–1)th distance, the updated k-distance of p is its old (k–1)th
distance (Fig. 3(b)).

As discussed above, when a new point o arrives, we must
update the k-distance of the RkNNs of o, namely, the kNNs of
the RkNNs of o change. The KDE values of the RkNNs of o can
increase; thus the upper bounds and KOF scores of o′s RkNNs and
second-order RkNNs could be updated.

More specifically, if p ∈ Nr (o), only o is the nearest neighbor
of p, the distance between p and its nearest neighbor decreases
compared to the previous value, namely KDEmax(p) increases.
Otherwise, KDEmax(p) remains unchanged. For p ∈ Nr (o), be-
cause the k-distance of p decreases compared to the previous
value, both KDEmin(p) and KDE(p) increase. For p ∈ (Nr (Nr (o)) −
Nr (o)), because the kNNs of p does not change, KDEmin(p) and
KDE(p) remain unchanged. Based on this analysis, we can offer
the following Lemmas:

Lemma 5. Given a new point o, for point p ∈ Nr (o), if ∀q ∈ Nk(p),
o is not the nearest neighbor of q, then the KOF upper bound of p
need not be updated.

Proof. because p ∈ Nr (o), KDEmin(p) and KDE(p) increase. If
∀q ∈ Nk(p), o is not the nearest neighbor of q, then KDEmax(q)

remains unchanged. Thus UB(p) =
1
k

∑
q∈Nk(p)

KDEmax(q)

KDEmin(p)
only de-

creases. Therefore, the KOF upper bound of p need not be up-
dated.

Lemma 6. Given a new point o, for point p ∈ Nr (o) ∪ Nr (Nr (o)),
if ∃q ∈ Nk(p), o is the nearest neighbor of q, then the KOF upper
bound of p must be updated.

Proof. For p ∈ Nr (o), KDEmin(p) increases. If ∃q ∈ Nk(p) such
that o is the nearest neighbor of q, then KDEmax(q) increases. That
is, the denominator and numerator of UB(p) both increase at the
same time; hence, we cannot determine whether UB(p) increases
or decreases. Therefore, it is necessary to update UB(p).

For p ∈ (Nr (Nr (o)) − Nr (o)), KDEmin(p) remains unchanged.
Then, if ∃q ∈ Nk(p), KDEmax(q) increases, then UB(p) increases. p
may change from a normal point to an outlier; therefore, UB(p)
must also be updated.

Next, we can easily derive Lemma 7 as follows:
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Lemma 7. Given a new point o, for point p /∈ Nr (o) ∪ Nr (Nr (o)),
the upper bound and the KOF score of p need not be updated with
respect to o.

Proof. Because p /∈ Nr (o) ∪ Nr (Nr (o)), the kNNs of p remains
unchanged, namely KDE(p) remains the same. For q ∈ Nk(p),
because p /∈ Nr (o) ∪ Nr (Nr (o)), q /∈ Nr (o). This is because that if
∃q ∈ Nk(p) such that q ∈ Nr (o), then p ∈ Nr (q), i.e., p ∈ Nr (Nr (o)).
This contradicts with the known conditions. Because q /∈ Nr (o),
the kNNs of q also remains unchanged and KDE(q) remains the
same. Therefore, the KOF score and its upper bound of p remain
the same.

4.3.2. Effect of expired point
When a point o expires, it also causes its RkNNs to change their

kNNs, which further influences the upper bounds and KOF scores
of the o’s RkNNs and second-order RkNNs.

As in Section 4.3.1, only when o is the nearest neighbor of p,
does KDEmax(p) decrease after removing o; otherwise, KDEmax(p)
remains unchanged. Moreover, for p ∈ Nr (o), because the k-
distance of p increases, the KDEmin(p) and KDE(p) both decrease.
For p ∈ (Nr (Nr (o)) − Nr (o)), KDEmin(p) and KDE(p) remain the
same.

Lemma 8. Given an expired point o, for point p /∈ Nr (o), the upper
bound and KOF score of p need not be updated with respect to o.

Proof. Because p /∈ Nr (o), the kNNs of p remain unchanged;
hence, KDE(p) remains the same.

For q ∈ Nk(p), if q ∈ Nr (o), after removing o, then KDEmax(q)
remains unchanged or decreases, and KDEmin(q) and KDE(q) de-
crease. Otherwise, the kNNs of q and KDE(q) remain the same.

By Eq. (3), Lemmas 3 and 4, the upper bound and KOF score
of p either decrease or remain the same. Therefore, we need not
update the upper bound and KOF score for p.

We next offer Corollary 1 by Lemma 8.

Corollary 1. Given an expired point o, for point p ∈ Nr (o), the upper
bound and KOF score of p must be updated.

Because p ∈ Nr (o), KDEmin(p) and KDE(p) decrease. For q ∈
Nk(p), KDEmax(q) and KDE(q) either decrease or remain unchanged
after removing o. Therefore, we cannot determine whether UB(p)
and KOF (p) increase or decrease, thus it is necessary to update
the upper bound and KOF score for p.

Finally, according to Lemmas 5–8 and Corollary 1, we offer
Theorem 1, which indicates what points should have their upper
bounds and KOF scores updated with respect to the new and
expired points.

Theorem 1. Given a new point onew and an expired point oexp, for
point p ∈ Nr (onew)∪Nr (Nr (onew)), if ∃q ∈ Nk(p), onew is the nearest
neighbor of q, the KOF upper bound of p must be updated. For point
p ∈ Nr (oexp), the upper bound and KOF score of p must be updated.

4.3.3. Upper-bound pruning-based local outlier detection
In this section, we present UKOF method for local outlier

detection over data streams in a sliding window environment.
The pseudo-code of UKOF is displayed as Algorithm 1.

First, we build an R-tree index for the new slide Snew (line
1). Then, for each new point o in the new slide, we first quickly
obtain o′s kNNs, RkNNs, and second-order RkNNs using the pro-
posed optimized R-tree index (line 3). By Lemma 6 and Theo-
rem 1, for p ∈ Nr (o) ∪ Nr (Nr (o)), only if ∃q ∈ Nk(p), and o is
the nearest neighbor of q, does the KOF upper bound of p require
be updating. Therefore, as indicated in lines 5–18, we first update

Fig. 4. Range query of kNNs and RkNNs: each rectangle indicates a data range
of a node, each small circle denotes a data point, magenta rectangle is the
data range of Nk(q), and green rectangle is the data range of Nk(o1). (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

UB(p). If UB(p) < ct , we directly prune p. Otherwise, we further
calculate the KOF score for p. If KOF (p) remains not less than ct ,
then p could be a top-n outlier. We then update the top-n local
outlier list Topn using p as indicated in line 13. Topn.replace(p)
denotes updating the Topn list with respect to p, that is, if p is
already in Topn, we only update p’s KOF score and ct . Otherwise,
we use p to replace the point with the lowest KOF score in Topn
and update ct .

Secondly, for each expired point o in the expired slide, we first
update the RkNNs of o (lines 21–22). Next, by Corollary 1, only
when p ∈ Nr (o), p is updated. Similarly, we first use the updated
KOF upper bound to prune p. If p cannot be pruned according
to ct , we further compute its KOF score. If KOF (p) < ct , we
eliminate point p; otherwise, p is a top-n local outlier and thus
we update the Topn list and ct using the method described above
(lines 23–33). Finally, UKOF outputs the top-n local outliers with
the highest KOF scores (line 35).

To accelerate the range query for all the data points in the
proposed method, we implement an optimized R-tree index for
kNNs and RkNNs search across the slides for data points. We first
build an R-tree index for each new slide in the sliding window.
Accordingly, we obtain an R-tree data range for each slide.

For the kNNs search of a data point, we first search its kNNs in
Snew and calculate the data range of its kNNs. We then compare
the data range of its kNNs with the other slides in the current
window. We only traverse the slides with overlapping range
to determine the final kNNs of the point across the slides in
the current window. More specifically, in other R-trees, we only
search the nodes that have an overlap with the data range of its
kNNs in Snew . For example, for the kNNs search of point o1 in
Fig. 4, we first find the data range of Nk(o1) in Snew , i.e., the green
area. There exists a slide Si overlap with the green area in the data
space; thus we continue to search the kNNs in the R-tree of slide
Si for point o1.

If o ∈ Nk(q), then q ∈ Nr (o). Namely, if a data point o falls in
the data range of data point q’s kNNs, then q could be an RkNN
of o. Therefore, for the RkNNs search of a new data point, we
traverse the nodes in each R-tree that has an overlap range with
the new slide. If the point does not fall within the maximum data
range of a node in the R-tree, there is no RkNNs in the node for the
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Algorithm 1 UKOF algorithm

Input: Data Stream DS, sliding window W , new slide Snew ,
expired slide Sexp, k, n;

Output: top-n KOF outliers
1: createRtree(Snew);
2: for each o ∈ Snew do
3: get Nk(o); get Nr (o); get Nr (Nr (o));
4: for each p ∈ (Nr (o) ∪ Nr (Nr (o)) ∪ {o}) do
5: for each q ∈ Nk(p) do
6: if o is the nearest neighbor of q then
7: update UB(p);
8: if UB(p) < ct then
9: prune(p);

10: else if KOF (p) < ct then
11: prune(p);
12: else
13: Topn.replace(p);
14: update ct;
15: end if
16: break;
17: end if
18: end for
19: end for
20: end for
21: for each o ∈ Sexp do
22: update Nr (o);
23: for each p ∈ Nr (o) do
24: update UB(p);
25: if UB(p) < ct then
26: prune(p);
27: else if KOF (p) < ct then
28: prune(p);
29: else
30: Topn.replace(p);
31: update ct;
32: end if
33: end for
34: end for
35: return Topn;

point; therefore, it is not necessary to traverse all the child nodes
of the node. In this manner, we can quickly find the minimal
nodes that the point falls into, where the potential RkNNs can
be searched for the new point. For example, in Fig. 4, for the new
point o1, we first search its RkNNs in Snew . If o1 falls into the data
range of kNNs of another point q, q could be an RkNN of o1. Next,
we continue to search o1’s RkNNs in Si overlapping with Snew by
traversing the R-tree of Si.

In fact, we search the kNNs and RkNNs for new points si-
multaneously by sharing the same traverse in the R-trees, which
significantly reduces the search time.

4.3.4. Lazy update of UKOF for bulk updates in large data streams
The new/expired points in the same slide can have common

RkNNs and second-order RkNNs. If a data point arrives/expires,
we immediately update the upper bounds or KOF scores of its
RkNNs and second-order RkNNs; these points can be updated
multiple times, which are redundant computations. Therefore, we
propose a Lazy update version of the UKOF method, called LUKOF,
for bulk updates in large-scale data streams. That is, we no longer
update the new/expired data one by one; rather, we update the
data in one piece. The pseudo-code of LUKOF is presented in
Algorithm 2. Again, we first build an R-tree index for the new
slide.

Then, for expired points in the expired slide, we first update
their RkNNs, and place their RkNNs together into a set Setup1 .
Because the RkNNs of the expired points can contain expired
points, we remove these expired points from Setup1 (lines 3–7).
For new points in the new slide, we first quickly find their kNNs,
RkNNs, and second-order RkNN using the optimized R-tree index,
and place their RkNNs and second-order RkNNs into a set setup2 .
The expired and new points can have common RkNNs. To update
the upper bounds or KOF scores of these common points only
once, we remove these common points from Setup2 (lines 8–12).

Next, similar to Algorithm 1, we update the upper bounds and
KOF scores for the points in Setup1 according to the processing
method of expired points (lines 13–23), and then process the
points in Setup2 according to that of the new points (lines 24–39).

Algorithm 2 LUKOF algorithm

Input: Data Stream S, sliding window W , new slide Snew , expired
slide Sexp, k, n;

Output: top-n KOF outliers
1: createRtree(Snew);
2: Setup1 ← ∅; Setup2 ← ∅;
3: for each o ∈ Sexp do
4: update Nr (o);
5: Setup1 ← Setup1 ∪ Nr (o);
6: end for
7: Setup1 ← Setup1 − Sexp;
8: for each o ∈ Snew do
9: get Nk(o); get Nr (o); get Nr (Nr (o));

10: Setup2 ← Setup2 ∪ (Nr (o) ∪ Nr (Nr (o)) ∪ {o})− Sexp;
11: end for
12: Setup2 ← Setup2 − Setup1 ;
13: for each p ∈ Setup1 do
14: update UB(p);
15: if UB(p) < ct then
16: prune(p);
17: else if KOF (p) < ct then
18: prune(p);
19: else
20: Topn.replace(p);
21: update ct;
22: end if
23: end for
24: for each p ∈ Setup2 do
25: for each q ∈ Nk(p) do
26: if ∃o ∈ Snew is the nearest neighbor of q then
27: update UB(p);
28: if UB(p) < ct then
29: prune(p);
30: else if KOF (p) < ct then
31: prune(p);
32: else
33: Topn.replace(p);
34: update ct;
35: end if
36: break;
37: end if
38: end for
39: end for
40: return Topn;

At last, we use an example to further illustrate the difference
between the proposed UKOF and LUKOF methods. As shown in
Fig. 5, the current sliding window contains three slides (i.e., S1,
S2 and S3), where S1 is the expired slide and S3 is the new slide.
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Fig. 5. Example for the proposed UKOF and LUKOF methods.

The points in each circle belongs to Nk(pi), where pi is the center
point. For simplicity, we only discuss partial selected expired
points q1, q2 and new points o1, o2. From the example, we know
thatNr (q1) = {p2},Nr (q2) = {p2},Nr (o1) = {p2, p3}, andNr (o2) =
{p1, p3}. According to Theorem 1, we only focus on the data points
in S2 and S3 that fall into Nr (onew) ∪ Nr (Nr (onew)) and Nr (oexp).

For UKOF, when point q1 expires, its RkNNs p2 needs to be up-
dated. And when q2 expires, the upper bound/KOF score of p2 also
need to be updated. Similarly, when o1 and o2 arrive, p3 needs to
be updated twice, p1 and p2 are updated once. In addition, the
second-order RkNNs of o1 and o2, i.e., Nr (Nr (o1)) ∪ Nr (Nr (o2)),
may be updated multiple times. Therefore, the expired points q1,
q2 and the new points o1, o2 make the upper bound/KOF score of
p2 being updated three times and p3 twice in total, which causes
redundant calculations.

To reduce redundant calculations, LUKOF uses a delayed up-
date method for points that need to be updated. That is, we first
find the RkNNs that need to be updated for q1 and q1 and put
them into set S1, namely Set1 = {p2}, then we put the RkNNs
and second-order RkNNs of o1 and o2 into set Set2, and delete
the points shared by Set1 and Set2 from Set2, namely Set2 =
{p1, p3, . . . }. Finally, we uniformly update the upper bounds and
KOF scores of the points in Set1 and Set2, which makes all points
that need to be updated only updated once.

4.3.5. Time complexity analysis
In this section, we analyze the time complexity of the pro-

posed method. Given a window sizew, the time complexity of the
kNNs search for each point is O(wlogk) without any index usage.
For KDE computation, the complexity is O(wlogk+ k).

To compute the KOF score of point p, we must first find p’s
kNNs, and then calculate the KDE values of its kNNs. Therefore,
the complexity of computing KOF (p) is O(kwlogk+ k2). For UB(p),
we obtain the kNNs of p to calculate KDEmax(p) and KDEmin(p) with
time complexity O(wlogk); thus the complexity of computing
UB(p) is O(kwlogk). By Theorem 1, we are only required to update
the upper bounds and KOF scores for the partial RkNNs and
second-order RkNNs of the newly added points and/or expired
points. We assume the average number of RkNNs for each point
is φ, and the average number of second-order RkNNs per point
is ψ . Because the nearest neighbors for a point share the most
kNNs in the local areas, φ < ψ ≪ φ2. Therefore, the total time
complexity of UKOF is O(s(ψ+φ)(kwlogk+k2)) in the worst case
with respect to a slide size s.

However, we use the optimized R-tree to search the kNNs
and RkNNs for each point; hence, the time complexity of the
kNNs search for the proposed method is considerably less than
O(wlogk). The worst-case time complexity of the kNNs search

becomes O(ws (s + logMs)) with the optimized R-tree index in
the proposed method, where M is the maximum number of
entries in each node. Furthermore, the proposed method first
uses the upper bound of KOF with lower time complexity to
detect the outlierness degree of each point. Moreover, according
to Lemmas 5–8 and Corollary 1, certain RkNNs and second-order
RkNNs of the new and expired points need not be updated,
thus the number of points that must be updated is less than
s(ψ + φ). Therefore, UKOF has a lower time complexity than
O(s(ψ + φ)(kws (s+ logMs)+ k2)) in reality.

LUKOF updates the affected points in one action for all newly
arrived and expired points. We assume the number of all points
require update is α ∗w when a window slides, where 0 ≤ α ≤ 1.
Because the newly arrived and expired points at the same time
point typically share numerous common RkNNs and second-order
RkNNs, α ∗ w < s(ψ + φ). Hence, LUKOF has a lower time
complexity compared to O(αw(kws (s+ logMs)+ k2)) in the worst
case.

5. Experiment

In this section, we evaluate the effectiveness and efficiency
of the proposed method compared to the state-of-the-art local
outlier detection approaches. All experiments are conducted on
a computer with a 4.20 GHz i7-7700k processor, 8 GB memory,
and the Windows 7 operating system. The source code of the
proposed method is available at GitHub.1

5.1. Data description

Datasets. We use the ten real-world and synthetic datasets
to evaluate the proposed method and baselines. The detailed
information of ten datasets is displaced in Table 1.

• Vowels [39–41]: The original Japanese Vowels dataset from
the UCI machine learning repository is multivariate time
series data, where nine male speakers uttered two Japanese
vowels /ae/ successively. Each utterance by a speaker forms
a time series whose length is in the range 7–29, and each
point of a time series includes 12 features. This is a classifi-
cation dataset to classify the speakers. For outlier detection,
each frame in the training data is considered as an individual
data point, whereas the UCI repository considers a block
of frames (utterance) as an individual point. In this case,
class (speaker) 1 is down-sampled to 50 outliers. The inliers
contained classes 6, 7 and 8. The other classes are discarded.
• KDDCup [42]: The KDDCup 1999 dataset from UCI Machine

Learning Repository is a network intrusion dataset wildly
used in outlier detection studies. This dataset contains 41
attributes (34 continuous, and 7 categorical). The origi-
nal dataset has 3,925,651 attacks (80.1%) out of 4,898,431
records. A smaller set is forged with only 3377 attacks
(0.35%) of 976,157 records, where the attribute ‘logged_in’
is positive. Using the ‘service’ attribute, the data is divided
into {http, smtp, ftp, ftp_data, and others} subsets. From
this forged dataset, the 623,091 ‘http’ service data is used
to construct the KDDCup dataset, which contains 249,236
attacks (0.4%).
• Subhttp and Smtp [19,43–45]: These two datasets are ex-

tracted from the KDDCup 1999 dataset. Following [19], KD-
DCup 1999 dataset are reduced to 4 attributes (service,
duration, src_bytes, and dst_bytes) as these attributes are
regarded as the most basic attributes, where only ‘service’
is categorical. From the forged dataset, 95,156 ‘smtp’ service

1 https://github.com/LiuFang0812/TopNKOF.

https://github.com/LiuFang0812/TopNKOF
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Table 1
Experimental datasets.
Dataset #Points #Dim Size Outlier Ratio (%)

Vowels 1456 12 645 k Class1 3.4%
KDDCup 623,091 41 708M Class0 0.4%
Subhttp 4079 3 773 k Class0 2%
Smtp 95,156 3 17M Class0 0.03%
ForestCover 286,048 10 28.3M Class4 0.9%
Mobike 1,082,732 2 43.1M × ×

GeoLife 11,065,399 2 851M × ×

Interchanging RBF 200,000 2 5.6M Class15 0.5%
Moving Squares 200,000 2 4.2M Class4 0.5%
Mixture RBF 200,000 2 5.1M Class10 0.5%

data is used to construct the Smtp dataset, and sampled
4079 ‘http’ service data is used to construct the Subhttp
dataset.
• ForestCover [46,47]: This dataset includes four wilderness

areas located in the Roosevelt National Forest of north-
ern Colorado. These areas represent forests with minimal
human-caused disturbances, such that the existing forest
cover types are more a result of ecological processes rather
than forest management practices. This dataset has 54 at-
tributes (10 quantitative variables, 4 binary wilderness areas
and 40 binary soil type variables). Here, the outlier detec-
tion dataset is created using only 10 quantitative attributes.
Instances from class 2 are considered as normal points and
instances from class 4 are anomalies. The anomalies ratio is
0.9%. Instances from the other classes are omitted.
• Mobike: The real-time GPS location data of all mobikes

within the six-ringed road in Beijing is crawled on the
Mobike platform.2 This dataset includes 1,082,732 locations
of up to 50,000 mobikes on one day.
• GeoLife [48]: This dataset is extracted from the GeoLife

project of Microsoft Research Asia. It collects the GPS tra-
jectories of 182 users in a period of over three years (from
April 2007 to August 2012). Each GPS point is composed of
the longitude, latitude, and a timestamp.

In addition to seven real-world datasets, we also generate
three datasets to empirically validate our proposed UKOF and
LUKOF.

• Interchanging RBF [49,50]: Fifteen Gaussians with random
covariance matrices are replacing each other every 3000
samples. Thereby, the number of Gaussians switching their
position increases each time by one until all are simul-
taneously changing their location. This allows to evaluate
an algorithm in the context of abrupt drift with increasing
strength.
• Moving Squares [49,50]: Four equidistantly separated,

squared uniform distributions are moving in horizontal di-
rection with constant speed. The direction is inverted when-
ever the leading square reaches a predefined boundary. Each
square represents a different class. This allows to evaluate
an algorithm in the context of incremental concept drift.
• Mixture RBF: We use the random RBF generator with 10

different parameter settings to generate a synthetic dataset
of mixture Gaussian distributions with random initial posi-
tions, weights and standard deviations.

Notice that we add 0.5% uniformly distributed noise as outliers
in these three synthetic datasets.

2 https://api.mobike.com/.

5.2. Evaluation methods and metrics

Baselines. We compare the proposed UKOF and LUKOF with
the following baselines:

• iLOF [17]. iLOF is an incremental LOF algorithm for landmark
windows that computes the LOF score for each new added
point and updates the LOF scores of the affected data points.
• DILOF [19]. DILOF is a state-of-the-art LOF-based local out-

lier detection method over data streams.
• sRKOF [33,35]. RKOF is a kernel-based local outlier detection

method in a static dataset.
• sRDOS [22]. RDOS measures the local outlierness of data

points using a local KDE model based on extended nearest
neighbors.
• sKDEOS [20]. KDEOS uses KDE in local density estimations

to compute a local outlierness score for each data point.
• sKDD [37]. KDD uses the Mahalanobis distance to estimate

the kernel density for each point to measure its outlierness.
• sR-KDD [37]. R-KDD utilizes the robust Mahalanobis dis-

tance in the estimation of the kernel density probability.
• MCOD [3]. MCOD is a distance-based outlier detection

method over data streams. It incorporates micro-cluster to
detect distance-based outliers.

RKOF, RDOS, KDEOS, KDD and R-KDD typically use the KDE
model to detect local outliers in a static dataset. To compare
them with the proposed method, they are extended to support
streaming data. More specifically, they are applied repeatedly in
each new window to update the outlier status for all data points.
We denote the extended RKOF, RDOS, KDEOS, KDD and R-KDD
for data streams as sRKOF, sRDOS, sKDEOS, sKDD and sR-KDD,
respectively.

DILOF is designed to detect local outliers over data streams;
however, it samples w/4 expired points in the oldest w/2 points
to minimize the density difference for each data update. To sup-
port any slide size s and large window size w, we extend DILOF
to sample s expired points in the oldest w/2 points to preserve
the density of the past data for each window slide.

Evaluation metrics. In terms of the effectiveness evaluation,
we measure the quality of the reported outliers by Precision and
Recall defined as follows:

Precision =
|R ∩ Do|

|R|
,

Recall =
|R ∩ Do|

|Do|
,

where Do denotes the set of the real outliers in a dataset, and R
is the outliers detected by an anomaly detection method.

For the efficiency evaluation, we measure the average CPU
running time per window for all methods on each dataset. The
average execution times are recorded after ten repeats for each
experiment.

https://api.mobike.com/
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Table 2
The time complexity comparison of all methods.
Method Complexity

iLOF O(N2)
sKDD O(w2d2 + w2)
sR-KDD O(wbhd2 + w2)
DILOF O((w/2)2 + βw ∗ (k2w + k2))
sKDEOS O(w ∗ (wlogk+ k ∗∆k))
sRDOS O(w ∗ ((m+ 1)wlogw +m2))
sRKOF O(w ∗ ((k+ 1)wlogk+ k2))
UKOF O(s(ψ + φ)(k ws (s+ logM s)+ k2))
LUKOF O(αw(k ws (s+ logM s)+ k2))

5.3. Time complexity discussion

In this section, we discuss the time complexity of all baselines.
The time complexity of all methods is displayed in Table 2.

• iLOF [17]. Similar to LOF, its time complexity is O(N2), where
N is the total number of data points in dataset D.
• DILOF [19]. DILOF reduces the memory consumption by

sampling from past data while preserving the density of the
past data. The complexity is O((w/2)2). Because the distance
between two points in a window is obtained after sampling,
the complexity of the kNNs search for each point is O(w).
Next, it detects the outlierness degree of the points that
must be updated, the time complexity is O(βw ∗ (k2w +
k2)), where β is the ratio of points that must be updated.
Therefore, the time complexity of DILOF is O((w/2)2+βw ∗
(k2w + k2)).
• sRKOF [33,35]. sRKOF must calculate the KDE values of each

point and its kNNs to obtain the local outlierness factor;
thus, the computational complexity is O((k+ 1)wlogk+ k2).
Therefore, its total time complexity is O(w ∗ ((k+1)wlogk+
k2)).
• sRDOS [22]. sRDOS uses all extended nearest neighbors to

compute the local KDE. We assume that the number of
each point’s extended nearest neighbors is m, similar to
the time complexity of calculating the KOF score; the time
complexity of the outlierness score for each point is O((m+
1)wlogw +m2). Therefore, the time complexity of sRDOS is
O(w ∗ ((m+ 1)wlogw +m2)).
• sKDEOS [20]. sKDEOS computes the KDE value of each point

using multiple values of parameter k and uses the average
z-score of the KDE values to measure its outlierness degree;
thus the computation requires O(wlogk+k∗∆k), where∆k is
the number of different k values. The complexity of sKDEOS
is O(w ∗ (wlogk+ k ∗∆k)).
• sKDD [37]. sKDD uses the Mahalanobis distance to estimate

the density of each point. The computational complexity of
calculating the Mahalanobis distance is O(w2d2), where d is
the dimension of the data. The kernel density of each point is
computed by scanning all points in the sliding window with
complexity O(w). Therefore, the time complexity of KDD is
O(w2d2 + w2).
• sR-KDD [37]. Similar to KDD, R-KDD uses the minimum co-

variance determinant to calculate the Mahalanobis distance
of points. Because it must loop b times and selects h points
from the current window to calculate the robust Maha-
lanobis distance, the computational complexity is O(wbhd2).
Therefore, its complexity is O(wbhd2 + w2).

5.4. Effectiveness evaluation

We first evaluate the effectiveness of the proposed method
in term of the precision on the five datasets with outlier labels

(i.e., Vowels, Subhttp, Smtp, ForestCover and KDDCup) and com-
pare the results with all baselines. The experimental results are
displayed in Fig. 6. Because the number and distribution of data
points in the five datasets are different, we set k to 15, 15, 15,
10 and 15, h to 0.1, 1, 1, 1.5 and 1 on Vowels, Subhttp, Smtp,
ForestCover and KDDCup, respectively. For the Vowels and Sub-
http data, the window size w is varied from 100 to 600. For the
Smtp data,w is varied from 100 to 3500. For the ForestCover data,
w is varied from 100 to 2000. For the KDDCup data, w is varied
from 100 to 10,000. All methods are set to the same parameters
on the same dataset. We only display LUKOF in Fig. 6 because
UKOF and LUKOF indicate the same performance in precision.
iLOF could not be evaluated on three large datasets (i.e., Smtp,
ForestCover and KDDCup) owing to its huge memory space and
time consumption requirement.

From Fig. 6, we can see that LUKOF significantly outperforms
all baselines in all datasets. MCOD is a distance-based outlier
detection method that uses global outlier standards to process
data points in the data streams. But, the distribution of data in
the real world is not necessarily a globally balanced, but tends
to be skewed, thus it cannot effectively detect the local outliers
in the skewed data. iLOF and DILOF use the LOF score to detect
local outliers; however, [21] verifies that LOF-based methods
cannot accurately detect outliers with a lower outlierness de-
gree. On ForestCover, the detection precision of DILOF decreases
with window size w ≥ 500. This is because DILOF samples
s expired data points from the oldest w/2 data points in each
new window to minimize the density difference between two
consecutive windows. However, a larger the window size results
in a greater density difference, and thus the searched kNNs for
new points in DILOF could be inaccurate, causing a decrease in
precision. Although sRKOF and sRDOS also use KDE variants to
detect the outliers, the proposed method is superior to both of
these, indicating that the original KDE that is well supported by
theory is more effective practically. sRDOS not only uses the kNNs
of the data points, but also considers RkNNs and shared nearest
neighbors; however, there could be identical points in these three
types of neighbors, which influences the accurate local density
estimation. sRKOF uses the weighted neighborhood density es-
timation to make it more robust to the variations of parameter
k, which is not necessarily effective for the detection of local
outliers for a k value in the acceptable range. Moreover, because
the distributions of data points vary in the different areas, and the
local density of the same data point is evolved over data streams,
it is unreasonable to use a fixed bandwidth to estimate the local
density for data points. sKDD and sR-KDD use the median abso-
lute deviation and density of data points to determine outlierness,
which cannot accurately detect outliers with a lower outlierness
degree. Moreover, similar to RKOF, because the distributions of
data points vary in the different datasets, it is unreasonable to use
a fixed bandwidth to estimate points’ density for all datasets. The
proposed KOF model uses an adaptive bandwidth based points’
k-distance, which effectively differentiates the local density of
highly dense points and low dense points. For sKDEOS, instead of
estimating the relative density of each point p by its neighbors, it
determines whether p is an outlier by comparing a z-score for p
in its local neighborhood densities. Therefore, it can only achieve
acceptable precision when the number of neighbors k is large.

In summary, the proposed method achieves the best perfor-
mance in effectively detecting local outliers for large streaming
data.

5.5. Effectiveness w.r.t. top-n

We next evaluate the effectiveness of our method in both of
precision and recall by varying the number of detected outliers
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Fig. 6. Precision comparison of all methods.

Fig. 7. Precision comparison w.r.t the number of outliers n.

n (i.e., top-n) on two datasets (i.e., Vowels and ForestCover). All
parameter settings are the same as in the last experiment. The
experimental results are depicted in Figs. 7 and 8. For baselines
iLOF and DILOF, they set a fixed cutoff threshold ct , if the out-
lierness score of a data point is greater than ct , then the point is
an outlier. For MCOD, if the number of all neighbors of a point p
w.r.t. the distance threshold r is less than k, then p is an outlier.
Therefore, iLOF, DILOF and MCOD cannot set the parameter n
when detecting outliers, so we omit them in Figs. 7 and 8.

As can be observed, the precision and recall are significantly
better than all baselines in all datasets. The reason is the same
as explained in above experiments. To enhance the robustness
of parameter k, sRKOF uses the weighted neighborhood density
estimation to detect outliers. And sKDEOS uses multiple k values
for each point to estimate its KED values separately, and uses
these KDE values to calculate its outlierness score. However,
sRKOF and sKDEOS can only achieve acceptable precision when
the number of neighbors k is large. sRDOS uses three types of
neighbors (i.e., kNNs, RkNNs and shared nearest neighbors) to
measure points’ outlierness degree. These three neighbors may
have common points, which affects the accurate local density
estimation. sKDD and sR-KDD use the Mahalanobis distance to es-
timate the kernel density for each point, which cannot accurately
detect outliers with a lower outlierness degree.

In addition, we can see that as the number of detected outliers
n increases, the precision of all methods gradually decreases, and
the recall increases. This is because the larger the parameter n,
the more data points are detected as outliers and the smaller
the Cutoff threshold ct . But, compared with real outliers, as n
increases, more inlier points with lower outlierness degree would
be misclassified as outliers. For the recall of methods, as the
parameter n increase, the number of real outliers detected by
each method increases or remains the same, thus the recall rate
of each method gradually increases and then remains unchanged
when n is large enough.

Fig. 8. Recall comparison w.r.t the number of outliers n.

Fig. 9. Precision and recall w.r.t. concept drift.

5.6. Effectiveness w.r.t. concept drift

We evaluate the effectiveness of our proposed LUKOF with
respect to the concept drift in the data streams on two synthetic
datasets (i.e., Interchanging RBF and Moving Squares). Experi-
mental results are illustrated in Fig. 9.

As we see, our proposed LUKOF achieves significant outlier
detection performance in both precision and recall on the two
synthetic datasets in context of concept drift. Namely, our LUKOF
can handle both types of incremental and abrupt drifts in data
streams. More specifically, LUKOF reaches 99% precision and
97.3% recall when window size w = 2500 on Moving Squares,
meaning that only 0.01% concept drifts are mistaken as outliers.
Additionally, LUKOF performs better on Moving Squares than
Interchanging RBF. This is because abrupt concept drifts are more
likely to be mistaken as anomalies than the incremental drifts.

5.7. Efficiency evaluation

In this section, we first evaluate the efficiency of all the meth-
ods with respect to two important parameters (i.e., window size
w and slide size s) in streaming data. Then we study the efficiency
of all the methods in large-scale streaming data.
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Fig. 10. Efficiency comparison w.r.t. window size.

5.7.1. Efficiency w.r.t. window size w
We measure the running time per window of all methods

implemented in five datasets (Vowels, Subhttp, Smtp, ForestCover
and KDDCup) by varying the window size from 100 to 10,000. All
parameter settings are the same as in the last experiment. The
results are displayed in Fig. 10. iLOF is an incremental method
for landmark windows, thus its execution time does not depend
on window size. To compare with the other streaming methods,
we report the average running time by dividing the total time by
the number of windows used in the other methods for iLOF.

From Fig. 10, we can observe that the proposed method are
significantly faster than all the baselines in every tested case for
all datasets. Specifically, LUKOF consistently outperforms iLOF
by 373 times on two small datasets, i.e., Vowels and Subhttp
(Fig. 10(a) and (b)). Moreover, LUKOF is 275.6 ×, 332.9× and
896.7× faster than the state-of-the-art streaming local outlier
detection method DILOF for the three larger datasets, i.e., Stamp,
ForestCover and KDDCup, respectively. LUKOF also achieves an
average of 1009.5×, 950.2×, 327.3×, 161.8× and 37.8× speedup
compared to the KDE-based methods sR-KDD, sKDD, sRDOS,
sKDEOS and sRKOF for the three larger datasets, respectively.
The reason is that the proposed LUKOF uses the proposed upper
bounds of the KOF with lower time complexity to prune the
number of inlier points, and reuses the already obtained kNNs
and KDE values to compute the KOF scores for the data points. For
streaming local outlier detection in a sliding window, LUKOF only
updates the upper bounds of the points that are affected by the
newly added and expired points. Moreover, the proposed opti-
mized R-tree index accelerates the kNNs and RkNNs search across
the slides in a sliding window environment for data points, which
significantly reduces the time consumption for large numbers of
range queries. Although DILOF is designed to detect local outliers
over data streams, it must sample s expired points in the oldest
w/2 to minimize the density difference; thus it is sensitive to the
window size w. From Fig. 10, DILOF is relatively efficient under
small window sizes. However, it is difficult to apply to detecting
local outliers over data streams in large-scale sliding windows
owing to its high complexity O((w/2)2+ βw ∗ (k2w+ k2)). sKDD,
sR-KDD, sRDOS, sKDEOS and sRKOF compute the KDE values
and/or KOF scores for all data points from scratch in each new
window. Therefore, they are all inefficient for streaming data
outlier detection. Moreover, sKDD and sR-KDD must calculate the
covariance matrix to obtain the kernel density of each point. To
obtain a robust covariance matrix, sR-KDD also must calculate
the covariance matrix multiple times; thus sR-KDD requires more
time resource than sKDD. Moreover, in addition to kNNs, sRDOS
also must search more categories of neighbors (i.e., RkNNs and
shared nearest neighbors) to calculate the relative outlierness
factor; thus its time complexity is O(w ∗ ((m + 1)wlogw + m2))
in Table 2, which is greater than sKDEOS and sRKOF; hence, it
is slower than sKDEOS and sRKOF. sRKOF is 6.3× faster than
sKDEOS, as it computes the KOF score only once for each data

point in each window, although it uses weighted density estima-
tion. To obtain more robust results, sKDEOS computes the average
outlierness score for each data point in its local densities using
multiple values of k, meaning that it must compute multiple KDE
values for each point.

In addition, we can see that distance-based method MCOD is
similar to our UKOF and LUKOF in speed on two small datasets
i.e., Vowels and Subhttp. This is because MCOD is a distance-
based detection method that uses global abnormal standard to
detect outliers, that is, it does not need to detect outliers based
on the density of points’ neighbors, thus it does not need to
search kNNs of kNNs of data points. However, LUKOF is 68.5×
faster than MCOD on the large dataset, i.e., KDDCup. In order to
avoid directly finding the neighbors of the data points, MCOD
combines micro-clusters to detect outliers, that is, if a data point
falls into a micro-cluster, we do not need to search its neighbors
to determine its abnormal state. However, as the window size
increases, the process of building micro-clusters takes more time.

As can be observed, as the window size increases, the running
time per window utilized by all methods increases. However, the
proposed UKOF and LUKOF save additional time compared to all
the baselines. This is because the proposed method effectively
prunes more inlier points using the proposed upper-bound-based
pruning without executing expensive KOF computation, whereas
the other baselines must compute the KDE and/or outlierness
scores for each data point.

5.7.2. Efficiency w.r.t. slide size s
We next study the efficiency of the methods on five datasets

by varying the slide size s from 10 to 250. We set the window size
w to 600 on two small datasets (Vowels and Subhttp) and 2000 on
three larger datasets (Smtp, ForestCover and KDDCup); all other
parameters are the same as in the last experiment. Fig. 11 displays
the running time results of all the methods. Note that, for a given
fixed window size, as the slide size increases, the overlap in two
consecutive windows decreases.

As indicated in Fig. 11, LUKOF and UKOF are consistently
faster than all baselines by tens- to hundreds-fold. As the slide
size s increases, LUKOF and UKOF are required to update the
upper bounds and/or KOF scores for more data points in each
new window, conversely, static KDE-based methods (sKDD, sR-
KDD, sRKOF, sRDOS, and sKDEOS) compute outlierness scores for
the same number of data points in each window. Therefore, the
KDE-based methods indicate stable running time with respect
to slide size. However, the proposed LUKOF and UKOF are still
faster than all baselines by ten times on the ForestCover data
when the slide size s = 250. Since DILOF once samples s expired
points from the oldest w/2 window using its nonparametric
density summarization, its running time increases as slide size
increases. It is worth noting that as the slide size s increase, the
proposed LUKOF becomes better than UKOF in terms of running
time. This is because LUKOF uses a lazy update strategy for newly
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Fig. 11. Efficiency comparison w.r.t. slide size.

Fig. 12. Evaluation of processing time on large datasets.

added and expired points in the same slide; that is, we update
the outlierness statuses for the neighboring new and expired
points once, rather than updating them individually, which saves
considerable redundant computation.

5.7.3. Efficiency w.r.t. large-scale streaming data
We next evaluate the efficiency of all the methods with re-

spect to large-scale streaming data. In this experiment, we use
two large datasets (Mobike and GeoLife) to generate the large-
scale streaming data. We fix the window size w to 50,000, slide
size s to 1000, and k to 10. The results are presented in Fig. 12.

As can be observed, LUKOF and UKOF significantly outperform
all baselines by thousands of times on the two large-scale stream-
ing data. In particular, the proposed LUKOF achieves 2596×,
3600×, and 2492× speedup compared to DILOF, sRDOS, and
sKDEOS on the GeoLife data, respectively. The reason is the same
as we explained in above experiments. When the window size
becomes very large, DILOF requires additional time to sample
the expired points in the nonparametric density summarization,
and consumes considerably more time to update the LOF scores
for the affected data points. For sRKOF, sRDOS and sKDEOS, it
is clear that they significantly increase the time consumption to
compute the outlierness score for each data point in such large-
scale windows. Conversely, the proposed method only updates
the upper bounds of the relatively small number of data points
in such large windows, and significantly more inlier points are
quickly filtered by the proposed pruning strategy instead of the
expensive KOF computation.

In summary, this experiment confirms that the proposed
LUKOF and UKOF are more efficient in detecting local outliers
over high-speed large-scale data streams, rendering practical
local outlier detection in real-time applications.

5.7.4. Complexity validation of proposed method
We now validate the time complexity of our proposed method

on the synthetic Mixture RBF dataset. The experimental results
are shown in Fig. 13. We vary window size w from 100 to 500

Fig. 13. Efficiency validation on synthetic dataset.

Table 3
Effectiveness of the upper-bound based pruning (Time/ms).
Datasets LUKOF LUKOF/UBP UKOF UKOF/UBP

Mobike 582 7079 1095 11,425
GeoLife 227 3723 424 6267

when fixing s to 50, and vary slide size s from 10 to 50 when
fixing w to 500. k is fixed to 10.

As we can see, the running time of UKOF method increases
linearly with the increase of both window size w and sliding
size s, and the linear increase with s is slightly larger than that
with w. For example, the running time of UKOF is increased by
2.5 times when w is increased by 5 times, while the running
time is increased by 3.5 times when s is increased by 5 times.
This is completely consistent with the time complexity of UKOF
(O(s(ψ+φ)(kws (s+ logMs)+k2))) analyzed in Section 4.3.5. LUKOF
also increases linearly with window sizew similar with UKOF, but
the proportion of growth with sliding size s is much smaller than
that of UKOF. For example, LUKOF only increases by 10 ms as s
increases from 10 to 50, while UKOF increases by 50 ms. This is
also consistent with the time complexity O(αw(kws (s + logMs) +
k2)) of LUKOF, where α significantly decreases as s increases.

5.8. Effectiveness evaluation of upper-bound-based pruning

In this subsection ,we evaluate the effectiveness of the upper-
bound pruning on Mobike and GeoLife. All parameter settings are
the same as in the last experiment.

As indicated in Table 3, the proposed methods using upper-
bound-based pruning are superior to their counterparts with-
out upper-bound based pruning (i.e., LUKOF vs. LUKOF/UBP, and
UKOF vs. UKOF/UBP) on two datasets. Specifically, LUKOF is 12.2
and 16.4 times faster than LUKOF/UBP on Mobike and GeoLife,
respectively. As discussed in Section 4.2, computing the KOF score
requires considerably more executing time than computing its
upper bounds. The results indicate that the number of inlier
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points in high density regions are examined their abnormali-
ties using their KOF upper bounds in the proposed UKOF and
LUKOF method. Therefore, this experiment also confirms that
the proposed upper-bound-based pruning strategy is powerfully
effective in improving detection efficiency for outlier detection
over data streams.

6. Conclusion

In this work, we propose an efficient approach for supporting
KDE-based top-n local outlier detection over large-scale data
streams. We first define a new outlierness measure based on
an adaptive KDE, KOF, to detect the local outliers. To avoid di-
rectly computing the expensive KOF score, we propose the upper
bounds of KOF and use the KOF upper bounds to prune the
inlier points with a lower time complexity. Based on the upper-
bound-based pruning, we next propose an efficient top-n KOF
detection method for data streams, called UKOF. Furthermore, we
propose a lazy update version of UKOF, LUKOF, for bulk updates in
large-scale data streams. Extensive evaluations on ten real-world
and synthetic datasets demonstrate that the proposed method
achieves the best performance in detecting local outliers over
data streams, and consistently outperforms the state-of-the-art
methods by up to thousands of times in speed.
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