
K*-Means: An Effective and Efficient K-means Clustering Algorithm

Jianpeng Qi, Yanwei Yu*, Lihong Wang,and Jinglei Liu
School of Computer and Control Engineering, Yantai University, Yantai, Shandong 264005, China

Email: jianpengqi@126.com, yuyanwei@ytu.edu.cn, wanglh 000@163.com, jinglei liu@sina.com

K-means is a widely used clustering algorithm in field of data mining across different disciplines in the past fifty years. However,
k-means heavily depends on the position of initial centers, and the chosen starting centers randomly may lead to poor quality of
clustering. Motivated by this, this paper proposes an optimized k-means clustering method along with three optimization principles
named k∗-means. First, we propose a hierarchical optimization principle initialized by k∗ cluster centers (k∗ > k) to reduce the
risk of randomly seeds selection, and then utilize proposed top-n method to merge the nearest clusters associated with the shortest
n edges in each round until the number of clusters reaches at k. Second, we propose a cluster pruning strategy for improving
efficiency of k-means by omitting the farther clusters to shrink the adjustable searching space for each point in each iteration.
Third, we implement an optimized update theory to optimize the k-means iteration updating, which leverages moved points updating
instead of recalculating mean and SSE of cluster to minimize computation cost. Our comprehensive experimental studies, using 2
synthetic datasets and 4 real world datasets from the UCI Machine Learning Repository, demonstrate that our method outperforms
state-of-the-art methods in both effectiveness and efficiency.

Index Terms—Data mining, Clustering, k-means, Top-n merging, Cluster pruning.

I. INTRODUCTION

Clustering is to group data objects into different classes

or clusters and is one of most task in data analysis, such

as pattern discovery, pattern recognition, data summary and

image processing [1]. Many branches are developed to enrich

these fields, include partitional methods, hierarchical methods,

density-based methods, etc. Partitional method is the simplest

and most foundational version of cluster analysis, and many

algorithms are proposed to accelerate its process like k-

means[2], k-medoids[3], k-means++[4].

K-means is a most widely used and well studied method

in data mining. Given a dataset D = {pi | i = 1 . . . n}, pi in

d-dimensional space �d, k-means is to assign the set of points

into k clusters with arbitrary selected k initial centers, so as

to minimize sum of squared error (SSE) shown in formula

(2), where ‖pi−mj‖ is the distance from point pi to cluster

center mj , δij is the cluster indicator variable with δij = 1
if pi ∈ Cj and 0 otherwise, and mj is the mean of cluster Cj

and be calculated by formula (1).

mj =

∑
pi∈Cj

pi

|Cj | (1)

SSE =

k∑

j=1

n∑

i=1

δij‖pi −mj‖2 (2)

Due to simple yet effective way, k-means is widely accepted

and becomes a popular member for performing clustering

across different disciplines over the past 50 years [5][6][7][8].

However k-means suffers from a serious limitation, random

initial centers selection may lead to get trapped in poor local

minimal, specially in a bad initialization. A most obvious

observation is that k-means often divides a large cluster into

serval small groups or merges small adjacent clusters into a

larger one to get minimal SSE. See example shown in Fig.1,

starting with a bad initialization, on the upper-right two near

clusters are mistaken to merge into one cluster, and on the

bottom right corner one cluster are divided into 2 subclusters.

Figure 1: Example of clusters begin with a bad initialization

Many works attempt to resolve the sensitivity of initializa-

tion of k-means [1][9]. Arthur et al. [10] propose a careful

seeds selection method, named k-means++, for alleviating the

shortcoming of k-means. K-means++ chooses starting centers

with specific probabilities. Specifically, they first associate

point with a squared distance from the point to the closest

center that already chosen called D2 weighting, and then

select initial centers with probability
D(xj)

2

∑n
i=1 D(xi)2

. However

k-means++ needs to take k passes over the data to select

initial centers, which limits its applicability to massive dataset.

A recent study [11] proposes a MinMax k-means algorithm

to tackle the sensitivity to initial centers by altering the k-

means objective. MinMax k-means also starts from arbitrary

centers but tries to minimize the maximum intra-cluster sum of

squared error ssemax instead of total SSE. That is, MinMax

k-means tries to minimize the largest intra-cluster variance to

reduce the global SSE across a weighting factor with each

cluster. However, MinMax does not obtain a better clusters

directly, specially for unbalanced cluster distribution. It also

still needs to further optimize the result by performing k-

means beginning with MinMax k-means result. In addition,

the weighting mechanism also leads to additional expensive

computation.

2016 IEEE International Conferences on Big Data and Cloud Computing (BDCloud), Social Computing and Networking

(SocialCom), Sustainable Computing and Communications (SustainCom)

978-1-5090-3936-4/16 $31.00 © 2016 IEEE

DOI 10.1109/BDCloud-SocialCom-SustainCom.2016.46

241

2016 IEEE International Conferences on Big Data and Cloud Computing (BDCloud), Social Computing and Networking

(SocialCom), Sustainable Computing and Communications (SustainCom)

978-1-5090-3936-4/16 $31.00 © 2016 IEEE

DOI 10.1109/BDCloud-SocialCom-SustainCom.2016.46

242

2016 IEEE International Conferences on Big Data and Cloud Computing (BDCloud), Social Computing and Networking

(SocialCom), Sustainable Computing and Communications (SustainCom)

978-1-5090-3936-4/16 $31.00 © 2016 IEEE

DOI 10.1109/BDCloud-SocialCom-SustainCom.2016.46

242

Another category of methods attempt to improve the effi-

ciency of k-means by decreasing computational complexity.

Hamerly [12] accelerates k-means using distance bounds and

the triangle inequality to avoid unnecessary distance compu-

tation. Bahmani et al. [4] present a scalable k-means++ to

fast obtain initialization in parallel, which leverages parallel

computational model to reduce the number of passes for large

scale dataset.
In this paper, we propose a novel hierarchical k-means

approach, k∗-means, to improve both quality and efficiency of

clustering. We first start k-means with a larger input parameter

k∗ (k∗ > k), and then merge the clusters associated with top-

n nearest distances and further refine clusters by k-means,

next repeat last process until the number of clusters reach

at k. To improve k∗-means performance, we further deploy

three optimization principles to minimize the computation

cost. First, in top n merging process, we use the feature values

(mean) of nearest clusters to fast generate feature information

of the merged cluster instead of recomputing. Second,we

propose a cluster pruning strategy by the distance between

two cluster centers to shrink the adjusting searching space

for each point in k-means iterations. And we also provide

a lower bound of pruning distance along with theoretical

analysis. Third, we formalize the optimized update principle

based on the fact that the number of points moved across

clusters decreases sharply with iteration progress. Proposed

principle maintains feature values of each cluster just by the

moved points to avoid to recompute the mean from scratch.

Furthermore, we also explore selecting bound of parameter k∗

value by extending experiments.

II. RELATED WORK

Initialization methods for k-means. Forgey et al. [13] first

group the points into k clusters uniformly at random, and

then choose the centroids of these clusters as initial centers.

MacQueen [2] proposes two different initialization methods.

The first method chooses the first k points in dataset as the

starting centers. The second one randomly chooses the initial

centers from dataset. Obviously, the first one is sensitive to

the order of points, and the second one may selects outliers

or points that are too close to each other, as above example

in Fig.1. Bradley and Fayyad [3] propose an initialization

method, which first randomly partitions the dataset into J
groups, and then performs k-means with MacQueen’s second

initialization method in each group. The obtained centers are

combined into superset that is then clustered by k-means J
times. In final, members of the centers that have the least

SSE are chosen as initial centers.
As previously mentioned, k-means++ introduces a prob-

abilistic seeds selection method. It chooses the first center

randomly and then selects other centers of using a probability

of
D(xj)

2

∑n
i=1 D(xi)2

, where D(xj) is the shortest distance from the

point pj to the closest center that already chosen. Therefore,

a point that is far away from all selected centers have a high

probability to be chosen as a center. They claim the method

yields an O(logk) approximation. However, when dimension

of dataset is high, the complexity of the k-means++ would be

much greater than O(logk) [14].

Su et al. [15] propose two hierarchical approaches, PCA-

Part and Var-Part methods. PCA-Part iteratively obtains clus-

ters based on PCA (Principal Component Analysis), which

starts from an initial cluster containing all data points, and

then chooses cluster repeatedly with greatest SSE and cuts

it into two subsets using a hyperplane that passes through the

cluster centroid and is orthogonal to the principle eigenvector

of cluster covariance matrix. Var-Part is an approximation

version of PCA-Pmart, which divides the selected cluster into

two subclusters by assuming the covariance matrix is diagonal.

Lu et al. [16] propose a hierarchical initialization method,

which treats the clustering problem as a weighted clustering

problem to find better initial cluster centers based on the

hierarchical approach. Redmond et al. [17] present a method

that incorporates kd-trees to perform density estimation of the

data at various location and then chooses initial centers using

maximin method from densely populated leaf buckets.

Recent study MinMax k-means[11] uses the objective of

maximum ssemax instead of total SSE of all clusters, which

aims to overcome the sensitivity to the random initialization.

Because MinMax k-means tries to minimize the maximum

intra-cluster variance, it expects to obtain balanced clusters

with respect to their variance. Thus it is undesirable for

dataset with unbalanced clusters. In extreme cases, when the

empty or singleton cluster emerges during the process of

iteration, it would leads to MinMax k-means restarts even

fails to get clustering result sometimes. MinMax k-means

also introduces weight mechanism into objective, which causes

huge of computation costs.

Optimized variants of k-means on efficiency. Kanungo

et. al [18] propose an efficient filtering k-means method

by using kd-tree to store data points and then utilizing the

index to filter or prune the candidate centers to reduce the

computation. Hung et al.[19] propose a simple partitioning

k-means method, which partitions the dataset into serval

unit blocks (UB) and then locates the centroids of the UBs

(CUB) using a simple calculation. All CUBs form a reduced

dataset that is used to compute the final converged centroids

instead of the original dataset. Hamerly[12] accelerates k-

means using distance bounds and the triangle inequality to

avoid unnecessary distance computations. Another group of

methods try to improve efficiency of k-means from parallel

or distributed perspective. Zhao et al. [20] propose a parallel

k-means algorithm based on popular distributed platform

MapReduce. However these algorithms also suffer from the

serious random initialization limitation of k-means. To apply

to large scale dataset, Bahmani et al. [4] present a parallel

version of k-means++ in MapReduce model of computation,

which focuses on the initialization stage of k-means to fast

obtain the probabilistic initial centers in parallel by reducing

number of passes.

III. THE ALGORITHM

Since k-means chooses initial centers randomly, it is diffi-

cult to avoid choose outliers or points that are too close to each

other. As shown in Fig.1, the situations of mistaken merging or

dividing always occur once two seeds are chosen in a cluster,

242243243

and the cluster is far from other points. The risk of random

initialization increases significantly especially for unbalanced

or skewed data distribution.

Let ni denote number of points in cluster Ci(i =
1, 2, . . . , k) in k-means initialization. So the probability that

seed fall into cluster Cj is p =
nj∑
ni

. If cluster Cj has a few

points, meaning that it has a little opportunity to obtain a seed,

which further directly leads that there exist some clusters get

more than one initial centers. Obviously, to avoid this situation

happen, the direct thought is that how to improve the ratio to

make small cluster get a initial center as far as possible. The

straightforward way is to extend the value of k. Namely, we

can choose more than k initial centers denoted k∗, to increase

the probability
nj∑
ni
· k∗

k .

The simple solution easily relieves the sensitivity to the

initialization, but it also means that we need some additional

steps to decrease k∗ to k to obtain final k clusters. In Section

III-A we introduce our Top-n nearest clusters merging to

implement the transformation with minimal cost.

A. Top-n Nearest Clusters Merging

In our k∗-means algorithm, we first obtain k∗ clusters by

performing k-means with randomly chosen k∗(k∗ > k) initial

centers. To obtain k clusters in final, we propose top-n nearest

clusters merging strategy. Before introduce top-n method, we

first define the edge to describe the distance between two

clusters.

Definition 1. (edge) Given two cluster C1, C2, and their
center c1, c2, the distance between C1 and C2 is defined as
d = |c1 − c2|, we call the distance edge which connected c1
and c2, denoted e1,2.

By Def. 1, we only need to find top-n shortest edge to get

top-n nearest clusters. We first use an ascending list structure

to store the edges associated with corresponding clusters. Then

the top-n shortest edges are selected and clusters associated

with the edges are merged.

However, top-n merging does not always reduce n clusters

but at most n clusters. For example, three edges ei,j , ei,k and

ej,k all shortlist top-3 edges, then the cluster Ci, Cj and Ck

should be merged into one cluster at the same time, reducing 2
clusters. We still name the process top-n merging because we

precisely merge n shortest edges. But we can not guarantee to

merge n clusters. Instead the number of reduced cluster ranges

from �
√
1+8∗n−1

2 � to n. Therefore, we first need to determine

the selection range of n value. If n is beyond the range, the

number of clusters may be less than k after merging process.

Here we deduce that n should be smaller than �k∗ − k� in

each round.

Proof. Suppose the top n shortest edges involve m clusters.

In extreme case of reducing minimum number of clusters,

namely the shortest n edges (one edge corresponding to a

combination of two clusters) are just the combinations of m
clusters, then the number of involved clusters is the least, and

all m clusters should be merged into one cluster. Hence we

have n = C2
m = m·(m−1)

2 , then we get m = 1+
√
1+8·n
2 . So the

number of reduced clusters is m− 1 =
√
1+8·n−1

2 . Therefore,

C
i

C
j

(a) before merging

C

(b) after merging

Figure 2: An example of cluster merging

if the n edges just are a subset of combinations of m clusters,

then the number of reduced clusters is �
√
1+8∗n−1

2 �.
Consider the cases of reducing maximum number of clusters,

the first case is that the n edges involves 2n clusters, namely

there are no duplicated clusters on the n edges. Intuitively

merging process would reduce n clusters in this cases. The

second case is that the m clusters associated with n edges

are merged into one cluster but each of the m clusters

appears at most 2 times on the n edges. Thus we deduce

that m = 2n − (n − 1) = n + 1. So the number of reduced

clusters also is n in this case. Therefore, the number of clusters

reduced by our top-n nearest clusters merging ranges from

�
√
1+8∗n−1

2 � to n, and further we obtain that n ≤ �k∗− k� to

assure the number of clusters is not less than k after merging

process.

As shown in Fig. 2, suppose clusters Ci and Cj belong to

top-n nearest clusters, and C is the merged cluster from Ci

and Cj . Therefore, we can get Lemma 1.

Lemma 1. Given clusters Ci and Cj , mi and mj are means
of Ci and Cj respectively, and ssei, ssej are sum of squared
error of Ci and Cj respectively, if C is merged from Ci and
Cj , then we have

mc =
mi · |Ci|+mj · |Cj |

|Ci|+ |Cj | (3)

where mc is means of C.

Proof. Without loss of generality, let Ci = {pu | u = 1, 2, . . .
| Ci |} and Cj = {qv | v = 1, 2, · · · | Cj |} .

First, since mi and mj are means of Ci and Cj respectively,

we have

mi =

∑|Ci|
u=1 pu

|Ci| ; mj =

∑|Cj |
v=1 qv
|Cj | .

Then we get formula (4).

|Ci|∑

u=1

pu = mi · |Ci|;
|Cj |∑

v=1

qv = mj · |Cj | (4)

Note that mc is the means of merged cluster C, we have

mc =

∑|Ci|
u=1 pu +

∑|Cj |
v=1 qv

|Ci|+ |Cj | =
mi · |Ci|+mj · |Cj |

|Ci|+ |Cj |
And we are done.

243244244

Lemma 1 implies that the feature values of merged cluster

can be computed directly according to those of previous sub-

clusters.

B. Cluster Pruning Strategy

To reduce the computational costs, we now introduce op-

timization principle, regarding to minimization of distance

comparison, termed cluster pruning strategy.

��

��

��

�

��

Figure 3: Pruning distance between two clusters

In k-means iterations, each point needs to be examined

if it is closer to its center than any other centers. Hence,

each point has a larger searching space. For example, if there

are k clusters, each point needs to calculate and compare

distance (k − 1) times in each iteration. However, most of

these computation are redundant. As exactly shown in Fig.

4, only very few points would be moved among clusters in

adjusting iteration. We also observe that if two clusters are

distant from each other, the points in the two cluster are no

need to compare with each other in adjusting steps.

Next, we introduce our pruning optimization method for

each point at cluster level based on Def. 2 and Lemma 2.

Definition 2. (Radius) Given a cluster Ci, the radius of the
cluster Ci is the maximum distance from the center of Ci to
its points, denoted Ri.

Lemma 2. Given two clusters Ci, Cj , and their radius Ri,
Rj , if ei,j ≥ Ri + Rj + |Ri − Rj |, then there is no point in
Ci(Cj) that is moved into Cj(Ci) in adjusting iteration.

Proof. Suppose there are two clusters, Ci and Cj , their radius

are Rj and Ri, respectively, as shown in Fig. 3. Without loss of

generality, we assume Ri > Rj , let d denote the gap between

two clusters, thus d = ei,j −Ri−Rj . Obviously all points in

Cj are closer to mj (the center of Cj) than mi (the center

of Ci).

Now, we consider the farthest point in Ci, denoted p. By

the definition of radius, the distance from p to the center of

Ci is Ri, and the distance from p to the center of Cj must

not be less than d+Rj , namely distance(p,mj) ≥ d+Rj .

If distance(p,mj) ≥ Ri, then all points in Ci is not

moved into Cj certainly. Hence, if d + Rj ≥ Ri, then

distance(p,mj) ≥ Ri must hold.

Since

d+Rj ≥ Ri ⇒ ei,j −Ri −Rj +Rj ≥ Ri

⇒ ei,j ≥ Ri +Rj + |Ri −Rj |

Therefore, ei,j ≥ Ri + Rj + |Ri − Rj | guarantees that there

is no point that be adjusted between Ci and Cj .

Lemma 2 guides our pruning rule for k∗-means iteration.

For each cluster Ci, if distances between Ci and other clusters,

namely edges associated with Ci, is greater than the pruning

distance of Ri+Rj+|Ri−Rj |, then we eliminate these further

clusters from searching space in k∗-means iteration.

Note that pruning strategy needs to maintain additional

radius for each cluster. For this, we use a simple way to

maintain this indicator, namely, we first obtain the radius
when compute mean at the beginning of k∗-means, and then

we update the indicator radius′(initial with radius) in time.

Which means radius′ can be updated when point moving.

And assign radius′ to radius at the end of each iteration.

In addition, when the point of a specific cluster find another

closest clusters, the radius of the specific cluster will not be

easy to maintain. We use a simple way to solve this problem,

which is assign the maximum distance between points and

their specific cluster’s mean to r during iteteration. This will

be discussion in algorihm 1.

C. Optimized Update Principle

From extending experiments on UCI data (see details in

section V-A), we observe that number of moved points de-

clines sharply during the k-means iteration processes. Fig. 4

shows two samples on two real world datasets. As k-means

iteration goes on, the points in clusters trend towards stability,

thus the number of moved points also goes towards zero.

In particular, the number of points moved across clusters

is very low after the forth iteration. And only average 3%

of points are adjusted from fifth iteration to end. Motivated

by this observation or k-means characteristic, we propose an

optimized update principle, which updates feature values in

each iteration using moved points instead of re-computation

from all of points.

1 2 3 4 5 6 7 8 9
0

20

40

60

80

100

P
er

ce
nt

ag
e

Iteration times

(a) dermatology

1 5 10 15 20 25 30
0

20

40

60

80

100

P
er

ce
nt

ag
e

Iteration times

(b) optdigits

Figure 4: Number of moved points in k-means iterations

To understand the optimized update principle, we first state

Lemma 3 and Lemma 4.

Lemma 3. Given a cluster Ci, and its center mi, if a point
p is added into Ci, then we get the new center m′

i as formula
(5), where |Ci| is number of points in Ci.

m′
i =mi +

p−mi

|Ci|+ 1
(5)

244245245

Lemma 4. Given a cluster Ci, and its center mi, if a point
p is moved out from Ci, then we get the new center m′

i as
formula (6), where |Ci| is number of points.

m′
i =mi +

mi − p

|Ci| − 1
(6)

Lemma 3 and lemma 4 depict updating method of mean
when a point is moved in or out cluster, respectively. There-

fore, the feature values of a cluster can be maintained incre-

mentally via the moved points during k-means iteration, rather

than re-computed from all points in the cluster.
Armed with Lemma 3 and Lemma 4, we propose the

optimized update method to reduce computation costs. In each

iteration, we maintain the copies of feature values incremen-

tally according to moved points. Optimized update method

obviously saves much computation resource when number of

moved points is very low. However, at beginning iterations

of k-means, specially, the first round k-means, moved points

amount is relatively larger, and the optimized update method

may cost more time than completed method. Therefore, we use

a threshold θ, the ratio of moved points in each iteration, to

determine whether start to perform optimized update method

in the first round k-means. On experiential, from Fig. 4, we

set θ = 0.05.

IV. K*-MEANS ALGORITHM

Next, we present our extending k∗-means algorithm based

on our proposed three optimization strategies. The detail

pseudo-code of k∗-means is shown in Algorithm 1.
In k∗-means, we also use the random initialization method

to choose k∗ starting centers, and first assign all points into k∗

clusters. Then we get feature values of mean for each cluster,

as shown in lines 1-3. Next, k∗-means performs hierarchical

clustering along with k-means adjusting iteration in lines 4-22

and nearest clusters associated with top-n distances merging

in line 23-25. Line 6 describe the proposed cluster pruning

strategy. We use collections CS to store the neighbor clusters

of specific cluster which after prune remote clusters by Lemma

2. Then, we only need to verify the adjustable clusters in

search space of CS for each point in Ci. Once percentage

of moved points is lower than given θ in first round k-means

optimized update principle will be started and radius′ will

be updated during this process(lines 7- 14). For algorithm’s

efficiency, we maintain a value r in each cluster to update its

radius(lines 9-13). At the end of each iteration, each cluster

mean m and it’s radius is replaced by m′, radius′ directly.

Lines 23-25 show top-n nearest clusters merging which reduce

number of clusters from |C| to |C|− [�
√
1+8∗n−1

2 �, n]. There-

for, parameter n is not fixed, but ranges from given n to 1. For

each round refining of k∗-means, we use a decrease strategy

to determine value of n, and a top-1 may be performed at final

round to make number of clusters reach at k.

V. EXPERIMENTS

A. Experimental Setup and Methodologies
All algorithms are implemented by Java, and all experiments

are performed on platform equipped with 2.4G Intel Core i3

CPU, 4G memory, and Windows 7 operate system.

Algorithm 1 K* -means Algorithm

Input: the number of initial centers K∗; the number of

clusters K; data set D; parameters of Top-n method N .

Output: K clusters.

1: arbitrary choose K∗ initial centers;

2: distribute D into cluster sets C;

3: update mean of each cluster;

4: while not convergence do
5: for each Ci ∈ C do
6: CS ← pruned clusters of Ci

7: for each point p ∈ Ci do
8: d← min distance(p, Cj .mj) where Cj ∈ CS;

9: if d < |p−mi| then
10: move p into cluster Cj ;

11: if |p−mj | > Cj .radius
′ then

12: update Cj .radius
′;

13: end if
14: update m′ of Ci, Cj by lemma 3, 4;

15: else if |p−mi| > Ci.r then
16: Ci.r ← |p−mi|;
17: end if
18: end for
19: radius′ ← Ci.r and Ci.r ← 0;

20: end for
21: use m′, radius′ instead of m, radius in cluster Ci, Cj ;

22: end while
23: if number of clusters > K then
24: Top-n(C,N); goto line 4;

25: end if

Datasets. We use 6 data sets including 2 synthetic datasets

and 4 real world datasets from the UCI Machine Learning

Repository [21] to evaluate the effectiveness and efficiency of

our k∗-means. As described in Table I, Smalldata and Bigdata

are generated by our data generator using mixture Gauss model

for covering different situations, such as unbalanced clusters,

clusters with arbitrary shapes.

Table I: Descriptions of synthetic and real world datasets
No. Dataset # of

points

of

attributes

of

classes

D1 Smalldata 3851 2 30

D2 Bigdata 120000 2 50

D3 Ecoli 307 7 4

D4 Optdigits 5620 64 10

D5 Dermatology 366 34 6

D6 Folio1 300 500 15

As shown in Fig.5(a), D1 includes 30 clusters that be

composed by 3851 points. In this dataset, each cluster contains

less than 200 points with Gauss distribution and number of

clusters is balanced. We denote the small dataset as Smalldata.

The forth dataset shown in Fig.5(b) comprises massive data

points of 120 thousands, including 50 clusters with arbitrary

shapes. Moreover, there is no obvious gaps for some clusters,

and the number of points in clusters also is unbalance. We

denote the big dataset with arbitrary shape clusters as Bigdata.

245246246

0 200 400 600 800 1000 1200 1400
−100

0

100

200

300

400

500

600

700

800

(a) D1

−200 0 200 400 600 800 1000 1200 1400
−200

−100

0

100

200

300

400

500

600

700

800

(b) D2

Figure 5: Demonstrations of 2 synthetic datasets

Ecoli (UCI) [21] is calculated from the amino acid se-

quences, which includes 8 classes that be comprised of 336
proteins. The data has 8 attributes(includes one label), and the

number of classes is different, thus it is an unbalanced dataset.

Optdigits (UCI) [21] is optical recognition of handwritten

digits by extracting normalized bitmaps of handwritten digits

from a preprinted form. Each preprinted form is represented as

a 8× 8 matrix, where every element is an integer. The dataset

includes 5620 instances in 64 dimensions space.

Dermatology (UCI) [21] contains 366 patients with 34
attributes, which is partitioned into 6 types of Erythemato-

Squamous disease. The dataset is also unbalanced.

Folio1 (UCI) [21] are leaves images taken from different

plants in the farm of the University of Mauritius and nearby

locations. We first extract the SIFT descriptors from these

images, and then use the bag of 500 visual words to represent

the data. Folio1 contains 300 leaves from 15 different types

of plants, balanced.

Experimental Methodologies. For effectiveness evaluation

of our algorithm, we use three metrics of average SSE,

NMI (Normalized Mutual Information) and SC (Silhouette

Coefficient) [22] to estimate the quality of clustering. SSE
utilized is described as formula (2) in Introduction section,

and we take the average SSE that divides total SSE by the

number of points. Formula (7) depicts computing method of

NMI, where wk is the obtained cluster k, cj is the labeled class

j, N is the size of dataset, and the HM and HC represent the

entropy of clusters and classes.

NMI =

∑
k

∑
j
|wk∩cj |

N log
N |wk∩cj |
|wk|·|cj |

[HM +HC]/2
(7)

H is defined as formula (8).

HM = −
∑

k

| wk |
N

log
| wk |
N (8)

Therefore, NMI score ranges from 0 to 1.0, more higher value

indicates more better quality of clustering.

As shown in formula (7), we need labelled class information

for computing NMI score. But it is difficult to obtain data

with annotations in many real world applications. So we also

adopt another widely used metrics SC(Silhouette Coefficient),

which describes both similarity among points in intra-cluster

and differences among clusters without cluster labels. Let a(i)
be the average distance of point i to all other points within

the same cluster. Let b(i) be the minimum average distance

of point i to the rest clusters. Formula (9) shows the SC for

point i.

s(i) =
b(i)− a(i)

max{a(i), b(i)} (9)

The average Silhouette Coefficient of all points
∑N

i=1 s(i)

N is

regard as the SC value. Thus SC ∈ (−1, 1), similar with

NMI, higher SC value indicates the obtained clusters are more

distinguished clearly.

For efficiency evaluation, we measure the common metrics

of CPU consumption. All experiments are conducted 10 times

on each dataset, and we take the average CPU time. Moreover,

we discuss the selection of k∗ value by analysing the impact

of k∗ in Section V-D.

Alternative algorithm.We compare our algorithm against

k-means, k-means++ and MinMax k-means. We also apply k-

means++ initialization method into our k∗-means, named k∗-
means++ algorithm. That is, k∗-means++ chooses k∗ initial

centers using D2 weighting probability instead of random

selection.

B. Effectiveness Evaluation

First, we evaluate the clustering quality of our proposed

k∗-means on 6 datasets when k∗ is fixed to 2k, n = 2
and θ = 0.05. Note that we set memory lever β = 0.3 for

MinMax k-means. Table II, III and IV show experimental

results. Asterisk (∗), dagger (†) and double dagger (‡) super-

scripts denote that k∗-means or k∗-means++ has a statistically

significant difference to k-means, k-means++ and MinMax

k-means respectively, according to the standard deviation. A

line above (below) these symbols stands for a higher (lower)

average. To distinguish the best result, the top-2 best results

on each dataset are shown in bold.

NMI. The results of NMI on 6 datasets is shown in Table

II, our k∗-means is superior to k-means, k-means++, MinMax

k-means on all datasets. In particular, NMI scores on 2
synthetic data demonstrate that k∗-means has better ability of

handling various scenarios compared to other tree algorithms.

Even on real world datasets, k∗-means also achieves robustly

higher NMI score. This clearly displays that k∗ initial centers

can better cover all of clusters and multiple-round merging

improves the quality of clustering.

For k-means++, its probability initialization process im-

proves performance to a certain extend compared to randomly

starting of k-means. MinMax k-means aims to get lower

maximum sse of clusters but may not yields better clusters

due to the randomly initial centers. K∗ (more) centers improve

the probability of obtaining best local optima, and our multi-

round refining further approaches the optimum gradually. As

expected, k∗-means++ also outperforms k-means, k-means++

and MinMax k-means on most of datasets and achieves the

best quality on 5 datasets.

SC. As shown in Table III. Again, k∗-means outperforms k-

means, k-means++ and MinMax k-means in term of SC value.

In particular, our algorithm exhibits better SC value than k-

means and MinMax k-means on all datasets, and better than

k-means++ on all datasets but Optdigits. However, SC values

of k∗-means are very close to those of k-means++ on this

two datasets. K∗-means++ also improves clustering quality in

246247247

Table II: Clustering quality on NMI
Dataset k-means k-means++ minmax k-means k∗-means k∗-means++

Smalldata 0.933± 0.01 0.967±0.01 0.932±0.02 0.991±0.00∗†‡ 0.996±0.00∗†‡
Bigdata 0.889± 0.01 0.905±0.01 0.904±0.00 0.913±0.00∗†‡ 0.915±0.00∗†‡

Ecoli 0.616± 0.02 0.617±0.03 0.550±0.01 0.635±0.03∗†‡ 0.617±0.01∗†‡
Optdigits 0.718± 0.02 0.724±0.02 0.708±0.00 0.719±0.01∗†‡ 0.711±0.01∗†‡

Dermatology 0.861± 0.05 0.828±0.04 0.775±0.01 0.863±0.04∗†‡ 0.878±0.02∗†‡
Folio1 0.532±0.02 0.534±0.01 0.540±0.00 0.550±0.02∗†‡ 0.555±0.02∗†‡

Table III: Clustering quality on SC
Dataset k-means k-means++ minmax k-means k∗-means k∗-means++

Smalldata 0.741±0.02 0.813±0.02 0.748±0.05 0.841±0.01∗†‡ 0.849±0.01∗†‡
Bigdata 0.554±0.03 0.559±0.02 0.556±0.01 0.610±0.01∗†‡ 0.577±0.00∗†‡

Ecoli 0.362±0.02 0.365±0.02 0.343±0.01 0.371±0.01∗†‡ 0.378±0.00∗†‡
Optdigits 0.175±0.02 0.186±0.00 0.172±0.00 0.183±0.01∗†‡ 0.177±0.01∗†‡

Dermatology 0.254±0.03 0.228±0.04 0.204±0.01 0.269±0.01∗†‡ 0.286±0.02∗†‡
Folio1 0.388±0.04 0.417±0.02 0.407±0.01 0.426±0.02∗†‡ 0.445±0.01∗†‡

Table IV: Clustering quality on SSE

Dataset k-means k-means++ minmax k-means k∗-means k∗-means++

Smalldata 1.08E+03±383.47 2.77E+02±112.35 1.21E+03±878.40 1.44E+02±35.14∗†‡ 1.03E+02±2.21∗†‡
Bigdata 2.14E+03±576.16 9.73E+02±114.08 9.02E+02±26.58 1.22E+03±65.59 ∗†‡ 8.26E+02±10.22∗†‡
Ecoli 5.06E-02±0.00 4.99E-02±0.00 5.30E-02±0.00 5.07E-02±0.00∗†‡ 4.96E-02±0.00∗†‡

Optdigits 6.69E+02±18.54 6.58E+02±3.55 6.66E+02±0.11 6.64E+02±11.70∗†‡ 6.73E+02±14.13∗†‡
Dermatology 9.79E+00±0.25 9.65E+00±0.32 1.01E+01±0.01 9.67E+00±0.19∗†‡ 9.30E+00±0.18 ∗†‡

Folio1 2.69E-03±0.00 2.34E-03±0.00 2.50E-03±0.00 2.37E-03±0.00∗†‡ 2.21E-03±0.00∗†‡

83% of tested cases. This is because carefully selection of k∗

initial centers further optimizes probability range of best local

optima by avoiding centers that are too close to each other

compared to random initialization.

SSE. Table IV shows the SSE metrics of algorithms on 6
datasets. K∗-means obtains better(smaller) SSE on 2 datasets

and k-means++ reaches better results on 5 datasets. This

is because carefully seeding more easily guides k-means++

to converge to a better local minima of SSE than random

initialization. MinMax k-means produces a better maximum

sse of cluster but not a better SSE value. However, our

proposed k∗-means++ exhibits best SSE values on all datasets

but optdigits.

In summary, the above comprehensive experiments confirm

the effectiveness of our proposed k∗-means in attaining clus-

ters of better quality. Furthermore, our k∗-means integrated

with k-means++ initialization robustly achieves best quality

clusters in most real applications.

C. Efficiency Evaluation

Next, we evaluate the efficiency of our k∗-means compared

against k-means, k-means++ and MinMax k-means on 10
datasets when k∗ = 2k, n = 2 and θ = 0.05. Fig.6 shows

the results of running time on 2 groups of dataset. We can see

that k-means costs lowest CPU time and MinMax consumes

much more time compared to other algorithms. However, our

k∗-means costs same order of magnitudes CPU time compared

to k-means and k-means++. This is because k∗-means utilizes

merging optimization, cluster pruning strategy and optimized

update theory to reduce the computation cost significantly,

while MinMax k-means adds a maximization step that up-

dates objective with weighting mechanism in each iteration,

which increases much more computation costs. Specially when

dataset is unbalanced, MinMax k-means is more inefficient.

In particular, k∗-means and k∗-means++ just cost 2 or 3 folds

CPU time compared to k-means on most datasets.

D. Determining of parameter k∗

Finally, we conduct experiments to explore the selection of

k∗ value on 4 datasets (2 synthetic datasets and 2 real world

datasets). We measure the NMI score and SC value by varying

k∗ from 1k to 4.5k with 0.5k increment when k is fixed to the

number of classes, n = 2 and θ = 0.05. The results is shown

in Fig.7, (a)(b) are NMI scores on the 4 datasets and (c)(d) are

SC values on the 4 datasets, respectively. We observe that NMI

scores of our proposed k∗-means increases as k∗ increases, but

247248248

(a) Group 1(log scale) (b) Group 2(log scale)

Figure 6: CPU time of algorithms on 6 datasets

when k∗ ≥ 2k the NMI score is no longer growth and remains

stable. Similarly, SC value also holds stable when k∗ reaches

at 2k or 2.5k on tested datasets. This may be because range

of initial seeds could cover all of cluster when k∗ enlarges to

2k. And it dose not further improve the quality of clustering if

continue to increase k∗. Namely we can not obtain an better

result if k∗ is greater than 2k, that is exactly why we set

k∗ = 2k in above experiments.

1k 1.5k 2k 2.5k 3k 3.5k 4k 4.5k
0.85

0.9

0.95

1

Number of K*

N
M

I

Small
Bigdata

(a) NMI on Group 1

1k 1.5k 2k 2.5k 3k 3.5k 4k 4.5k

0.65
0.7

0.75
0.8

0.85
0.9

0.95

Number of K*

N
M

I

Optdigits
Dermatology

(b) NMI on Group 2

1k 1.5k 2k 2.5k 3k 3.5k 4k 4.5k
0.5

0.6

0.7

0.8

0.9

Number of K*

S
C

Small
Bigdata

(c) SC on Group 1

1k 1.5k 2k 2.5k 3k 3.5k 4k 4.5k
0.1

0.15

0.2

0.25

0.3

0.35

Number of K*

S
C

Optdigits
Dermatology

(d) SC on Group 2

Figure 7: Impact of k∗ on NMI and SC

VI. CONCLUSIONS

In this work we propose a novel optimized hierarchical

clustering method incorporated with three optimization prin-

ciples. K∗ initial centers effectively improves the probability

of obtaining best local optima, and multi-round top-n nearest

clusters merging approaches the optimal result gradually. The

top-n and update principle optimizations update feature values

of clusters by previous clusters or moved objects instead of

re-computation from scratch. And the pruning strategy reduces

significantly the adjusting searching space for each points in

k-means iteration.
An interesting direction for future work is to leverage

modern distributed multi-core cluster of machines for further

improving the scalability of our algorithm.

VII. ACKNOWLEDGMENTS

This work is partially supported by the National Natural
Science Foundation of China (nos. 61403328, 61572419 and

61502410), the Key Research & Development Project of
Shandong Province (no. 2015GSF115009), and the Shandong
Provincial Natural Science Foundation (nos. ZR2013FQ023
and ZR2013FM011).

REFERENCES

[1] Hassan A Kingravi M Emre Celebi and Patricio A Vela. A comparative
study of efficient initialization methods for the k-means clustering
algorithm. Expert Systems with Applications, 40(1):200–210, 2013.

[2] J. Macqueen. Some methods for classification and analysis of multivari-
ate observations. In In 5th Berkeley Symp. Math. Statist. Prob, pages
281–297, 1967.

[3] Paul S Bradley and Usama M Fayyad. Refining initial points for k-means
clustering. In ICML, volume 98, pages 91–99, 1998.

[4] Bahman Bahmani, Benjamin Moseley, Andrea Vattani, Ravi Kumar, and
Sergei Vassilvitskii. Scalable k-means++. VLDB, 5(7):622–633, 2012.

[5] Anil K Jain. Data clustering: 50 years beyond k-means. Pattern
Recognition Letters, 31(8):651–666, 2010.

[6] Zhipeng Cai, Maysam Heydari, and Guohui Lin. Clustering binary
oligonucleotide fingerprint vectors for dna clone classification analysis.
Journal of Combinatorial Optimization, 9(2):199–211, 2005.

[7] Zhipeng Cai, Randy Goebel, Mohammad R Salavatipour, Yi Shi, Lizhe
Xu, and Guohui Lin. Selecting genes with dissimilar discrimination
strength for sample class prediction. In APBC, pages 81–90, 2007.

[8] Zhipeng Cai, Lizhe Xu, Yi Shi, Mohammad R Salavatipour, Randy
Goebel, and Guohui Lin. Using gene clustering to identify discrimi-
natory genes with higher classification accuracy. In BioInformatics and
BioEngineering, 2006. BIBE 2006. Sixth IEEE Symposium on, pages
235–242. IEEE, 2006.

[9] José Manuel Pena, Jose Antonio Lozano, and Pedro Larranaga. An
empirical comparison of four initialization methods for the k-means
algorithm. Pattern Recognition Letters, 20(10):1027–1040, 1999.

[10] David Arthur and Sergei Vassilvitskii. k-means++: The advantages of
careful seeding. In ACM-SIAM Symposium on Discrete Algorithms,
pages 1027–1035, 2007.

[11] Grigorios Tzortzis and Aristidis Likas. The minmax k-means clustering
algorithm. Pattern Recognition, 47(7):2505–2516, 2014.

[12] Greg Hamerly. Making k-means even faster. In SDM, pages 130–140,
2010.

[13] E. W. Forgy. Cluster analysis of multivariate data: Efficiency vs.
interpretability of classification. Biometrics, 21(3):768–769, 1965.

[14] Tobias Brunsch and Heiko Röglin. A bad instance for k-means++. In
Theory and Applications of Models of Computation, pages 344–352.
2011.

[15] Ting Su and Jennifer G Dy. In search of deterministic methods for
initializing k-means and gaussian mixture clustering. Intelligent Data
Analysis, 11(4):319–338, 2007.

[16] J. F. Lu, J. B. Tanga, Z. M. Tanga, and J. Y. Yanga. Hierarchical
initialization approach for k-means clustering. Pattern Recognition
Letters, 29(6):787C795, 2008.

[17] Stephen J. Redmond and Conor Heneghan. A method for initialising
the k-means clustering algorithm using kd-trees. Pattern Recognition
Letters, 28(8):965–973, 2007.

[18] Tapas Kanungo, David M Mount, Nathan S Netanyahu, Christine D
Piatko, Ruth Silverman, and Angela Y Wu. An efficient k-means
clustering algorithm: Analysis and implementation. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 24(7):881–892, 2002.

[19] Ming-Chuan Hung, Jungpin Wu, Jin-Hua Chang, and Don-Lin Yang. An
efficient k-means clustering algorithm using simple partitioning. Journal
of Information Science and Engineering, 21(6):1157–1177, 2005.

[20] Weizhong Zhao, Huifang Ma, and Qing He. Parallel k-means clustering
based on mapreduce. In Proceedings of International Conference on
Cloud Computing, pages 674–679, 2009.

[21] University of California. Machine learning repository. http://archive.ics.
uci.edu/ml/.

[22] Peter J Rousseeuw. Silhouettes: a graphical aid to the interpretation and
validation of cluster analysis. Journal of Computational and Applied
Mathematics, 20:53–65, 1987.

248249249

