
Research Article

International Journal of Distributed
Sensor Networks
2017, Vol. 13(8)
� The Author(s) 2017
DOI: 10.1177/1550147717728627
journals.sagepub.com/home/ijdsn

An effective and efficient hierarchical
K-means clustering algorithm

Jianpeng Qi, Yanwei Yu, Lihong Wang, Jinglei Liu and Yingjie Wang

Abstract
K-means plays an important role in different fields of data mining. However, k-means often becomes sensitive due to its
random seeds selecting. Motivated by this, this article proposes an optimized k-means clustering method, named k*-
means, along with three optimization principles. First, we propose a hierarchical optimization principle initialized by k*
seeds (k�.k) to reduce the risk of random seeds selecting, and then use the proposed ‘‘top-n nearest clusters merging’’
to merge the nearest clusters in each round until the number of clusters reaches at k. Second, we propose an ‘‘opti-
mized update principle’’ that leverages moved points updating incrementally instead of recalculating mean and SSE of
cluster in k-means iteration to minimize computation cost. Third, we propose a strategy named ‘‘cluster pruning strat-
egy’’ to improve efficiency of k-means. This strategy omits the farther clusters to shrink the adjustable space in each
iteration. Experiments performed on real UCI and synthetic datasets verify the efficiency and effectiveness of our pro-
posed algorithm.

Keywords
Data mining, clustering, k-means, top-n merging, cluster pruning

Date received: 19 May 2017; accepted: 13 July 2017

Academic Editor: Zhipeng Cai

Introduction

Clustering is to partition the data into different clusters
with respect to similarity measures and is one of the
most important tasks in data analysis, such as pattern
discovery, pattern recognition, data summary, and
image processing.1 These fields now include many
branches, namely partition-based methods, model-
based methods,2 hierarchical methods,3 density-based
methods,4–6 graph-based methods, grid-base methods,7

and clustering ensemble methods.8 Partition-based
method is the simplest and most important part of clus-
ter analysis, and many algorithms are raised to facili-
tate its process such as k-means,9k-means++,10 and
k-medoids.11

K-means is a skillful and classic method in cluster-
ing. Given a dataset D= fpiji= 1, . . . , ng, pi in
d-dimensional space <d , k-means first selects k initial
seeds, then assigns the set of points into k clusters by
minimizing sum of squared error (SSE). Equation (1)

shows the function of k-means, where k pi � mj k is the
distance between point pi and cluster Cj’s center mj that
can be computed by equation (2)

SSE=
Xk

j= 1

Xn

i= 1

dij k pi �mjk2

(dij = 1 if pi 2 Cj and 0 otherwise)

ð1Þ

mj =

P
pi2Cj

pi

jCjj
ð2Þ

School of Computer and Control Engineering, Yantai University, Yantai,

China

Corresponding author:

Yanwei Yu, School of Computer and Control Engineering, Yantai

University, Yantai 264005, China.

Email: yuyanwei@ytu.edu.cn

Creative Commons CC-BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License

(http://www.creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without

further permission provided the original work is attributed as specified on the SAGE and Open Access pages (http://www.uk.sagepub.com/aboutus/

openaccess.htm).

https://doi.dox.org/10.1177/1550147717728627
https://journals.sagepub.com/home/ijdsn

Due to it is simple yet effective, k-means becomes a
widely used clustering algorithm across different disci-
plines over the past 50 years.12–15 However, k-means
has an obvious limitation that it is sensitive to the initial
seeds selecting. Random initial centers always lead to k-
means trapped in the local optimum easily. A frequent
observation that k-means usually merges small adjacent
clusters into a larger one or divides a large cluster into
several small partitions to let SSE reaching the conver-
gence. Figure 1 shows an example of clusters obtained
by k-means that starts with a bad initialization. We can
see that one cluster is divided into two sub-clusters on
the bottom right corner, and on the upper-right, two
near clusters are mistakenly merged into one cluster.

Many work attempts to resolve the sensitivity of
initialization for k-means.1,16 Arthur and Vassilvitskii17

propose a probability-based seeds selecting method
called k-means++. The probability of point p to be an
initial center can be calculated by prior selected seeds.
K-means++ first chooses a seed xi randomly, and then
selects the rest of initial seeds by probabilities. These
probabilities can be calculated by computing the short-
est squared distance D2 between the prior chosen cen-
ters and the rest points. The more bigger D2 means the
probability more higher. However, for obtaining k cen-
ters, k-means++ needs to take k passes over the data
that limit the applicability on massive dataset. Tzortzis
and Likas18 propose a method called MinMax k-means
to tackle the initialization problem. In this method, a
weighting factor is used to minimize the maximum
intra-cluster sum of squared error (ssemax) instead of
the global SSE. That is, MinMax k-means tries to mini-
mize the largest intra-cluster variance to reduce the glo-
bal SSE across a weighting factor with each cluster.
However, MinMax does not obtain better clusters
directly, especially for unbalanced cluster distribution.
It also still needs to further optimize the result by per-
forming k-means starting with MinMax k-means result.
In addition, the weighting mechanism also leads to
additional expensive computations.

Moreover, k-means suffers from the high computa-
tional complexity for processing high-volume datasets.
Hence, there is another class of methods that attempt
to improve the performance of k-means. To accelerate
k-means, Hamerly19 leverages the distance bounds and
triangle inequality to avoid the redundant distance cal-
culation. On the other hand, parallel solutions are also
developed to further improve the performance of
k-means. In Bahmani et al.,10 they propose a scalable
k-means++ to accelerate the initialization process in
parallel on Hadoop platform. The parallel computa-
tional model reduces the number of passes over large
datasets.

In this article, we propose k*-means algorithm, a
novel hierarchical clustering, to improve both effective-
ness and efficiency of k-means. In k*-means, we first
start k-means with k�(k�.k) initial centers that are
selected randomly, and then iteratively use the ‘‘top-n
nearest clusters merging’’ to merge the closest clusters
and further refine clusters by k-means until the total
number of clusters reaches at k. In this process, we pro-
pose three optimization principles to minimize the CPU
cost. First, we reuse the clusters’ features of last itera-
tion to fast generate the features of new combined clus-
ter in ‘‘top-n nearest clusters merging’’ process. Second,
we formalize the ‘‘optimized update principle’’ based on
the observation that just a few fractions of points are
re-partitioned after several iterations. The principle uses
an incremental method to update features of clusters
instead of re-computation. Third, we propose the ‘‘clus-
ter pruning strategy’’ to shrink the adjusting searching
space. In the strategy, we provide a lower bound of
searching distance between two different clusters along
with theoretical analysis. In addition, we also extend
experiments to explore the selecting bound of para-
meter k� and n value.

While this work is based on a conference article,20

the scope of the proposed work has been significantly
extended.

(1) In this article, we now integrate these three
optimized principles into a framework (section
‘‘Framework’’). The framework helps us to bet-
ter understand k*-means algorithm in a holistic
approach.

(2) We now add and elaborate the proof of the
proposed principles and strategies. These mate-
rials include ‘‘top-n nearest cluster merging’’
(Lemma 1), ‘‘optimized update principle’’
(Lemma 2 and Lemma 3), and ‘‘cluster pruning
strategy’’ (Lemma 4).

(3) We give the pseudo-code of ‘‘top-n merging
method’’ (Algorithm 2) and ‘‘optimized update
method’’ (Algorithm 3) with further descriptions.

(4) We extend the experimental evaluation focus-
ing on the effectiveness (section ‘‘Effectiveness

Figure 1. Example of clusters begins with a bad initialization.

2 International Journal of Distributed Sensor Networks

evaluation’’) and efficiency (section ‘‘Efficiency
evaluation’’) of proposed k*-means compared
with other existing methods. In addition, we
also use five additional datasets to extend the
experiments with theoretical analysis.

(5) We now evaluate and discuss the contribution
of three optimization principles on efficiency
(section ‘‘Impact of optimization principles’’).
Experiments show that our proposed three
optimizations reduce CPU time significantly.

(6) We also discuss the value selection of the para-
meter n in ‘‘top-n merging method’’ using addi-
tional experiments (Section ‘‘Determining of
parameters k* and n). From the experimental
study, we find that we can obtain a better clus-
tering result when n is set to 2.

Related work

Initialization methods for k-means

Forgey21 first partition the data into k groups uni-
formly at random, and then choose the means of these
clusters as initial seeds. MacQueen9 proposes two dif-
ferent initialization methods. One method selects the
first k points in the dataset as the initial seeds. And the
other selects k seeds randomly. The former’s result is
different as the order of points, and the latter one may
choose several seeds within a large cluster. A bad case
that selected seeds is too close to each other, as shown
in Figure 1. Bradley and Fayyad11 present a refining
initialization method. The method first selects J subsets
of the data, then chooses k points randomly as the
k-means initial seeds over each subset. Then, they per-
form k-means with MacQueen’s second initialization
method in each group. The obtained centers are com-
bined into superset, which is then clustered by k-means
J times. Finally, the group that reaches the best result
is chosen as the initial seeds.

As mentioned above, k-means++ is a probabilistic-
based seeds selected method. The point that has been
far away from the already selected seeds has a high
chance to be chosen as a center. They claim the com-
plexity of k-means++ reaches at O(log k). However,
the complexity would be much greater than O(log k)22

for clustering high-dimensional dataset.
Su and Dy23 propose two methods, PCA-Part and

Var-Part, to solve the initializing problem. PCA-Part
first regards all the data as one cluster, and then cuts it
into two partitions by the hyperplane that passes
through the cluster centroid and is orthogonal to the
principle eigenvector of cluster covariance matrix.
After that the method repeatedly selects the cluster that
has the greatest SSE to be split until k clusters are pro-
duced. Var-Part computes the variance in each dimen-
sion to find the largest variance of dimension and then

uses a hyperplane to partition the cluster. This method
assumes that the covariance matrix is diagonal. Lu
et al.24 propose a hierarchical initialization method.
They treat the clustering problem as a weighted cluster-
ing problem to find better initial cluster centers based
on the hierarchical approach. Redmond and
Heneghan25 use kd-trees to perform density estimation
of the data at various locations and then use MaxMin
method from densely populated leaf buckets to choose
initial centers.

A recent study named MinMax k-means18 is pro-
posed to overcome the sensitivity of random initializa-
tion. MinMax k-means uses the objective of maximum
ssemax of a single cluster instead of total SSE of all clus-
ters to optimize the clusters. Since MinMax k-means
aims to minimize the maximum intra-cluster variance,
it tries to balance the different scale clusters. Thus, it
suffers from the imbalanced dataset problems. In
extreme cases, the empty or singleton cluster would
cause the algorithm restarting many times. In addition,
the weight mechanism in the objective of MinMax
k-means also causes huge computation resources.

Another category of methods try to eliminate the
dependence on initialization, such as global k-means26

and kernel-based k-means.27 Experimental results show
that these methods achieve a better effectiveness than
random initialization of k-means. However, these algo-
rithms relieve the bad initialization at price of much
more expensive computations.

Optimized variants of k-means on efficiency

Kanungo et al.28 implement an efficient k-means method
that first uses kd-tree to store instances and then adopts
the index to prune or filter the candidate seeds to acceler-
ate the procedure. Hung et al.29 propose a Unit Block
(UB)-based algorithm, which partitions the dataset into
blocks and locates the centroids of the UBs. To improve
the efficiency of k-means, they just examine the UBs that
pass through the boundary of candidate clusters to com-
pute the final converged centroids. Hamerly19 uses dis-
tance bounds and the triangle inequality to accelerate
k-means procedure. Another type of algorithm attempts
to improve the efficiency of k-means from parallel per-
spective. Zhao et al.30 propose a parallel k-means, named
PKMeans, based on Hadoop platform. To accelerate the
process of k-means++, Bahmani et al.10 propose a
MapReduce-based algorithm, which focuses on the initi-
alization stage of k-means++ to fast obtain the prob-
abilistic initial seeds in parallel by reducing the number
of passes. However, these methods also suffer from the
sensitivity of initialization issues.

The algorithm

In this section, we present our proposed k*-means
method for optimizing both quality and efficiency of

Qi et al. 3

k-means. First, we depict overall framework of our k*-
means. We next propose three optimization principles
to further cut down the CPU cost. These principles
include ‘‘top-n nearest clusters merging’’, ‘‘optimized
update principle’’, and ‘‘cluster pruning strategy’’.

Framework

Because k-means selects initial seeds randomly, it is dif-
ficult to avoid choosing noises or nearer points as the
seeds. Figure 1 illustrates the situation happened where
some close clusters are merged and a single cluster is
divided due to a bad initialization. Especially when han-
dle imbalanced or skewed dataset, the risk of random
seeds selecting increases significantly.

Supposing cluster Ci contains ni points, where
i= 1, 2, . . . , k. The probability p that the selected seeds
fall into Cj in k-means initializing is nj=Sni. If cluster Cj

contains a few points, the probability p would become
small. And this situation further causes that some large
clusters catch more than one seed. Apparently, an
intuitive solution is how to improve the probability of
a small cluster getting a seed to avoid a bad initializa-
tion. Thus, we extend the value of k. That is, we choose
k�(k�.k) centers instead of k. The probability of cluster
Cj that owns a seed can be reached at (nj=Sni) � (k�=k).

However, some additional steps need to be imple-
mented to decrease k� to k to obtain final k clusters.
Next, we first introduce our k*-means framework in
algorithm 1.

Top-n nearest clusters merging

As shown in algorithm 1, we first obtain k� clusters by
performing k-means with randomly chosen k�(k�.k)
initial centers. To obtain k clusters in final, we propose
top-n nearest clusters merging strategy. In step 3, the
algorithm would merge the clusters associated with
top-n nearest distances. Before introduce top-n nearest
clusters merging strategy, we first define the edge to
describe the distance between two clusters.

Definition 1 (edge). Given two clusters C1, C2, and their
centers c1, c2, the distance between C1 and C2 is defined
as d = jc1 � c2j, we call the distance edge which con-
nected c1 and c2, denoted e1, 2.

By Definition 1, we only need to find top-n shortest
edge to get top-n nearest clusters. The algorithm of
top-n nearest clusters merging strategy, we call Top-n
method, is given in algorithm 2. We first use an ascend-
ing list structure to store the edges associated with cor-
responding clusters. Then, the top-n shortest edges are
selected and clusters associated with the edges are
merged.

However, top-n merging does not always reduce n

clusters but at most n clusters (denoted as clustersmerge).
For example, three edges ei, j, ei, k , and ej, k in shortlist
are top-3 edges, then the clusters Ci, Cj, and Ck should
be merged into one cluster at the same time, reducing
two clusters. We still name the process top-n merging
because we precisely merge n shortest edges. But we
cannot guarantee to merge n clusters. Instead, the num-
ber of reduced cluster ranges from d(

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ 8 � n
p

� 1)=2e
to n. Therefore, we first need to determine the selection
range of n value. If n is beyond the range, the number
of clusters may be less than k after merging process.
Here, we deduce that n should be smaller than dk� � ke
in each round.

Proof. Suppose the top-n shortest edges involve m clus-
ters. In extreme case of reducing minimum number of
clusters, namely the shortest n edges (one edge corre-
sponding to a combination of two clusters) are just the
combinations of m clusters, then the number of
involved clusters is the least, and all m clusters should

be merged into one cluster. Hence, we have n=C2
m =

(m � (m� 1))=2, then we get m=((1+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ 8 � n
p

)=2).
So, the number of reduced clusters is

m� 1=((
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ 8 � n
p

� 1)=2). Therefore, if the n edges
just are a subset of combinations of m clusters, then the

number of reduced clusters is d((
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ 8 � n
p

� 1)=2)e.
Consider the cases of reducing maximum number of

clusters, the first case is that the n edges involves 2n

clusters, namely there are no duplicated clusters on the
n edges. Intuitively, merging process would reduce n

clusters in this case. The second case is that the m clus-
ters associated with n edges are merged into one cluster
but each of the m clusters appears at most two times
on the n edges. Thus, we deduce m= 2n� (n� 1)=
n+ 1. So, the number of reduced clusters also is n in
this case. Therefore, the number of clusters reduced by
our top-n nearest clusters merging ranges from
d((

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ 8 � n
p

� 1)=2)e to n, and further we obtain
n�dk� � ke to assure the number of clusters is not less
than k after merging process.

Although top-n merging method reduces the number
of cluster, we still need to re-compute the feature values
of merged clusters for next round optimizing. To save
CPU computation, we use a method to get the feature
values of merged cluster directly by utilizing the feature
values of previous clusters. As shown in Figure 2, sup-
pose clusters Ci and Cj belong to top-n nearest clusters,
and C is the merged cluster from Ci and Cj. Therefore,
we can get Lemma 1.

Lemma 1. Given clusters Ci and Cj, mi and mj are means
of Ci and Cj, respectively, and ssei, ssej are SSE of Ci

4 International Journal of Distributed Sensor Networks

and Cj, respectively, if C is merged from Ci and Cj, then
we have

mc =
mi � jCij+mj � jCjj
jCij+ jCjj

ð3Þ

ssec = ssei + ssej + jCij� k mik2 + jCjj� k mjk2

�(jCij+ jCjj)� k mck2
ð4Þ

where mc is means of C, ssec is SSE of C.

Proof. Without loss of generality, let Ci =
fpuju= 1, 2, . . . jCijg and Cj = fqvjv= 1, 2, . . . jCjjg .

First, since mi and mj are means of Ci and Cj, respec-
tively, we have

mi =

PjCij
u= 1 pu
jCij

;mj =

PjCjj
v= 1 qv
jCjj

Then we get equations (5) and (6)

XjCij

u= 1

pu =mi � jCij ð5Þ

XjCjj

v= 1

qv =mj � jCjj ð6Þ

Note that mc is the means of merged cluster C, we
have

mc =

P
o2C o

jCj

=

PjCij
u= 1 pu +

PjCjj
v= 1 qv

jCij+ jCjj

=
mi � jCij+mj � jCjj
jCij+ jCjj

Second, ssei and ssej are SSE of Ci and Cj, respec-
tively, thus

ssei =
XjCij

u= 1

k pu �mik2

=
X
k puk2 � 2mi

X
pu +

XjCij

1

k mik2

ssei + ssej =
XjCij

u= 1

k puk2 +
XjCjj

v= 1

k qvk2 � 2mi

XjCij

u= 1

pu

� 2mj

XjCjj

v= 1

qv + jCij� k mik2 + jCjj� k mjk2

ð7Þ

And then, we get equation (8) by equation (7)

XjCij

u= 1

k puk2 +
XjCjj

v= 1

k qvk2 = ssei + ssej

� jCij� k mik2 � jCjj� k mjk2

+ 2mi

XjCij

u= 1

pu + 2mj

XjCjj

v= 1

qv

ð8Þ

By equations (5) and (6), we also get

2mi

XjCij

u= 1

pu + 2mj

XjCjj

v= 1

qv

= 2jCij� k mik2 + 2jCjj� k mjk2

ð9Þ

Hence, we deduce equation (10) by equations (8)
and (9)

XjCij

u= 1

k puk2 +
XjCjj

v= 1

k qvk2

= ssei + ssej + jCij� k mik2 + jCjj� k mjk2

ð10Þ

Figure 2. An example of cluster merging: (a) before merging and (b) after merging.

Qi et al. 5

Because all points in Ci and Cj form cluster

C: C = fo1, o2, . . . , om+ ng,
PjCij+ jCjj

u= 1 k ouk2 =
PjCij

u= 1

k puk2 +
PjCjj

v= 1 k qvk2

ssec =
XjCij+ jCjj

u= 1

k ou � mck2

=
XjCij+ jCjj

u= 1

k ouk2 � 2mc

XjCij+ jCjj

u= 1

ou

+(jCij+ jCjj)� k mck2

=
XjCij

u= 1

k puk2 +
XjCjj

v= 1

k qvk2 � 2mc

XjCij+ jCjj

u= 1

ou

+(jCij+ jCjj)� k mck2

ð11Þ

By equations (5) and (6) we have

2mc

XjCij+ jCjj

u= 1

ou = 2(jCij+ jCjj)� k mck2 ð12Þ

Substituting equation (12) into equation (12), we
obtain equation (13)

ssec =
XjCij

u= 1

k puk2 +
XjCjj

v= 1

k qvk2

� (jCij+ jCjj)� k mck2

ð13Þ

Therefore, we have equation (4) by equations (10)
and (13), and we are done.

Lemma 1 implies that the feature values of merged
cluster can be computed directly according to those of
previous sub-clusters. Therefore, our top-n nearest clus-
ters merging exactly leverages the optimization strategy
to reduce merging cost.

Optimized update principle

From extending experiments on UCI data (see details
in section ‘‘Experimental setup and methodologies’’),
we observe that the number of moved points declines
sharply during the k-means iteration processes.
Figure 3 shows two samples over two real-world data-
sets. As k-means iteration goes on, the points in clusters
trend toward stability; thus, the number of moved
points also goes toward zero. In particular, the number
of points moved across clusters is very low after the
forth iteration. And only average 3% of points are
adjusted from fifth iteration to end. Motivated by this
observation, we propose an optimized update principle,
which updates feature values in each iteration using the
moved points instead of re-computation from all
points.

To understand our optimized update principle, we
first state Lemma 2 and Lemma 3.

Lemma 2. Given a cluster Ci, and its center mi and sum
of squared error ssei, if a point p is added into Ci, then
we get the new center m0i and sum of squared error ssei0

as equations (14) and (15), where jCij is number of
points in Ci

m0i =mi +
p�mi

jCij+ 1 ð14Þ

sse0i = ssei +
jCij�kp�mik2

jCij+ 1
ð15Þ

Proof. Lemma 2 can be easily proved by Lemma 1.
Consider p as a singleton Cj that just has one point.
Thus we have

m0i =
mi � jCij+ p � 1
jCij+ 1

=
mi � (jCij+ 1)�mi + p

jCij+ 1

=mi +
p�mi

jCij+ 1

Figure 3. The number of moved points in k-means iterations: (a) dermatology and (b) optdigits.

6 International Journal of Distributed Sensor Networks

and

sse0i = ssei + 1+ jCij� k mik2 + 1� k pk2

�k mi � jCij+ p � 1k2

jCij+ 1

= ssei +
jCij� k p�mik2

jCij+ 1

ð16Þ

Lemma 3. Given a cluster Ci, and its center mi and sum
of squared error ssei, if a point p is moved out from Ci,
then we get the new center m0i and sum of squared error
sse0i as equations (17) and (18), where jCij is the number
of points

m0i =mi +
mi � p

jCij � 1
ð17Þ

ssei0 = ssei �
jCij� k mi � pk2

jCij � 1
ð18Þ

Proof. First, we show proof of equation (17).
Since

m0i =

P
o2C o

� �

jCij � 1
� p

By equation (5), we can easily get

m0i =
mi � jCij � p

jCij � 1

=
mi � jCij �mi +mi � p

jCij � 1

=mi +
mi � p

jCij � 1

ð19Þ

Next, we give proof of equation (18). Let ssei denote
the previous SSE value, ssei0 be the current value. Let
∂sse be the difference between ssei and ssei0 . Thus,
∂sse= ssei � ssei0 when move out p from Ci

∂sse= ssei � sse0i

=
XjCij

u= 1

k pu �mik2 �
XjCij�1

u= 1

k pu �m0ik2

=
XjCij

u= 1

k puk2 � 2mi

XjCij

u= 1

pu + jCij� k mik2

�
XjCij�1

u= 1

k puk2 + 2m0i
XjCij�1

u= 1

pu

�(jCij � 1)� k m0ik2

Because

k pk2 =
XjCij

u= 1

k puk2 �
XjCij�1

u= 1

k puk2

Therefore, we have

∂sse= k pk2 � 2mi

XjCij

u= 1

pu + jCij� k mik2

+ 2m0i
XjCij�1

u= 1

pu � (jCij � 1)� k m0ik2

According to equation (5), then we get

∂sse= k pk2 � jCij� k mik2 +(jCij � 1)� k m0ik2

We further deduce that

∂sse= k pk2 � jCij� k mik2

+(jCij � 1)� k mi +
mi � p

jCij � 1
k2

=
jCij� k mi � pk2

jCij � 1

by equation (17).
Because ssei0 = ssei � ∂sse, hence equation (18) is

obtained and we are done.
Lemma 2 and Lemma 3 depict updating method of

mean and SSE of cluster when a point is moved in or
out, respectively. Therefore, the feature values of a
cluster can be maintained incrementally via the moved
points during k-means iteration, rather than
re-computed from all points in the cluster.

Armed with Lemma 2 and Lemma 3, we propose
the optimized update method to reduce computation
costs, as shown in algorithm 3. In each iteration, we
maintain the copies of feature values incrementally
according to moved points. Optimized update method
obviously saves much computation resource when the
number of moved points is very low. However, at
beginning iterations of k-means, specially, the first
round k-means, moved points amount is relatively
larger, and the optimized update method may cost
more time than completed method. Therefore, we use a
threshold u, the percentage of moved points in each
iteration, to determine whether start to perform opti-
mized update method in the first round k-means. In
subsequent experiments, we set u= 5%.

Cluster pruning strategy

To reduce the computational costs, we now introduce
optimization principle, regarding to minimization of
distance comparison, termed cluster pruning strategy.

Qi et al. 7

In k-means iterations, each point needs to be exam-
ined if it is closer to its center than any other centers.
Hence, each point has a larger searching space. For
example, if there are k clusters, each point needs to cal-
culate and compare distance (k � 1) times in each itera-
tion. However, most of these computations are
redundant. As exactly shown in Figure 3, only very few
points would be moved among clusters in adjusting
iterations. We also observe that if two clusters are dis-
tant from each other, the points in these two clusters
are no need to compare with each other in adjusting
steps.

Next, we introduce our pruning optimization
method for each point at cluster level based on defini-
tion 2 and Lemma 4.

Definition 2 (radius). Given a cluster Ci, the radius of the
cluster Ci is the maximum distance from the center of
Ci to its points, denoted Ri.

Lemma 4. Given two clusters Ci, Cj, and their radius Ri,
Rj, if ei, j � Ri +Rj + jRi � Rjj, then there is no point in
Ci(Cj) that is moved into Cj(Ci) in adjusting iterations.

Proof. Suppose there are two clusters, Ci and Cj, their
radius are Rj and Ri, respectively, as shown in Figure 4.
Without loss of generality, we assume Ri.Rj, let d

denote the gap between two clusters; thus,
d = ei, j � Ri � Rj. Obviously, all points in Cj are closer
to mj (the center of Cj) than mi (the center of Ci).

Now, we consider the farthest point in Ci, denoted
p. By the definition of radius, the distance from p to
the center of Ci is Ri, and the distance from p to the
center of Cj must not be less than d +Rj, namely
distance(p,mj) � d +Rj.

If distance(p,mj) � Ri, then all points in Ci are not
moved into Cj certainly. Hence, if d +Rj � Ri, then
distance(p,mj) � Ri must hold.

Since

d +Rj � Ri) ei, j � Ri � Rj +Rj � Ri

) ei, j � Ri +Rj + jRi � Rjj

Therefore, ei, j � Ri +Rj + jRi � Rjj guarantees that
there is no point that be adjusted between Ci and Cj.

Lemma 4 guides our pruning rule for k*-means itera-
tion. For each cluster Ci, if distances between Ci and
other clusters, namely edges associated with Ci, are
greater than the pruning distance of Ri +Rj + jRi � Rjj,
then we eliminate these farther clusters from searching
space in k*-means iteration with respect to Ci.

It is essential to show the usage of radius in pruning.
Each cluster C contains two additional indicators called
radius and radius0. radius refers to the Definition 2 and
radius0 represents a duplicate of radius. In k-means
adjusting iterations, we first scan each point p in Ci, if p

needs to be moved into another cluster Cj and the dis-
tance between p and mj is larger than Cj:radius0, then we
update Cj:radius0. Meanwhile, if a point p0 in another
cluster needs to be moved into Ci, we also update
Ci:radius0 if necessary. After each iteration, we assign
the value of Ci:radius0 and Cj:radius0 to their Ci:radius

and Cj:radius, respectively. These steps are shown in
lines 7–21 of Algorithm 4.

k*-means algorithm

Next, we present our extending k*-means algorithm
based on our proposed three optimization strategies.
The detail pseudo-code of k*-means is shown in algo-
rithm 4.

In k*-means, we also use the random initialization
method to choose k� starting centers, and first assign
all points into k� clusters. Then, we get feature values
of mean for each cluster, as shown in lines 1–3. Next,
k*-means performs hierarchical clustering along with
k-means adjusting iteration in lines 4–22 and the top-n
nearest clusters merging strategy in line 23–25. Line 6
describes the proposed cluster pruning strategy. We use
collections CS to store the neighbor clusters of the spe-
cific cluster after prune remote clusters by Lemma 4.
Then, we only need to verify the adjustable clusters in
search space of CS for each point in Ci. Once the per-
centage of the moved points is lower than given u in
first round, k-means optimized update principle will be
started and radius0 will be updated during this process
(lines 8–19). For algorithm’s efficiency, we maintain a
value radius0 in each cluster to update its radius (lines
10–14). At the end of each iteration, each cluster mean
m and its radius are replaced by m0 and radius0 directly.
Lines 23–25 show top-n nearest clusters merging which

Figure 4. Pruning distance between two clusters.

8 International Journal of Distributed Sensor Networks

reduces the number of clusters from jCj to
jCj � ½d((

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ 8 � n
p

� 1)=2)e, n�. Therefore, parameter
n is not fixed, but ranges from given n to 1. For each
round refining of k*-means, we use a decrease strategy
to determine value of n, and a top-1 may be performed
at final round to make number of clusters reach at k.

Experiments

Experimental setup and methodologies

All algorithms are implemented by Java, and all experi-
ments are performed on platform equipped with
2.4 GHz Intel Core i3 CPU, 4 GB memory, and
Windows 7 operating system.

Datasets. We use 11 datasets including 4 synthetic data-
sets and 7 real-world datasets from the UCI Machine
Learning Repository31 to evaluate the effectiveness and
efficiency of our k*-means. These datasets cover many
fields such as spatial data, image, text, etc. As described
in Table 1, D1–4 are generated by our data generator
using mixture Gauss model for covering different situa-
tions, such as unbalanced clusters, clusters with arbi-
trary shapes.

As shown in Figure 5(a), D1 includes 30 clusters that
composed of 3851 points. In this dataset, each cluster
contains less than 200 points with Gauss distribution
and number of clusters is balanced. We denote the small
dataset as Smalldata.

D2 (Figure 5(b)) includes five clusters with clear
gaps; number of points in the dataset reaches at 18,000
but is unbalanced in each cluster. We name the unba-
lanced dataset Unbaldata.

D3 (Figure 5(c)) contains 41,065 points, which con-
sists of 12 clusters. Clusters of the dataset are also unba-
lanced but with clear shape. This dataset is denoted as
LargeUnbal.

The forth dataset shown in Figure 5(d) comprises
massive data points of 120,000, including 50 clusters

with arbitrary shapes. Moreover, there are no obvious
gaps for some clusters, and the number of points in
clusters also is unbalance. We denote the big dataset
with arbitrary shape clusters as Bigdata.

Ecoli31 is calculated from the amino acid sequences,
which includes 8 classes that comprised of 336 proteins.
The data has eight attributes (includes one label), and
the number of classes is different, thus it is an unba-
lanced dataset.

Pendigits31 is collected from 44 writers, which con-
tains 10,992 instances that represented as constant
length feature vectors in 16-dimensional space.

Optdigits31 is optical recognition of handwritten
digits by extracting normalized bitmaps of handwritten
digits from a preprinted form. Each preprinted form is
represented as an 8 3 8 matrix, where every element is
an integer. The dataset includes 5620 instances in
64-dimensional space.

Dermatology31 contains 366 patients with 34 attri-
butes, which is partitioned into 6 types of erythemato-
squamous disease. The dataset is also unbalanced.

Folio1 & Folio231 are leaves images taken from dif-
ferent plants in the farm of the University of Mauritius
and nearby locations. We first extract the SIFT descrip-
tors from these images, and then use the bag of 500
visual words to represent the data. Two subsets of the
data were generated, Folio1 (300 leaves from 15 differ-
ent types of plants, balanced) and Folio2 (300 leaves
but from 20 different types of plants and unbalanced).

CNAE-931 contains 1080 documents of free text
business descriptions of Brazilian companies. These
documents are categorized into a subset of nine cate-
gories. Each document is represented as a vector, where
the weight of each word is its frequency in the
document.

Experimental methodologies. For effectiveness evaluation
of our algorithm, we use three metrics of average SSE,
normalized mutual information (NMI), and Silhouette

Table 1. Descriptions of synthetic and real-world datasets.

No. Dataset No. of points No. of attributes No. of classes

D1 Smalldata 3851 2 30
D2 Unbaldata 18,000 2 5
D3 LargeUnbal 41,650 2 12
D4 Bigdata 120,000 2 50
D5 Ecoli 307 7 4
D6 Pendigits 10,992 16 10
D7 Optdigits 5620 64 10
D8 Dermatology 366 34 6
D9 Folio1 300 500 15
D10 Folio2 300 500 20
D11 CNAE-9 1080 857 9

Qi et al. 9

coefficient (SC)32 to estimate the quality of clustering.
SSE utilized is described as equation (1) in section
‘‘Introduction’’, and we take the average SSE that
divides total SSE by the number of points. Equation
(20) depicts computing method of NMI, where wk is the
obtained cluster k, cj is the labeled class j, N is the size
of dataset, and theHM andHC represent the entropy of
clusters and classes, respectively

NMI=

P
k

P
j

jwk\cj j
N

log
N jwk\cj j
jwk j�jcj j

½HM +HC �=2

ð20Þ

H is defined as equation (21)

HM = �
P

k

jwk j
N

log jwk j
N ð21Þ

Therefore, NMI score ranges from 0 to 1.0, more
higher value indicates more better quality of clustering.

As shown in equation (20), we need additional
labeled class information for computing NMI score.
But it is difficult to obtain data with annotations in
many real-world applications. So, we also adopt
another widely used metric SC, which describes both
similarity among points in intra-cluster and differences
among clusters without cluster labels. Let a(i) be the
average distance of point i to all other points within the
same cluster. Let b(i) be the minimum average distance
of point i to other clusters. Equation (22) shows the SC
for point i

s(i)= b(i)�a(i)
maxfa(i), b(i)g ð22Þ

The average SC of all points (
PN

i= 1 s(i)=N) is
regarded as the SC value. Thus, SC 2 (� 1, 1), similar
with NMI, higher SC value indicates the obtained clus-
ters are more distinguished clearly.

Figure 5. Demonstrations of four synthetic datasets: (a) D1, (b) D2, (c) D3, and (d) D4.

10 International Journal of Distributed Sensor Networks

For efficiency evaluation, we measure the common
metrics of CPU consumption. All experiments are con-
ducted 10 times on each dataset, and we take the aver-
age CPU time. Moreover, we discuss the selection of k�

value by analyzing the impact of k� on effectiveness
and efficiency in section ‘‘Determining of parameters
k* and n.’’

Alternative algorithm. We compare our algorithm against
k-means, k-means++, and MinMax k-means. We also
apply k-means++ initialization method into our k*-
means, named k*-means++ algorithm. That is, k*-
means++ chooses k� initial centers using D2 weighting
probability instead of random selection.

Effectiveness evaluation

First, we evaluate the clustering quality of k*-means on
11 datasets when k� is fixed to 2k, n= 2, and u= 0:05.
Note that we set memory lever b= 0:3 for MinMax
k-means. Tables 2–4 show the experimental results.
Asterisk (�), dagger (y), and double dagger (z) super-
scripts denote that k*-means or k*-means++ has a

statistically significant difference to k-means, k-mean-
s++, and MinMax k-means, respectively, according to
the standard deviation. A line above (below) these sym-
bols stands for a higher (lower) average. To distinguish
the best result, the top-2 best results on each dataset
are shown in bold.

NMI. The results of NMI on 11 datasets are shown in
Table 2, our k*-means is superior to k-means, k-mean-
s++, MinMax k-means on all datasets but pendigits.
In particular, NMI scores on four synthetic data
demonstrate that k*-means has better ability of han-
dling various scenarios compared to other tree algo-
rithms. Even on real-world datasets, k-means also
achieves robustly higher NMI score. In particular, it is
worth noting that k*-means also works better than the
competitors on the high-dimensional text dataset
CANE-9. This clearly displays that k� initial centers
can better cover all of clusters and multiple-round mer-
ging improves the quality of clustering.

For k-means++, its probability initialization pro-
cess improves performance to a certain extend com-
pared to randomly starting of k-means. MinMax

Table 2. Clustering quality on NMI.

Dataset k-means k-means++ MinMax k-means k*-means k*-means++

Smalldata 0.933 6 0.01 0.967 6 0.01 0.932 6 0.02 0.991 6 0.00�yz 0.996 6 0.00�yz
Unbaldata 0.869 6 0.07 0.926 6 0.07 0.957 6 0.03 0.974 6 0.05�yz 0.998 6 0.00�yz
LargeUnbal 0.915 6 0.07 0.916 6 0.02 0.923 6 0.02 0.969 6 0.03�yz 0.991 6 0.02�yz
Bigdata 0.889 6 0.01 0.905 6 0.01 0.904 6 0.00 0.913 6 0.00�yz 0.915 6 0.00�yz
Ecoli 0.616 6 0.02 0.617 6 0.03 0.550 6 0.01 0.635 6 0.03�yz 0.617 6 0.01�yz
Pendigits 0.681 6 0.01 0.661 6 0.01 0.680 6 0.01 0.671 6 0.01�yz 0.672 6 0.00�yz
Optdigits 0.718 6 0.02 0.724 6 0.02 0.708 6 0.00 0.719 6 0.01�yz 0.711 6 0.01�yz
Dermatology 0.861 6 0.05 0.828 6 0.04 0.775 6 0.01 0.863 6 0.04�yz 0.878 6 0.02�yz
Folio1 0.532 6 0.02 0.534 6 0.01 0.540 6 0.00 0.550 6 0.02�yz 0.555 6 0.02�yz
Folio2 0.606 6 0.01 0.601 6 0.01 0.610 6 0.01 0.612 6 0.01�yz 0.601 6 0.01�yz
CNAE-9 0.414 6 0.04 0.429 6 0.03 0.404 6 0.03 0.440 6 0.07�yz 0.451 6 0.05�yz

NMI: normalized mutual information.

Table 3. Clustering quality on SC.

Dataset k-means k-means++ MinMax k-means k*-means k*-means++

Smalldata 0.741 6 0.02 0.813 6 0.02 0.748 6 0.05 0.841 6 0.01�yz 0.849 6 0.01�yz
Unbaldata 0.713 6 0.10 0.736 6 0.09 0.771 6 0.06 0.805 6 0.07�yz 0.836 6 0.00�yz
LargeUnbal 0.661 6 0.10 0.643 6 0.04 0.662 6 0.04 0.739 6 0.04�yz 0.769 6 0.02�yz
Bigdata 0.554 6 0.03 0.559 6 0.02 0.556 6 0.01 0.610 6 0.01�yz 0.577 6 0.00�yz
Ecoli 0.362 6 0.02 0.365 6 0.02 0.343 6 0.01 0.371 6 0.01�yz 0.378 6 0.00�yz
Pendigits 0.294 6 0.02 0.289 6 0.00 0.276 6 0.00 0.321 6 0.00�yz 0.323 6 0.00�yz
Optdigits 0.175 6 0.02 0.186 6 0.00 0.172 6 0.00 0.183 6 0.01�yz 0.177 6 0.01�yz
Dermatology 0.254 6 0.03 0.228 6 0.04 0.204 6 0.01 0.269 6 0.01�yz 0.286 6 0.02�yz
Folio1 0.388 6 0.04 0.417 6 0.02 0.407 6 0.01 0.426 6 0.02�yz 0.445 6 0.01�yz
Folio2 0.385 6 0.02 0.398 6 0.02 0.376 6 0.04 0.390 6 0.02�yz 0.421 6 0.01�yz
CNAE-9 0.070 6 0.01 0.075 6 0.01 0.056 6 0.01 0.075 6 0.00�yz 0.075 6 0.01�yz

SC: Silhouette coefficient.

Qi et al. 11

k-means aims to get lower maximum ssemax of clusters
but may not yield better clusters due to the randomly
initial centers. However, k� (more) centers improve the
probability of obtaining best local optima, and our
multi-round refining further approaches the optimum
gradually. As expected, k*-means++ also outperforms
k-means, k-means++, and MinMax k-means on most
of datasets and achieves the best quality on seven
datasets.

SC. As shown in Table 3, again, k*-means outperforms
k-means, k-means++, and MinMax k-means in term
of SC value. In particular, our algorithm exhibits better
SC value than k-means and MinMax k-means on all
datasets, and better than k-means++ on all datasets
but Optdigits and Folio2 data. However, SC values ofT

a
b

le
4
.

C
lu

st
er

in
g

q
u
al

it
y

o
n

SS
E
.

D
at

as
et

k-
m

ea
n
s

k-
m

ea
n
s+

+
M

in
M

ax
k-

m
ea

n
s

k*
-m

ea
n
s

k*
-m

ea
n
s+

+

Sm
al

ld
at

a
1
.0

8
E
+

0
3

6
3
8
3
.4

7
2
.7

7
E
+

0
2

6
1
1
2
.3

5
1
.2

1
E
+

0
3

6
8
7
8
.4

0
1
.4

4
E

+
0
2

6
3
5
.1

4
�y
z

1
.0

3
E

+
0
2

6
2
.2

1
�y
z

U
n
b
al

d
at

a
2
.2

2
E
+

0
3

6
1
4
2
3
.3

2
4
.8

2
E
+

0
2

6
2
1
7
.8

5
1
.2

1
E
+

0
3

6
9
7
4
.4

3
3
.2

1
E

+
0
2

6
1
7
2
.8

6
�y
z

2
.4

4
E

+
0
2

6
0
.0

8
�y
z

La
rg

eU
n
b
al

2
.3

4
E
+

0
3

6
2
7
2
1
.7

0
1
.4

7
E
+

0
3

6
5
5
5
.4

0
1
.3

9
E
+

0
3

6
5
5
5
.6

0
7
.3

1
E

+
0
2

6
3
0
4
.6

1
�y
z

5
.0

6
E

+
0
2

6
1
2
.0

7
�y
z

B
ig

d
at

a
2
.1

4
E
+

0
3

6
5
7
6
.1

6
9
.7

3
E
+

0
2

6
1
1
4
.0

8
9
.0

2
E

+
0
2

6
2
6
.5

8
1
.2

2
E
+

0
3

6
6
5
.5

9
�y
z

8
.2

6
E

+
0
2

6
1
0
.2

2
�y
z

E
co

li
5
.0

6
E
2

0
2

6
0
.0

0
4
.9

9
E

2
0
2

6
0
.0

0
5
.3

0
E
2

0
2

6
0
.0

0
5
.0

7
E
2

0
2

6
0
.0

0
�y
z

4
.9

6
E

2
0
2

6
0
.0

0
�y
z

Pe
n
d
ig

it
s

4
.6

8
E
+

0
3

6
1
5
0
.8

5
4
.0

9
E

+
0
3

6
1
0
1
.9

0
4
.7

2
E
+

0
3

6
1
7
1
.9

2
4
.7

2
E
+

0
3

6
1
9
0
.5

2
�y
z

4
.6

0
E

+
0
3

6
1
7
.9

0
�y
z

O
p
td

ig
it
s

6
.6

9
E
+

0
2

6
1
8
.5

4
6
.5

8
E

+
0
2

6
3
.5

5
6
.6

6
E
+

0
2

6
0
.1

1
6
.6

4
E

+
0
2

6
1
1
.7

0
�y
z

6
.7

3
E
+

0
2

6
1
4
.1

3
�y
z

D
er

m
at

o
lo

gy
9
.7

9
E
+

0
0

6
0
.2

5
9
.6

5
E

+
0
0

6
0
.3

2
1
.0

1
E
+

0
1

6
0
.0

1
9
.6

7
E
+

0
0

6
0
.1

9
�y
z

9
.3

0
E

+
0
0

6
0
.1

8
�y
z

Fo
lio

1
2
.6

9
E
2

0
3

6
0
.0

0
2
.3

4
E

2
0
3

6
0
.0

0
2
.5

0
E
2

0
3

6
0
.0

0
2
.3

7
E
2

0
3

6
0
.0

0
�y
z

2
.2

1
E

2
0
3

6
0
.0

0
�y
z

Fo
lio

2
2
.0

8
E
2

0
3

6
0
.0

0
1
.8

6
E

2
0
3

6
0
.0

0
1
.9

2
E
2

0
3

6
0
.0

0
1
.9

9
E
2

0
3

6
0
.0

0
�y
z

1
.7

8
E

2
0
3

6
0
.0

0
�y
z

C
N

A
E
-9

5
.7

7
E
+

0
0

6
0
.0

7
5
.6

9
E

+
0
0

6
0
.0

6
5
.7

6
E

+
0
0

6
0
.1

5
5
.9

0
E
+

0
0

6
0
.1

9
�y
z

5
.9

3
E
+

0
0

6
0
.1

5
�y
z

SS
E
:
su

m
o
f
sq

u
ar

ed
er

ro
r.

Algorithm 1. K*-means framework

1: Randomly choose initial centers c= fc1, c2, . . . , ck�g;
2: Perform k-means with parameter k�, get k� clusters

C= fC1,C2, . . . ,Ck�g;
update ci =(SX2Ci

X)=(jCij);
3: Perform ‘‘top-n nearest clusters merging,’’ set

k�= k� � ½n, 2 � n� 1�;
update clusters as initial clusters;

4: Repeat steps 2 and 3 until k� equals to k.

Algorithm 2. Top-n merging method

Input: k� clusters, number N (N� (k� � k)=2)
Output: (k � �clustersmerge) clusters

1: Calculate distance between each clusters and sort by
ascending;

2: Select clusters associated with top N edges to merge;
3: return (k � �clustersmerge) clusters.

Algorithm 3. Optimized update method

Input: k clusters, dataset D
Output: k clusters
1: if # of moved objects \u � jDj then
2: for each cluster Ci do
3: m0i mi;
4: ssei0 ssei;
5: for each p 2 Ci do
6: if p is closest to Cj then
7: move p into Cj;
8: update mi0 and ssei0 using Lemma 3;
9: update mj0 and ssej0 using Lemma 2;

10: end if
11: end for
12: end for
13: update m and sse of all clusters by their copies;
14: else perform k-means iteration; count # of moved points;
15: end if

12 International Journal of Distributed Sensor Networks

k*-means are very close to those of k-means++ on this
two datasets. K*-means++ also improves clustering
quality in 90% of tested cases. This is because careful
selection of k� initial centers further optimizes probabil-
ity range of best local optima by avoiding centers that
are too close to each other compared to random
initialization.

SSE. Table 4 shows the SSE metrics of algorithms on
11 datasets. K*-means obtains better (smaller) SSE on
four datasets and k-means++ reaches better results on
six datasets. This is because carefully seeding more eas-
ily guides k-means++ to converge to a better local
minima of SSE than random initialization. MinMax k-
means produces a better maximum ssemax of cluster but

not a better SSE value. However, the optimized version
k*-means++ exhibits best SSE values on all datasets
but optdigits and CNAE-9.

In summary, the above comprehensive experiments
confirm the effectiveness of our proposed k*-means in
attaining clusters of better quality. Furthermore, our
k*-means integrated with k-means++ initialization
robustly achieves best quality clusters in most real-
world applications.

Efficiency evaluation

Comparison of efficiency with other algorithms. Next, we
evaluate the efficiency of our k*-means compared
against k-means, k-means++, and MinMax k-means
on 10 datasets when k�= 2k, n= 2, and u= 0:05.
Figure 6 shows the results of running time on four
groups of dataset. We can see that k-means costs lowest
CPU time and MinMax consumes much more time
compared to other algorithms. In addition, we also find
that k-means++ spends fewer time than k-means on
some datasets. This is because k-means++ carefully
chooses initial seeds as its staring centers; thus, the bet-
ter staring centers may reduce the number of iterations
to fast reach the local optima. However, our k*-means
costs same order of magnitudes CPU time compared to
k-means and k-means++. This is because k*-means
utilizes merging optimization, cluster pruning strategy,
and optimized update principle to reduce the computa-
tion cost significantly, while MinMax k-means adds a
maximization step that updates objective with weight-
ing mechanism in each iteration, which increases much
more computation cost. Especially when dataset is
unbalanced, MinMax k-means is more inefficient. In
particular, k*-means and k*-means++ just cost two-
or three-folds CPU time compared to k-means on most
datasets (Groups 1–4).

Impact of optimization principles. We next analyze the con-
tribution of three optimization principles (‘‘top-n near-
est clusters merging,’’‘‘optimized update principle,’’ and
‘‘cluster pruning strategy’’) on efficiency using four
datasets (two real and two synthetic datasets). In this

Algorithm 4. K*-means algorithm

Input: the number of initial centers K�; the number of clusters
K; dataset D; parameters of Top-n method N
Output: K clusters
1: arbitrary choose K� initial centers;
2: distribute D into cluster sets C;
3: update mean of each cluster;
4: while not convergence do
5: for each Ci 2 C do
6: CS pruned clusters of Ci;
7: Ci:radius0 0;
8: for each point p 2 Ci do
9: d min distance(p,Cj:mj) where Cj 2 CS;

10: if d\jp�mij then
11: move p into cluster Cj ;
12: if d.Cj:radius0 then
13: Cj:radius0 d;
14: end if
15: update m0 of Ci, Cj by Lemma 2, 3;
16: else if jp�mij.Ci:radius0 then
17: Ci:radius0 jp�mij;
18: end if
19: end for
20: end for
21: use m0, radius0 instead of m, radius in each cluster;
22: end while
23: if number of clusters . K then
24: Top-n(C, N); go to line 4;
25: end if

Figure 6. CPU time of algorithms on 10 datasets: (a) Group 1, (b) Group 2, (c) Group 3, and (d) Group 4.

Qi et al. 13

experiment, we demote the k-means armed with ‘‘top-n
nearest clusters merging’’ as top-n, armed with ‘‘opti-
mized update principle,’’ and ‘‘top-n nearest clusters
merging’’ as update + top-n and the completed ver-
sion as k*-means, respectively. Figure 7 shows the CPU
time of optimization principles by varying number of
k� from 1:5k to 3:5k. Intuitively, k*-means costs less
CPU time than top-n and update + top-n on all data-
sets. In particular, on Optdigits dataset (Figure 7(b)),
we observe that the CPU cost of k*-means is approxi-
mately equal to update + top-n. We find that the
NMI score (Table 2) and SC (Table 3) of Optdigits are

smaller than other three datasets by analyzing the
property of data. This is because different clusters have
a little distance dissimilarity since the data contains
high dimensions of 64 attributions, causing ‘‘cluster
pruning strategy’’ not work well.

Determining of parameters k� and n

We conduct experiments to explore the selection of k�

value on four datasets (two synthetic datasets and two
real-world datasets). We use Smalldata and Bigdata to
examine the effect of varying k� unite different datasize.

Figure 7. CPU costs in different part of k*-means: (a) dataset dermatology, (b) dataset optdigits, (c) dataset smalldata, and
(d) dataset bigdata.

Figure 8. Impact of k� on NMI and SC: (a) NMI on Group 1, (b) NMI on Group 2, (c) SC on Group 1, and (d) SC on Group 2.

14 International Journal of Distributed Sensor Networks

And use Optdigits and Dermatology from UCI to exam-
ine the effect of varying k� unite different amount of
attributes. We measure the NMI score and SC value by
varying k� from 1k to 4:5k with 0:5k increment when k

is fixed to the number of classes, n= 2 and u= 0:05.
The results are shown in Figure 8, Figure 8(a) and (b)
are NMI scores on the four datasets and Figure 8(c)
and (d) are SC values on the four datasets, respectively.
We observe that NMI scores of our proposed k*-means
increase as k� increases, but when k� � 2k the NMI
score is no longer growth and remains stable. Similarly,
SC value also holds stable when k� reaches at 2k or
2:5k on tested datasets. This may be because range of
initial seeds could cover all of cluster when k� enlarges
to 2k, and it does not further improve the quality of
clustering if continue to increase k�. Namely we cannot
obtain an better result if k� is greater than 2k, that is
exactly why we set k�= 2k in above experiments.

Figure 9 shows the impact of k� on efficiency.
Obviously, k*-means costs more CPU time as k�

increases, this is because k*-means needs more times of
merging round to reduce k� to k when n is fixed.
However, k*-means just increases CPU cost linearly
before k�= 3k. This also again validates the efficiency
of our k*-means.

Finally, we evaluate the effect of parameter n on
effectiveness and efficiency. As shown in Figure 10, the
number of n has a little impact on clusters results.
Moreover, k*-means have higher NMI score than
k-means and k-means++ at all tested cases. However,
the trend of NMI score decrease as the value of n

quickly increases. Figure 11 shows the CPU time of k*-
means as the value of parameter n increases. It is easy
to see that CPU cost decreases as the n increases. This
is because larger value of parameter n would signifi-
cantly reduce the number of steps that reduce number
of clusters from k� to k. However, we can also achieve
a high efficiency as well as good clusters. In addition,
the higher value of n means the higher efficiency of k*-
means, but n should be smaller than dk� � ke through
our analysis in section ‘‘Top-n nearest clusters mer-
ging.’’ Consider both of the effectiveness and efficiency,
we fix n= 2 in evaluation experiments. For n= 2, we
also can meet many requirements (some datasets only
contain a few classes).

Conclusion

In this work, we propose a novel optimized hierarchical
clustering method incorporated with three optimization

Figure 9. Impact of k� on CPU time: (a) small and dermatology and (b) bigdata and optdigits.

Figure 10. Impact of n on NMI: (a) smalldata and (b) dermatology.

Qi et al. 15

principles, namely ‘‘top-n nearest clusters merging,’’
‘‘optimized update principle,’’ and ‘‘cluster pruning
strategy’’ to achieve both effective and efficient cluster-
ing robustly. K� initial centers effectively improve the
probability of obtaining best local optima, and multi-
round top-n nearest clusters merging approaches the
optimal result gradually. The first two optimizations
update feature values of clusters by previous clusters or
moved objects instead of re-computation from scratch.
And the pruning strategy reduces significantly the
adjusting searching space for each points in k-means
iteration. Our experimental evaluation with four syn-
thetic datasets and seven real datasets demonstrates
that the proposed algorithm exhibits better perfor-
mance than the state-of-the-art in terms of cluster qual-
ity and CPU time in different scenarios. Furthermore,
our solution framework beginning with k-means++
initialization can further improve the performance, sug-
gesting an alternative optimal solution.

An interesting direction for future work is to lever-
age modern distributed multi-core cluster of machines
for further improving the scalability of our algorithm.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with
respect to the research, authorship, and/or publication of this
article.

Funding

The author(s) disclosed receipt of the following financial sup-
port for the research, authorship, and/or publication of this
article: This work is based on a conference ‘‘Proceedings of the
IEEE international conferences on bigdata and cloud comput-
ing’’ and partially supported by the National Natural Science
Foundation of China (nos 61403328, 61773331, 61572419, and
61502410), the Key Research & Development Project of
Shandong Province (no. 2015GSF115009), and the Graduate
Innovation Foundation of Yantai University (no. YDZD1712).

References

1. Emre Celebi M, Kingravi HA and Vela PA. A compara-

tive study of efficient initialization methods for the

k-means clustering algorithm. Expert Syst Appl 2013;

40(1): 200–210.
2. Dempster AP, Laird NM and Rubin DB. Maximum

likelihood estimation from incomplete data via the EM

algorithm (with discussion). J Roy Stat Soc B Met 1977;

39(1): 1–38.
3. Zhang T, Ramakrishnan R and Livny M. BIRCH: a

new data clustering algorithm and its applications. Data

Min Knowl Disc 1997; 1(2): 141–182.
4. Ester M, Kriegel HP, Sander J, et al. A density-based

algorithm for discovering clusters in large spatial data-

bases with noise. In: Proceedings of the 2nd international

conference on knowledge discovery and data mining

(KDD’96), Portland, OR, 2–4 August 1996, pp.226–231.

New York: ACM.
5. Yu Y, Zhao J, Wang X, et al. Cludoop: an efficient dis-

tributed density-based clustering for big data using

hadoop. Int J Distrib Sens N 2015; 11(6): 579391.
6. Yu Y, Wang H, Wang Q, et al. Density-based cluster

structure mining algorithm for high-volume data

streams. J Software 2015; 26(5): 1113–1128.
7. Wang W, Yang J and Muntz RR. STING: a statistical

information grid approach to spatial data mining. In: Pro-

ceedings of the 23rd international conference on very large

data bases (VLDB’97), Athens, 25–29 August 1997, pp.186–

195. San Francisco, CA: Morgan Kaufmann Publishers.

8. Strehl A and Ghosh J. Cluster ensembles—a knowledge

reuse framework for combining multiple partitions.

J Mach Learn Res 2002; 3(3): 583–617.
9. MacQueen J. Some methods for classification and analy-

sis of multivariate observations. In: Proceedings of the

5th Berkeley symposium on mathematical statistics and

probability, pp.281–297, https://projecteuclid.org/

euclid.bsmsp/1200512992
10. Bahmani B, Moseley B, Vattani A, et al. Scalable

k-means++. Proc VLDB Endowm 2012; 5(7): 622–633.
11. Bradley PS and Fayyad UM. Refining initial points for

k-means clustering. In: Proceedings of the 15th

Figure 11. Impact of n on CPU time: (a) smalldata and (b) dermatology.

16 International Journal of Distributed Sensor Networks

international conference on machine learning (ICML’98),
Madison, WI, 24–27 July 1998, pp.91–99. San Francisco,
CA: Morgan Kaufmann Publishers.

12. Jain AK. Data clustering: 50 years beyond K-means. Pat-
tern Recogn Lett 2010; 31(8): 651–666.

13. Cai Z, Heydari M and Lin G. Clustering binary oligonu-
cleotide fingerprint vectors for DNA clone classification
analysis. J Comb Optim 2005; 9(2): 199–211.

14. Cai Z, Xu L, Shi Y, et al. Using gene clustering to identify
discriminatory genes with higher classification accuracy.
In: Proceedings of the 6th IEEE symposium on bioinfor-

matics and bioengineering (BIBE 2006), Arlington, VA,
16–18 October 2006, pp.235–242. New York: IEEE.

15. Cai Z, Goebel R, Salavatipour MR, et al. Selecting genes
with dissimilar discrimination strength for sample class
prediction. In: Proceedings of the Asia-Pacific bioinfor-

matics conference (APBC), Hong Kong, China, 15–17

January 2007, pp.81–90.
16. Pena JM, Lozano JA and Larranaga P. An empirical

comparison of four initialization methods for the K-
means algorithm. Pattern Recogn Lett 1999; 20(10):
1027–1040.

17. Arthur D and Vassilvitskii S. k-means++: the advan-
tages of careful seeding. In: Proceedings of the 18th annual
ACM-SIAM symposium on discrete algorithms, New
Orleans, LA, 7–9 January, pp.1027–1035. Philadelphia,
PA: Society for Industrial and Applied Mathematics.

18. Tzortzis G and Likas A. The MinMax k-Means cluster-
ing algorithm. Pattern Recogn 2014; 47(7): 2505–2516.

19. Hamerly G. Making k-means even faster. In: Proceedings
of the SIAM international conference on data mining

(SDM), Columbus, Ohio, USA, 29 April–1 May 2010,
pp.130–140.

20. Qi J, Yu Y, Wang L, et al. K*-means: an effective and
efficient k-means clustering algorithm. In: Proceedings of
the IEEE international conferences on big data and cloud

computing, Atlanta, GA, 8–10 October 2016, pp.242–249.
New York: IEEE.

21. Forgy EW. Cluster analysis of multivariate data: effi-
ciency versus interpretability of classification. Biometrics

1965; 21(3): 768–769.
22. Brunsch T and Röglin H. A bad instance for k-mean-

s++. In: M Ogihara and J Tarui (eds) Theory and appli-

cations of models of computation. Berlin; Heidelberg:
Springer, 2011, pp.344–352.

23. Su T and Dy JG. In search of deterministic methods for
initializing K-means and Gaussian mixture clustering.
Intell Data Anal 2007; 11(4): 319–338.

24. Lu JF, Tanga JB, Tanga ZM, et al. Hierarchical initiali-
zation approach for K-means clustering. Pattern Recogn

Lett 2008; 29(6): 787–795.
25. Redmond SJ and Heneghan C. A method for initialising

the K-means clustering algorithm using kd-trees. Pattern
Recogn Lett 2007; 28(8): 965–973.

26. Bagirov AM, Ugon J and Webb D. Fast modified global

k-means algorithm for incremental cluster construction.
Pattern Recogn 2011; 44(4): 866–876.

27. Tzortzis GF and Likas AC. The global kernel k-means
algorithm for clustering in feature space. IEEE T Neural

Networ 2009; 20(7): 1181–1194.
28. Kanungo T, Mount DM, Netanyahu NS, et al. An effi-

cient k-means clustering algorithm: analysis and imple-
mentation. IEEE T Pattern Anal 2002; 24(7): 881–892.

29. Hung MC, Wu J, Chang JH, et al. An efficient k-means
clustering algorithm using simple partitioning. J Inf Sci

Eng 2005; 21(6): 1157–1177.
30. Zhao W, Ma H and He Q. Parallel k-means clustering

based on MapReduce. In: Proceedings of the 1st interna-

tional conference on cloud computing, Beijing, China, 1–4
December 2009, pp.674–679. Berlin; Heidelberg: Springer.

31. University of California, Irvine. Machine learning reposi-
tory, center for machine learning and intelligent systems,
2017, http://archive.ics.uci.edu/ml/

32. Rousseeuw PJ. Silhouettes: a graphical aid to the inter-
pretation and validation of cluster analysis. J Comput

Appl Math 1987; 20: 53–65.

Qi et al. 17

