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a b s t r a c t

Inferring home locations for users from spatiotemporal data has become increasingly important for
real-world applications ranging from security, recommendation, advertisement targeting, to trans-
portation scheduling. Existing home location inference studies are based either on geo-tagged social
media data or continuous GPS data. Yet this inference problem in highly sparse vehicle trajectories
in urban surveillance systems remains largely unexplored. In this paper, we propose an accurate
home location inference framework for vehicles in urban traffic surveillance systems by considering
both spatial and temporal characteristics. To the best of our knowledge, we are the first to predict
exact home community for vehicles at such a fine granularity using the sparse and noisy surveillance
camera data. First, we collect and preprocess multiple contextual datasets to obtain a context-rich
road network with residential communities and surveillance cameras. Second, we detect the potential
home location areas for each vehicle by clustering Origin–Destination (O-D) pairs extracted in vehicle’s
camera-based trajectories. Then we further propose an in/out time pattern to distinguish the home
area candidate from the O-D clusters by leveraging time-aware constraints. Furthermore, to find the
exact home community, we propose a Kernel Density Estimation (KDE) based inference method with
a local camera selection strategy to effectively identify the home community from the residential
communities near/in the home area candidate. Our comprehensive experiments on a large-scale
real-world dataset demonstrate the effectiveness of our proposed method.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Motivation. Nowadays, spatiotemporal trajectory data can be
collected from a variety of sources including location-sharing
social networks (e.g., Foursquare check-ins), geo-tagged social
media (e.g., Twitter and Weibo), location-based online services
(e.g., Uber and Didi), and urban traffic surveillance systems (e.g.,
surveillance cameras and vehicle-mounted GPS). These
spatiotemporal data provide us with a new dimension to under-
stand human behaviors in the physical space and further benefit
every aspect of life, such as transportation, healthcare, urban
planning, and homeland security. Among these, inferring home
locations for users has become increasingly important for real-
world applications, such as security, localized recommendation,
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advertisement targeting, and transportation scheduling. For ex-
ample, if we infer that two users live in the same residential
community, it may imply that they have similar life demands,
then we can recommend them to become online friends or
suggest them carpool when one user goes to the places that the
other user frequently visits. In addition, if we know the home
location of a vehicle, we can easily understand each mobility
for the vehicle and thus sense the individual behavior patterns.
Many studies have been conducted to infer home location based
on users’ spatiotemporal data in areas of location-based so-
cial networks [1–7], online social media [8–14], and dense GPS
trajectories [15–18].

Although extensive research has been done to infer home
location from spatiotemporal data, the existing methods still have
two key limitations for inferring home location for vehicles. First,
the links of online users and drivers are unknown, thus the
methods based on social networks and social media cannot be
used to infer home location for vehicles. Second, although the
methods based on GPS trajectories have high prediction accuracy,
for government departments and managers, the GPS trajectories
of private vehicles are not easily available due to privacy issues.
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In recent years, surveillance cameras have been widely de-
ployed to monitor traffic situations. These AI-equipped cameras
can recognize individual vehicle information (e.g., license plate,
speed, driving direction, etc.). Therefore, vehicles’ License Plate
Recognition (LPR) data are available for almost all kinds of vehi-
cles no matter they have GPS devices installed or not in urban
surveillance systems. The properties of surveillance cameras en-
able us to consider home location inference for all vehicles based
on the surveillance camera data. Although the drivers’ personal
information is filed in the department of transportation, most of
drivers do not live at the registered addresses due to multiple
reasons such as changing rental address, collective registered
residence, multiple housing, and off-site work. Home location
inference for vehicles with surveillance cameras benefits varieties
of applications ranging from homeland security, traffic schedul-
ing, to urban planning. Although surveillance camera data is not
available for users and service providers, government depart-
ments can also provide service providers with query interfaces
to support more location-based recommendation and advertising
services.

In this paper, we are interested in inferring the home location
for vehicles with surveillance camera data in urban traffic surveil-
lance systems. Despite the importance of inferring home locations
for vehicles in urban management, to the best of our knowledge,
this problem has not been considered in the previous literature.

Challenges. Despite the growing adoption of traffic surveil-
lance cameras, their coverage in the city is still limited because
of the cost of installment and maintenance. The observed tra-
jectories are incomplete because they are obtained from the
static and discrete cameras. Therefore, the problem of home
location inference with surveillance camera data faces multiple
challenges:

• Sparsity. Surveillance cameras only cover partial intersec-
tions and road segments in urban. A private vehicle only is
recorded at a few cameras on some days in a city. Therefore,
vehicle trajectories based on surveillance camera data are
incomplete and highly sparse in both spatial and temporal
dimensions.
• Noisy. The collected data is extremely ‘‘noisy’’. For example,

a vehicle may have different starting areas on different days,
or inconsistent starting area and ending area on same day.
In addition, we find that some surveillance cameras may
not work on some days, which causes inconsistent camera
records.
• Static. The locations of surveillance camera are fixed, thus

the vehicles only are observed at fixed locations (usually at
intersections) on road network. That is, the stay points in the
vehicle trajectories are static with respect to the locations of
cameras.
• Too many nearby residential communities. Since the lo-

cations of cameras are mainly located at road intersections,
there are many residential communities nearby. Moreover,
a vehicle may be observed at multiple starting and ending
areas, which makes it more challenging to infer the true
home location. In fact, the nearest residential community
may not be the home location of vehicle due to the sparsity
of vehicle trajectories and partial coverage of surveillance
cameras.

In literature, a variety of studies has been done to predict
home location based users’ check-in data and/or textual con-
tents in social media [8,19–26]. Basically, these methods apply
supervised learning to predict users’ home location based on
the features of check-ins, places extracted from textual contents,
and user profile. But most methods only achieve coarse-grained
location inference in levels of town, city, post-code or state with a

large error. Another line of studies utilizes the locations of users’
friends to infer their home locations in Location-Based Social
Networks (LBSNs) [1,2,4,5,7]. These work leverages the social
relationships and partial locatable friends to infer users’ home
location. However, such methods require the social relationships
between users and partial ground truth, which both cannot be
directly apply to surveillance camera data.

Recently, several studies focus on fine-grained semantic lo-
cation inference based GPS trajectory [15,16,18,27–29]. In [15],
four heuristic algorithms (i.e., Last Destination, Weighted Median,
Largest Cluster and Best Time) are proposed to infer uses’ home
location in GPS trajectories, with a median error of 60 m. Wan
et al. [17] propose to mine spatial–temporal semantic mobility
patterns from trajectories of private vehicles based on their GPS
data and POI data. These two approaches cannot be applied to
our problem because they fail to handle the sparsity and static
challenges in vehicles’ LPR data. To annotate mobility data, Wu
et al. [28] propose to capture the relevant semantic words with
respect to a mobility record using contextual social media. In
their follow-up work, Wu et al. [18,29] attempt to understand
taxi traffic dynamics from multiple external data sources in-
cluding POI, weather, geo-tagged tweet, and collision records.
They propose to use ridge regression with polynomial kernel to
describe the non-linear non-additive relationships of impacting
factors. However, in our problem, it is impossible to match and
extract the meaningful textual information with LPR data from
noisy external social media due to the sparsity and stationary of
deployed surveillance cameras. Therefore, these approaches also
cannot be applied to our problem.

Proposed solution. To address the aforementioned challenges,
this article proposes a novel home location inference frame-
work for vehicles in surveillance camera data by considering
both spatial and temporal characteristics. First, we obtain a real-
world road network with residential communities and surveil-
lance cameras by projecting collected multiple contextual data
to road network. Second, we propose a new discovery method
to detect the potential home location areas for each vehicle
by clustering Origin–Destination (O-D) pairs in its camera-based
trajectories. Specifically, we propose an in/out time pattern to
distinguish the home area candidate from the O-D clusters by
leveraging time-aware constraints. Third, to find the home com-
munity, we further propose a KDE-based inference method to
effectively detect the home community from the residential com-
munities near/in the home area candidate. To improve prediction
accuracy, we finally propose a local camera selection strategy to
choose the suitable local cameras for each community candidate
in KDE-based model.

We use a large-scale real-world dataset collected from a
provincial capital in China for a whole month of August in 2016.
There are more than 11 million unique vehicles with about 405
million camera records. We conduct comprehensive experiments
to demonstrate the effectiveness of our proposed method.

To summarize, we make the following contributions:

• We are the first to propose and formally define the problem
of home location inference for vehicles with surveillance
camera data in urban traffic surveillance systems.
• We propose a novel home area candidate discovery method

to detect the largest possible home areas for vehicles by
clustering O-D pairs extracted from vehicle trajectories and
matching them with time-aware constraints.
• We propose an effective home community inference method

using KDE to model the density of residential community
with respect to vehicle passing local cameras. We design
a local camera selection strategy to better choose suitable
local cameras for each community candidate in KDE-based
model.
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• We conduct extensive evaluations on a large-scale real-
world dataset. Experimental results demonstrate the effec-
tiveness of our proposed method.

2. Related work

2.1. Home location inference in social media

There have been many studies on how to infer the home loca-
tions for users in social media. A line of methods have been pro-
posed to predict users’ city-level location in Twitter based purely
on the content of users’ tweets [8,19–26]. Mahmud et al. [24,
30] present a method that uses an ensemble of statistical and
heuristic classifiers to predict locations and makes use of a ge-
ographic gazetteer dictionary to identify place-name entities for
inferring the home location of Twitter users at different levels of
granularity, including city, state, time zone or geographic region,
using the content of users’ tweets and their tweeting behavior.
Schulz et al. [8] use the names of places that appear in the text
message, dedicated location entries and additional information
from the user profile to determine the location where a tweet
was created and the location of the user’s residence. Li et al. [9]
propose a location identification method for inferring top-k city-
level locations of a user from her microblogs. Kondo et al. [25]
propose a method to estimate a Twitter user’s home location
area by incorporating observed weather data and user’s tweet
contents. Miura et al. [26,31] use the deep learning techniques
to predict home city for users based on tweet contents. Such
methods only achieve coarse-grained location inference for users
in levels of town, city, and/or state, even country.

There is a variety of studies that tries to utilize users’ check-in
data to infer their home locations [11–14]. Efstathiades et al. [10]
propose a simple method for identifying a user’s key locations
(i.e., her home and work places) from geo-tagged tweets. Users
may spend more time at home or at workplace. The location of
home or workplace is inferred according to the location of tweets
in different time periods. However, the method only achieves
about 60% accuracy at post-code level. Hu et al. [11] use a linear
SVM model to infer the users’ home locations using multiple
features of their check-in data, such as check-in rate, check-in
rate during midnight, last destination with inactive midnight, and
so on. That is, they transfer the inference problem into an equiva-
lent classification problem. In a follow-up work, Kavak et al. [32]
further extend [11] by adding two mobility features (i.e., land use
patterns and distances from most checked-in location). Similarly
with [11,32], Hossain et al. [12] also train a SVM classifier to
predict home location for active users within 100 by 100 m grids
from geo-tagged tweets. Poulston et al. [13] propose a cluster-
based approach to predict user’s hyperlocal home location from
her geo-tagged tweets. The most populous cluster is taken as
the users’ home, and its geometric median is taken as the user’s
home coordinate. Lin et al. [14] use four simple method (i.e., the
weighted most frequently visited, the weighted-mean, weighted-
median and the support vector machine) based on temporal and
spatial features from geo-tagged tweets to identify a Twitter
user’s home location.

A variety of researches that utilizes the locations of users’
friends to infer their home locations in Location-Based Social
Networks (LBSNs) have been conducted [1,2,4,5,7]. [1,2,6,33,34]
aim to predict users’ city-level home location using social rela-
tionships and their locatable friends. Backstrom et al. [35] pro-
pose an algorithm to predict the physical location of a user,
given the known location of her friends. More specifically, they
measure the relationship between proximity and friendship, and
predict the locations of individuals based on the propagation of

predictions across the network. [4,36,37] also use label prop-
agation approach to infer users’ locations through social net-
works. Hicham G. et al. [38] propose a graph-based location
inference model to infer the users’ home location based on both
their social graph and tweets content. Li et al. [3] propose a
unified discriminative influence model (UDI) that integrates sig-
nals observed from both user-centric data and friendships to
profile users’ home locations in context of social networks. In
the follow-up work, [5,39] further propose trust-based influ-
ence model in social networks to improve inference performance.
McGee et al. [40] propose a network-based approach for loca-
tion estimation in social media that integrates evidence of the
social tie strength and distance between users for improving
location estimation. Kong et al. [41] propose three location es-
timation methods based on social network context for Twitter
users. Huang et al. [42] propose an unsupervised home location
inference that explores the spatial, temporal and social relation-
ship dimensions of users to infer home locations of people in
LBSNs. In their follow-up work [7], they also propose a semi-
supervised framework to infer the home locations of users by
explicitly exploring the localness of users and the dependency
between users based on their check-in behaviors.

However, these home location inference methods based on
check-in data in social media cannot be applied into our problem,
since they only focus on determining one location as user’s home
from given check-in locations.

2.2. Location inference from GPS trajectories

Several studies focus on refined location inference based dense
GPS trajectory data [15–17,43,44]. Krumm et al. [15] use four
heuristic algorithms (i.e., Last Destination, Weighted Median,
Largest Cluster and Best Time) to find users’ home location
based on the GPS trajectories, with a median error of 60 m.
Zheng et al. [27] propose a tree-based hierarchical graph with
multiple individuals’ location histories to mine the interesting
locations and travel sequences based on users’ GPS trajectories.
Xiao et al. [44] propose a method that models a user’s GPS tra-
jectories with a semantic location history via stay point detection,
e.g., shopping malls −→ restaurants −→ cinemas. Cao et al. [16]
propose a method to extract significant semantic locations from
GPS data. More specifically, they capture the relationships be-
tween locations and between locations and users with a graph.
Significance is then assigned to locations using random walks
over the graph that propagates significance among the locations.
Wan et al. [17] propose an approach to mine spatial–temporal
semantic mobility patterns from trajectories of private vehicles
based on the vehicles’ GPS data and POI data. They design a
probabilistic generative model with latent variables to charac-
terize the semantic mobility of vehicles. But these methods are
not suitable for inferring home location of vehicles in traffic
surveillance system because GPS trajectories are highly more
dense than surveillance cameras.

2.3. Semantic exploration for mobility data

Zheng et al. [45] propose a probabilistic framework which
uncovers and quantifies characteristic behavior patterns in user’s
daily lives from mass amount of mobile data in unsupervised
setting and exploits it to predict user activities. Yuan et al. [46]
propose a probabilistic model W4 (short for Who + Where +
When + What) to exploit geo-annotated tweet data to discover
individual user’s mobility behaviors from spatial, temporal and
activity aspects. The model has a variety of applications, such
as user profiling and location prediction. Krumm et al. [47] pro-
pose a multiclass classifier in the form of a forest of boosted
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Table 1
Notations and descriptions.
Notation Description

vehid A vehicle with license plate number id.
cami A camera.
tsi A timestamp.
Trid A vehicle trajectory of vehid .
TR The set of all vehicle trajectories of vehid .
G = (N, E) A road network.
N The set of intersections in G.
E The set of road segments in G.
(cmtid,G) A residential community cmtid with its gate set G.
gi An entrance and exit of a residential community.
CMT The set of all residential communities.
Ω The set of local origin cameras in the home area.
Φ The set of local destination cameras.
h The bandwidth.
ci A local camera.
wci The weight of the ith local camera.
τ The time interval threshold.
θ The visit frequency threshold.
γ The selected block threshold.

decision trees to infer semantic places labels based on individual
demographic features and temporal features of the visits. Wu
et al. [28] propose frequency-based method, Gaussian mixture
model and kernel density estimation to capture the relevant
semantic words with respect to a mobility record to annotate
mobility data using contextual social media. In their follow-up
work, Wu et al. [18,29] attempt to understand taxi traffic dynam-
ics from multiple external data sources including POI, weather,
geo-tagged tweet, and collision records. They propose to use ridge
regression with polynomial kernel to describe the non-linear non-
additive relationships of impacting factors. Hu et al. [48] intend
to decode human life from two perspectives: linguistic perspec-
tive and mobility perspective to mine knowledge of human life,
including urban and regional lifestyles and shopping patterns.
From a mobility perspective, they extract the mobility patterns
of individual person, and groups of people such as residents
of certain regions. However, these semantic modeling methods
require accurate location information and annotated social media,
which does not apply to sparse surveillance camera data without
contextual text information.

3. Problem definition

In this section, we define the key notations used in the paper
and then formally define our problem. We define camera record
as follows:

Definition 1 (Camera Record). A camera record is a triple (vehid,

cami, tsj) that represents vehicle vehid passing through camera
cami at timestamp tsj.

Definition 2 (Vehicle Trajectory). The trajectory of a vehicle vehid
is a sequence of tuples in chronological order, denoted by Trid =
{⟨cam1, ts1⟩, ⟨cam2, ts2⟩, . . . , ⟨cami, tsi⟩, . . . , ⟨camn, tsn⟩}, where
each tuple ⟨cami, tsi⟩ indicates vehid passing through camera cami
at timestamp tsi.

Note that we treat the camera records of each vehicle on one
day as a vehicle trajectory, and all vehicle trajectories of a vehicle
form the vehicle trajectory set TR. We use TRs to denote the set
of all vehicle trajectories of all vehicles.

From Definitions 1 and 2, we learn that the vehicle trajectories
of vehicles are based on the installed surveillance cameras in a
city, thus such trajectories are incomplete and highly sparse.

Definition 3 (Road Network). A road network is denoted as G =
(N, E), where N = {n1, n2, . . . , nm} is the set of intersections, E
is the set of road segments between the intersections, and each
edge ei,j ∈ E represents the road segment from intersection ni to
intersection nj.

Note that each road segment is directed, i.e., road segment
⟨ni, nj⟩ is different from road segment ⟨nj, ni⟩ because of the
different directions.

Moreover, each camera is fixed at one exact road segment,
namely, the vehicles captured by camera cami pass through its
corresponding road segment. Therefore, each camera record also
implies the passing direction of the vehicle.

Definition 4 (Residential Community). A residential community is
denoted as (cmtid,G), where cmtid is the identifier of the residen-
tial community and G is the set of community gates, each gate gi
representing an entrance and exit of the residential community
with the geographical coordinates (i.e., longitude and latitude).

All collected residential communities form the set of residen-
tial communities, denoted as CMT .

Finally, we formally define our problem as follows:

Problem 1 (Home Location Inference for Vehicles). Given a road
network G, vehicles’ trajectory set TRs and residential community
set CMT , our goal is to infer the residential community with
highest probability as the home location for each vehicle.

The major notations used throughout the paper are summa-
rized in Table 1.

4. Home location inference framework

4.1. Overview

Fig. 1 shows the overall framework of our proposed home
location inference method. Our framework is mainly composed
of three parts: data preprocessing, home area candidate discov-
ery and KDE-based home community inference. The data pre-
processing mainly includes extracting vehicle trajectories from
surveillance camera data, and matching cameras and residential
communities with road network. The second part aims to find
the candidate area of home location for each vehicle by clus-
tering stay points (e.g., starting cameras and ending cameras)
in the camera-based vehicle trajectories. Home community in-
ference module is to calculate the probability that the vehicle
belongs to each residential community in the discovered home
area candidate.

4.2. Data preprocessing module

4.2.1. Vehicle trajectory extraction
In surveillance camera data, each record represents a vehi-

cle passing through a camera at a timestamp. According to the
definition of vehicle trajectory, to get the trajectories for each
vehicle, we can track the vehicle via its unique license plate, and
rank the camera records created by the vehicle in chronological
order. Common sense tells us that people’s mobility activities
often have a daily cyclical character (i.e., periodicity), which is
proved in many studies [49,50]. Therefore, we treat the trajectory
of a vehicle on each day as a vehicle trajectory, thus all vehicle
trajectories of a vehicle forms its vehicle trajectory set.
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Fig. 1. Overall framework.

4.2.2. Camera matching
We obtain the road network from the OpenStreatMap [51],

which is public available. As defined in Definition 3, a road
network includes a set of intersections and a set of road segments
between these intersections. Generally, surveillance cameras are
deployed near intersections and are capable of monitoring all
passing vehicles from one direction. That is, the vehicles captured
by one camera pass through its fixed road segment. Therefore, we
match the cameras with collected road network according to the
geographical locations of cameras (e.g., latitude and longitude)
to obtain the corresponding road segment for each camera. In
this way, we can obtain the incomplete vehicle trajectories and
driving directions of all vehicles on road network.

4.2.3. Residential community matching
We crawl the residential communities from Baidu Map. More

specifically, a residential community may have multiple gates for
the entrance and exit of vehicles. We use the community gate
information to represent each residential community as defined
in Definition 4. To support the road network distance calculation,
we match the community gates with road network using the
latitude, longitude and direction of the community gates. Each
gate is mapped to an exact nearest road segment. Therefore,
a residential community is located by its all gates in the road
network. Finally, we obtain a context-rich road network with
residential communities and surveillance cameras.

4.3. Home area candidate discovery

In this section, we introduce how to select the candidate area
of home location for each vehicle. This part mainly contains three
steps: (1) detecting Origin–Destination (O-D) pairs in vehicle
trajectories, (2) clustering the detected O-D pairs, and (3) discov-
ering the home area candidate with time-aware constraints.

4.3.1. O-D pair detection
People’s most activities are built around the home location.

For example, if a person wants to go shopping, he would start
from home location and arrive at a mall, and then return home
after shopping. Therefore, we focus more on the starting points
and ending points in vehicle trajectories to discover the home
location. Although the camera based trajectories are sparse with
respect to time and space, we can still detect each independent
sub-trajectories from the vehicle trajectories by detecting the stay
points, which maximizes the use of the vehicle trajectories. In
particular, we partition the vehicle trajectory into sub-trajectories
by examining whether the time interval between two adjacent
camera records exceeds a given time threshold τ . For each sub-
trajectory, the starting point and ending point is regarded as an
O-D pair. People always go out from home and then return home
afterwards. Hence home location is usually implied near these

starting and ending points. Therefore, we extract all O-D pairs
from vehicle trajectory set TR. Note that the origin and destination
in O-D pairs are cameras’ locations in the vehicle trajectories.

4.3.2. Clustering O-D pairs
As we mentioned earlier, there is a lot of noise in the camera

data. Vehicles may not be captured by the passing camera nearest
to their home communities sometimes, which causes that there
are multiple different origins and destinations in the same areas.
To get the important areas that each vehicle frequently visits,
we use DBSCAN clustering algorithm to group the neighboring
cameras for each vehicle’s O-D pairs. We use the location infor-
mation of the cameras in the O-D pairs as input. Each obtained
cluster that includes multiple cameras represents an area where
the vehicle often visits, which may locate the exact home location
of the vehicle. Note that we omit the origins and destinations
with low frequency that is less than θ . Because vehicles may
occasionally arrive at these places if the visit frequency is very
low. In addition, we treat each visiting record as one input point,
that is, for one origin or destination with visit frequency freq, we
regard there are freq input points. We set MinPts = 5, Eps = 1000
m, meaning that the distance between any two cameras in each
cluster is not larger than 1000 m and there are at least five visits
to the cameras in the cluster.

4.3.3. Discovering home area with time-aware constraints
The clustering method only allows us to discover the impor-

tant areas where the vehicle often visits, such as home location,
workspace, shopping malls, etc. To further distinguish the home
area from other areas, we further leverage time-aware constraints
to refine the home location area candidate.

Usually, people always go work from home in the morning
and return home at nightfall. Sometimes people may also go
back home at noon for lunch or taking a rest, and continue to
work in the afternoon. Therefore, we propose an in/out time
pattern to present the visit time information for each cluster as
destination and origin, respectively. Namely, out time pattern
records the visit time of all cameras in each cluster as origin,
and in time pattern corresponds to destination. If most time in
out time pattern of a cluster is in the early morning and most
time in corresponding in time pattern is at nightfall, the cluster is
more likely to be the home area than other clusters with unstable
patterns.

To quantify the time pattern, we use a Gaussian kernel-based
KDE to estimate the distribution of visit time for each pattern.
We first select the cluster that has one highest peak in the early
morning or early afternoon in out time pattern and has one
highest peak in the early evening or noon in in time pattern.
If there are multiple clusters that satisfy the time constraints,
we choose the cluster with the most frequency (i.e., the sum of
frequency of all cameras) as home area candidate.
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Fig. 2. An example of in/out time patterns.

Fig. 2 shows an example of in/out time patterns of three
obtained biggest clusters for a given vehicle. First row shows the
overall time distribution for three clusters, and the last two rows
depict in and out time patterns respectively. We can see that
cluster1 (actual home area) has the highest peak around 7 AM
in out time pattern and the highest peak between 6 PM and 8
PM in in time pattern. Although cluster3 has similar overall time
distribution with cluster1, it shows a completely different time
distribution in out and in time patterns, respectively. Specifically,
cluster3 clearly shows the highest peak around 9 AM in in time
pattern and the highest peak at about 6 PM in out time pattern.
This is obviously in line with time distribution of workplace.
Therefore, cluster1 would be chosen as the home area candidate
using in/out time pattern matching for the vehicle.

4.4. KDE-based home community inference

The home area candidate actually only contains the neighbor-
ing cameras near the home community. There may be multiple
residential communities in the candidate area. Hence we first
extract the residential communities near the cameras in the home
area candidate as home community candidates.

Usually, residents frequently visit several cameras near their
home communities when they go out to work or return home.
Therefore, residents’ visit records to the nearby cameras should
satisfy a distribution centered on the residential community with
respect to distance and frequency. With these considerations in
mind, we propose to use Kernel Density Estimation (KDE) method
to model the spatial density of the home community candidates
with respect to their local cameras.

4.4.1. KDE model
KDE is a non-parametric model for estimating density from

sample points. Following the kernel density model, we define the
density score for a community x with respect to its local cameras

as follows:

fh(x) =
1
n

n∑
i=1

Kh(x− ci) =
1
nh

n∑
i=1

K (
x− ci

h
), (1)

where h represents the bandwidth, x stands for a community, ci
represents the sample i and n represents the number of samples.
In our problem, the samples are the local cameras in the home
area candidate, (x − ci) denotes the road network distance be-
tween the community x and the camera ci, and K (.) is the kernel
function.

Generally, the closer a camera is to the community, the higher
probability it is for residents to pass the camera. Therefore, we
use the Gaussian kernel function in the paper, which is expressed
as follows:

K (x) =
1
√
2π

e−
1
2 x

2
. (2)

From Eq. (1), we can find that the closer the local cameras are
to a community, the higher the density value of the community,
that is, the higher the probability that the vehicle belongs to the
community.

Because a community may have multiple gates, it is difficult
to appropriately measure the distance between local camera and
the community. We use the shortest distance from the camera
to all gates to represent the distance between the camera and
community. The density function becomes:

fh(x) =
1
nh

n∑
i=1

max
g∈G(x)

K (
g − ci

h
), (3)

where G(x) denotes the set of all gates of community x.
To model the effect of frequency, we further add the weight of

each camera into the KDE function of community. The weighted
KDE is as follows:

fh(x) =
1
nh

n∑
i=1

wci max
g∈G(x)

K (
g − ci

h
), (4)
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where wci is the number of times the vehicle passes through ci.
We know that the cameras in the home area candidate are

either first passing cameras (i.e., origin) or last passing cameras
(i.e., destination) for the vehicle veh. Here we separately consider
the effect of the origins and destinations on the community.
Therefore, the final density function becomes:

fh(x) =
1
|Ω|h

∑
ci∈Ω

wci max
g∈G(x)

K (
g − ci

h
)+

1
|Φ|h

∑
ci∈Φ

wci max
g∈G(x)

K (
g − ci

h
), (5)

where Ω and Φ are the set of local cameras in the home area
candidate as origin and destination respectively.

Namely, the probability that the vehicle belongs to the com-
munity is estimated by adding up with the density estimation of
leaving the community and the density estimation of entering the
community.

As the above discussion, the surveillance camera data is ex-
tremely noisy. So the remaining issue is how to choose the mean-
ingful local cameras Ω and Φ for each community candidate,
which we discuss in next section.

4.4.2. Local camera selection
As described in Section 4.3, for the discovered home area can-

didate, we have two categories of cameras: origin and destination.
Let Ω = {cam1

o, cam
2
o, . . . , cam

m
o } be the set of origin cameras

in the home area candidate, and Φ = {cam1
d, cam

2
d, . . . , cam

n
d}

be the set of destination cameras in the home area candidate.
Note that Ω and Φ may intersect since a camera may serve
as either an origin or a destination for a vehicle. We now have
a set of community candidates near the home area candidate,
denoted by CMT = {cmt1, cmt2, . . . , cmtm}. In this section, our
goal is to select the suitable local cameras from Ω and Φ for each
community cmti in CMT to improve inference accuracy.

First, we choose the cameras within γ blocks as local cameras
for each community, where a block refers to a road segment
between two adjacent intersections. This is intuitive, because
vehicles are rarely captured first by the cameras farther away
if there are some cameras nearby. Even if they are captured,
the number of times should be very small, and the distance is
relatively far, thus this has little impact on the density function
of community candidate.

Second, according to the direction of cameras and relative
position of them and the nearby communities’ gates, we further
propose following two pruning rules to select the suitable local
origin and destination cameras for each community.

Rule 1 (Conflict Rule). If a camera cam serves as an origin camera
in the home area candidate, i.e., cam ∈ Ω , but the direction of cam
is conflict with all exit gates for the community cmt, then cam is
pruned from Ω with respect to cmt.

For example, in Fig. 3, camera c2 is an origin camera (i.e., c2 ∈
Ω) for the home area candidate, however, c2 is difficult to be
an origin camera for the community cmt1, because vehicles can
first pass through c2 and then reach at the community gates of
cmt1, and vehicles would not first pass through c2 after going out
from the community cmt1. That is, c2 should serve as a destination
camera for community cmt1. Therefore, we eliminate c2 from Ω

for community candidate cmt1 in KDE function.
Similarly, we have another symmetric conflict rule: If a camera

cam serves as a destination camera in the home area candidate,
i.e., cam ∈ Φ , but the direction of cam is conflict with all entrance
gates for the community cmt , then cam is pruned from Φ with
respect to cmt .

Fig. 3. A sample of local camera selection.

Rule 2 (Sequence Rule). Given an origin camera cam ∈ Ω , if vehicles
arrive at the camera cam from community cmt, they must need to
pass another camera cam′ first, and if the number of times vehicle
veh passes through cam′ is zero and cam′ works well during that
time period, then cam is pruned from Ω for the community cmt.

Again, we have another symmetric sequence rule: for a desti-
nation camera cam ∈ Φ , if vehicles arrive at community cmt from
the camera cam, they need to pass another camera cam′ first, and
if the number of times vehicle veh passes through cam′ is zero
and cam′ works well during that time period, then cam is pruned
from Φ for the community cmt .

For example, in Fig. 3, when a vehicle arrives at the gate of
community cmt4 from c5, it has to pass through c6 camera first.
However, the number of visit to camera c6 is zero in the home
area candidate but c6 captures other vehicles during same time
period, so c5 should be pruned for community cmt4.

To implement the above pruning rules, we use the shortest
path searching on the road network to obtain the path sequences
between cameras and each community gate, consisting of passing
road segments, intersections and cameras. Based on these path
sequences, we decide whether the cameras meet the conditions
of pruning.

It is worth noting that we use the road network distance be-
tween selected local cameras and community candidates. Unlike
Euclidean distance, road network distance is directional, that is,
vehicles run on the road along the road direction, and traverse
the intersections and cameras in sequence, which better reflects
the real travel distance between local cameras and community
candidates.

4.5. Home location inference method

The pseudo-code for our HomInf (Home location Inference)
framework is given in Algorithm 1.

First, we extract the O-D pairs from each vehicle trajectory
Trid in the trajectory set TR for each vehicle (lines 1–7). Then
we use DBSCAN clustering to get neighboring camera clusters
(line 8). To distinguish the home area from other clusters, we
further use in/out time pattern constraints to detect the home
area candidate (lines 9–13). As shown in lines 14–15, we select
the largest clusters with the maximum visit frequency, if there
are multiple cluster satisfying in/out time pattern constraints.

Second, we divide the cameras in the home area candidate into
Ω set (i.e., origin cameras) and Φ set (i.e., destination cameras) to
model the effect of the origins and destinations separately (lines
16–20). Next, we select the local cameras in Ω and Φ set for
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Algorithm 1 HomInf: Home Location Inference Algorithm

Input: Vehicle trajectory TR, road network G, residential commu-
nity set CMT

Output: Home community rank list RL
1: for each Trid ∈ TR do ▷ extract O-D pairs.
2: for each ⟨cami, tsi⟩ ∈ Trid do
3: if |tsi+1 − tsi|≥ τ then
4: O← O ∪ {cami+1};
5: D← D ∪ {cami};
6: O← O ∪ {camstart};
7: D← D ∪ {camend};
8: Clu← DBSCAN(O,D,MinPts, Eps, θ ); ▷ use DBSCAN

clustering O-D pairs.
9: for each clui ∈ Clu do

10: In time pattern← clui ∩ D;
11: Out time pattern← clui ∩ O;
12: if time matching then ▷ match with in/out time patterns.
13: Canclu ← Canclu ∪ {clui};
14: if Canclu.size > 1 then ▷ select the largest cluster.
15: area← max(Canclu);
16: for each cami ∈ area do
17: if cami ∈ O then
18: Ω ← Ω ∪ {cami}

19: if cami ∈ D then
20: Φ ← Φ ∪ {cami}

21: for each cmti ∈ CMT (area) do
22: Ωi ← Ω;
23: for cj ∈ Ωi do
24: if |cj − cmti|≤ γ blocks then
25: if ∀g ∈ cmti, cj /∈ out(g) then
26: Ωi ← Ωi/cj; ▷ satisfy RULE 1
27: if ∀g ∈ cmti,∀c ∈ path(g, cj), c /∈ Ωi and c ∈ Cam

then
28: Ωi ← Ωi/cj; ▷ satisfy RULE 2
29: else
30: Ωi ← Ωi/cj;
31: get Φi in the same way;
32: f (i)← KDE(Ωi, Φi); ▷ compute community density using

Eq. (5).
33: RL← Rank(CMT (area));

each community in the home area candidate. CMT (area) in line
21 denotes all community candidates near/in the home area can-
didate. More specifically, we first get a copy of Ω for community
cmti (line 22). We only retain the local cameras within γ blocks
to community cmti (line 24 and lines 29–30). And we remove
the cameras that satisfy Rules 1 and 2 (lines 25–28). Here out(g)
represents all cameras that vehicles would pass after getting out
from gate g , and path(g, cj) denotes the set of cameras in the path
from gate g to camera cj. We next obtain Φi set for cmti in the
same way. Then we compute the density of community cmti using
selected local cameras Ωi and Φi (line 32).

Finally, we obtain the inferred home community rank list RL
by ranking computed density values of all communities (line 33).

5. Experiments

In this section, we conduct quantitative evaluations to demon-
strate the effectiveness of the proposed framework on real-world
datasets.

Table 2
Statistics of surveillance camera dataset.
Time span 08/01/2016-08/31/2016
Number of surveillance cameras 1704
Number of records 405,370,631
Number of total vehicles 11,299,927
Average number of vehicles per day 1,155,415

Table 3
Number of residential communities.
Districts District1 District2 District3 District4 District5 total

#CMT 908 643 858 890 1105 4404

Table 4
Statistics of vehicles with ground truth.
Number of days 5–10 11–15 16–20 21–31 total
Number of vehicles 519 523 511 538 2091

5.1. Datasets

We use a real-world large-scale traffic dataset collected in a
provincial capital of China and crawl the corresponding contex-
tual datasets from multiple data sources.

• Surveillance Camera Data. The dataset contains 405, 370,
631 records from 1704 surveillance cameras over the pe-
riod of Aug. 1st, 2016–Aug. 31st, 2016. Table 2 shows the
statistics of the dataset in detail.
• Road Network. We crawl the road network of the city from

the public-available OpenStreatMap [51]. The road network
is comprised of 1034 intersections and 4350 road segments.
• Residential Community Data. We collect the residential

community information using Baidu Map API.1 The dataset
includes all residential communities covering five most
dense districts in the City. Table 3 shows the number of
residential communities in each district.

5.2. Evaluation settings

5.2.1. Ground truth
In our study, we need to know the real home community

of some vehicles as the ground truth. However, the real home
locations of vehicles are not included in the surveillance camera
data. To get the ground truth, we conduct a user study to collect
the home community information in the provincial capital city.
More specifically, we randomly investigate 3072 drivers from 12
communities on the spot in different districts in the morning or
evening, and capture the records of their entry or exit to their
home community. Therefore, we use the communities as the
ground truth for the survey vehicles. Note that several selected
communities are located in densely populated areas, meaning
there are multiple residential communities around them. Since
some vehicles were not captured in the surveillance camera data
during Aug. 1st-Aug. 31st, 2016, we finally get 2091 vehicles with
a real home community. Additionally, we make a statistics for the
distribution of days captured in the surveillance camera data for
these vehicles, as shown in Table 4.

5.2.2. Hyperparameter settings
We set the time interval threshold τ = 60 minutes, which

means that when the time interval between any two adjacent
cameras in the vehicle trajectory exceeds 60 minutes, there is

1 api.map.baidu.com/lbsapi/getpoint/index.html.

http://api.map.baidu.com/lbsapi/getpoint/index.html
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a stop point. We set frequency threshold θ = 3, that is, we
remove the cameras that each vehicle passes less than 3 times.
We set block threshold γ = 3 for local camera selection. We
set the bandwidth of h = 1600 for KDE model. If there is
no real residential community in the inferred ranking of home
communities, to calculate the RMSE and MRR values, we set the
vehicle’s real residential community ranking to 50.

5.3. Evaluation methods and metrics

5.3.1. Baselines
To the best of our knowledge, we are the first to infer home

locations for vehicles with surveillance camera data. However,
we compare our method with the following basic method and
variations.

• KNN. KNN uses k nearest neighbors (cameras) to infer home
community. We first extract and cluster the starting cameras
and the ending cameras in vehicle trajectories, and select
the largest cluster as the home area candidate for each vehi-
cle. By calculating the distance between the community gate
and each camera in the home location area, the k nearest
cameras are selected to compute the distance sum for each
residential community. The smaller the distance, the greater
the probability that the vehicle belongs to the community.
For the distance calculating, we use two kinds of distance
measuring methods, one is Euclidean distance and the other
is road network distance, denoted by KNN-ED and KNN-RD
respectively.
• HA-KNN. HA-KNN first uses our proposed home area can-

didate discovery method to find the home area, and then
adopts KNN method to infer the home community ranking
list. Correspondingly, we use HA-KNN-ED and HA-KNN-RD
to denote HA-KNN method using Euclidean distance and
road network distance, respectively.

5.3.2. Metrics
We use the following four metrics to comprehensively evalu-

ate the performance of the proposed method, which are defined
as follow.

• Top@n Accuracy (Top@n Acc). Top@n evaluation method is
to calculate the accuracy of the actual home community
of each vehicle in the estimated Top@n communities. The
calculation formula is as follows:

Top@n Acc =
#rank@n

m
, (6)

where m is the number of test vehicles, and #rank@n repre-
sents the number of vehicles in which the actual community
is ranked within Top-n.
• Root Mean Squared Error (RMSE). We use RMSE to cal-

culate the errors between the predicted top-1 community
and the ranking of actual community for all tested vehicles.
RMSE is defined as follows:

RMSE =

√ 1
m

m∑
i=1

|ranki − 1|2, (7)

where ranki represents the ranking of the real residential
community of the ith vehicle.
• Mean Reciprocal Rank (MRR). We use MRR to evaluate the

performance of all methods. The larger MRR value repre-
sents the better performance. MRR is defined as follows:

MRR =
1
m

m∑
i=1

1
ranki

. (8)

Table 5
Top@n accuracy results of all methods.
Top@n Top@1 Top@2 Top@3 Top@4 Top@5

KNN-ED 0.2026 0.3281 0.3969 0.5160 0.6242
KNN-RD 0.2466 0.3767 0.4510 0.5747 0.6700
HA-KNN-ED 0.3025 0.4684 0.5509 0.6645 0.7534
HA-KNN-RD 0.3309 0.5124 0.5930 0.7131 0.7654
HomInf 0.3868 0.5564 0.6517 0.7415 0.8121

Table 6
MRR, RMSE and AED results of all methods.
Method MRR RMSE AED

KNN-ED 0.3568 15.6098 1932
KNN-RD 0.3938 15.4673 1796
HA-KNN-ED 0.4783 13.2932 1359
HA-KNN-RD 0.5111 12.8917 1206
HomInf 0.5547 11.2677 929

• Average Error Distance (AED). We also use AED to calculate
the distance error between the inferred top-1 community
and the actual community for each vehicle. AED is defined
as follows:

AED =
1
m

m∑
i=1

√
dist(cmtfi, cmtai)2, (9)

where dist(cmtfi, cmtai) represents the Euclidean distance
between the predicted top-1 community cmtfi and the ac-
tual home community cmtai for the ith vehicle.

5.4. Overall performance

First, we evaluate the overall performance of our method and
baselines in terms of Top@n Acc , MRR, RMSE and AED metrics.
Table 5 shows the results of Top@n Acc for all methods, and
Table 6 shows the MRR, RMSE and AED results of all methods.

From Table 5, we can see that our proposed HomInf signifi-
cantly outperforms all baselines in all cases. As top-n increases,
the accuracy of all methods increases. As we see, our HomInf
method reaches at 81.21% accuracy when top@n = 5, which
improves KNN-ED and KNN-RD by 30% and 21% in Top@n Acc , re-
spectively. More specifically, the accuracy of our HomInf method
is 38.68% when top@n = 1. It means that it is very difficult to
directly infer the home community for vehicles in the surveillance
camera system, because of the sparsity of surveillance cameras,
high noise of the camera data, and multiple neighboring resi-
dential communities near some cameras. However, our method
remarkably outperforms KNN-ED and KNN-RD by 91% and 57%
improvements in the case of top@n = 1.

Top@n Acc focuses on the vehicles whose real communities
are in the top-n of the inferred community rank-list. For example,
when top@n = 5, for our HomInf method, we know that 81.21%
vehicles’ real communities are in the top-5 of the predicted com-
munity rank-list, but we do not know what the remaining 18.79%
vehicles ranking are. Therefore, we also evaluate the performance
of all methods in terms of MRR, RMSE and AED. In Table 6, we
again see that HomInf is superior to all baselines in these three
metrics. In particular,MRR value of our HomInfmethod is 0.5547,
which improves KNN methods by 48% on average for all tested
vehicles. And AED of HomInf method for all tested vehicles is 929
m, which is also much less than the average AED (1864 m) of KNN
methods.

As shown in Tables 5 and 6, HA-KNN methods are better than
corresponding KNN methods. This is because HA-KNN employs
our proposed home area candidate discovery method, which ef-
fectively locate the most possible home area by maximally us-
ing vehicle trajectory records and time-aware constraints. This
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Fig. 4. Top@n ACC results w.r.t. days.

Fig. 5. MRR results w.r.t. days.

also demonstrates the effectiveness of our proposed home area
candidate discovery method. Moreover, our HomInf further out-
performs HA-KNN methods in all metrics, which illustrates the
superiority of our proposed KDE-based model in predicting home
community compared to KNN model.

We also observe that the methods that use road network
distance outperform the counterparts that use Euclidean distance
(i.e., KNN-RD vs. KNN-ED, and HA-KNN-RD vs. HA-KNN-ED).
This indicates that the use of the road network distance is more
effective than the Euclidean distance. Because vehicles run on the
road network along the road direction and traverse the inter-
sections and cameras in sequence, which better reflects the real
travel distance between local cameras and community candidates
compared to Euclidean distance.

5.5. Performance w.r.t. data sparsity

Next, we demonstrate that our method is also useful when the
data is sparse. As shown in Table 4, we divide all tested vehicles
into four groups according to the number of days captured in
surveillance camera data: 5–10 days, 11–15 days, 16–20 days, and
21–31 days.

The performance of all methods w.r.t. the number of recorded
days in terms of Top@n ACC , MRR and AED is shown in Figs. 4–6.

Fig. 6. AED results w.r.t. days.

As we can see, our method is consistently better than all baseline
methods on all groups. The first feeling tells us that the more
data we have, the higher the accuracy of the prediction. However,
we see that our HomInf method also performs very well with
sparse data on the group of 5–10 days (Fig. 4). The vehicles in
this group are the most difficult cases, where most of them only
are captured in 5–7 days in surveillance camera data. Our method
is much more effective for such challenging cases. Top@4 ACC of
KNN-ED method is only 0.4164 for this group, while our HomInf
achieves 0.6929 accuracy (Fig. 4(d)). This is because our method
maximizes the use of vehicle trajectories in home area candidate
discovery. We use O-D pair detection to make full use of each
trajectory segments, which significantly alleviates the problem
of data sparsity. Furthermore, we use O-D pair clustering and
time-aware constraints to detect the home area more effectively.
HA-KNN methods significantly outperforming KNN methods on
this sparse group in terms of three metrics also just demonstrates
this point.

Additionally, we also see that all methods including our
method do not work better on the group of 21–31 days com-
pared with the 16–20 group in all three metrics. This is because
the surveillance camera data is extremely noise. Although the
vehicle trajectory increases in the 21–31 group, a large num-
ber of noise cameras also appear in the discovered home area
candidate. However, our HomInf method still performs very
well and outperforms all baselines on this group. This is mainly
because HomInf uses KDE method to model the effect of cap-
tured cameras on the home community with respect to distance
and frequency. Especially, we propose the local camera selec-
tion method to choose the suitable camera for each community
candidate, which effectively removes lots of conflicting noise.

5.6. Parameter sensitivity

We now investigate the performance of our method w.r.t. the
important parameters in term of Top@n ACC .

Fig. 7(a) shows the accuracy of our HomInf method by varying
time threshold τ from 30 to 150 minutes. As we can see, our
method achieves the best performance when time threshold τ is
between 60 and 90 minutes. When τ = 30, the result is slightly
worse. This is because more transitory stop points are detected
when τ = 30, which may result in an increase in the number of
irrelevant cameras in home area candidate discovery and further
affect the inference accuracy of home community. When τ ≥ 120,
the accuracy result is getting worse. This is may because many
important stays are not extracted. For example, some people go
home from workplace at noon and then return to workplace in
the early afternoon. But most of them have no more than 120
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Fig. 7. Performance w.r.t. important parameters.

minutes’ rest time. As a result, the meaningful local cameras in
the home area may be omitted, resulting in a lower accuracy.

Fig. 7(b) shows the accuracy of our method w.r.t. the frequency
threshold θ in Top@n Acc . We can see that the accuracy of our
method achieves the best when θ = 3 in all cases. When θ = 2,
more low-frequency cameras are added to the camera clusters in
the home area candidate discovery, and the noise cameras may be
introduced, which reduces the inference accuracy. However, the
impact is smaller compared with the cases of θ = 5 and θ = 6.
When θ ≥ 5, the accuracy of our method drops significantly, this
is because many important cameras are removed in clustering,
especially for the sparse cases. But for θ = 2, although we
introduce some incidental passing cameras in camera clusters, we
can retain the important cameras and eliminate the conflicting
cameras in the local camera selection. Therefore, the performance
of our method for smaller θ value is better than that for larger θ

value.
Fig. 7(c) shows the Top@n Acc of our method w.r.t. the block

threshold γ . As expected, the performance of our method will
no longer increase when γ reaches a certain size. Due to the
sparseness of surveillance cameras, they may not cover all roads
near residential communities, thus we need to utilize the far-
ther cameras for inferring the home location. As described in
Section 4.4.2, very far cameras also do not affect the density
calculation of the home community. In Fig. 7(c), we observe that
the accuracy of our method no longer changes when γ ≥ 3, which
means the important cameras have already been included for
home location inference in our problem when using the adjacent
three blocks.

Finally, we evaluate the performance of our method with
respect to the clustering parameter Eps and MinPts. Fig. 7(d)
shows the Top@n Acc results of our method by varying Eps from
500 to 1500 m. As we can see, our method achieves the best
performance when Eps ranges from 750 to 1000 m. Namely, all
Eps values chosen from 750 to 1000 are very suitable for our
problem. This is because much more smaller camera clusters are
generated by DBSCAN when Eps = 500, which may cause that
wrong or split home area is selected in the home area candidate
discovery. For example, the home area covering multiple further
cameras may be split into two or more clusters when set a smaller
Eps. When Eps value is set very larger, multiple frequently visited
places may be merged into one cluster, which causes a decrease
in the accuracy of home community inference in a much larger
noisy area.

Fig. 7(e) shows the Top@n Acc results of our method by varying
MinPts from 3 to 11. Since we omit the origin and destination
cameras with low frequency that is less than θ (the default is
3) when performing DBSCAN clustering, experimental results are
the same when MinPts ≤ 3. As we can see, our method achieves
the best performance when MinPts ranges from 3 to 5. The in-
ference accuracy of the proposed method gradually decreases
when MinPts > 5. This is because some camera clusters with low
visiting frequency are neglected when performing DBSCAN with

a larger MinPts. Especially for the sparse data (e.g., 5–10 days),
the number of visits to the frequently visited places by a vehicle
is inherently small. Therefore, the cluster that corresponds to the
real home location may be ignored when MinPts is set to a larger
value. But on the other hand, more camera clusters are obtained
by DBSCAN for the relative dense data (e.g., 21–31 days) when
MinPts is set to a smaller value. Namely, more frequently visited
places are detected for a vehicle by DBSCAN with a small MinPts
value. Nonetheless, our proposed home area candidate discovery
method effectively distinguishes the home area from the ob-
tained frequently visited places, which guarantees the inference
accuracy of our proposed framework.

6. Conclusion and future work

In this paper, we propose a home location inference frame-
work for vehicles, called HomInf, which effectively predicts the
home community for each vehicle with surveillance camera data.
Our framework mainly consists of three parts: data preprocess-
ing, home area candidate discovery and KDE-based home com-
munity inference. First, we obtain a context-rich road network
with residential communities and cameras by collecting and pre-
processing multiple contextual data with surveillance camera
data. Then, we effectively discover the home area candidate by
clustering O-D pairs in vehicle trajectories and leveraging the pro-
posed time-aware constraints. Finally, HomInf infers the home
community by using KDE method to model the effect of passing
cameras on the residential communities in the home area candi-
date. Experimental results on real-world large-scale data showed
the effectiveness of our proposed method.

Surveillance camera data in urban traffic systems records the
daily life scripts of people, which contains not only the location
information of drivers’ home community, but also many other
interesting activities, such as workplace, and entertainments. In
the future, we plan to predict the destinations for vehicles in such
surveillance camera data by incorporating contextual POIs data.
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