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ABSTRACT This paper investigates Kalman Filter-based Heuristic Ensemble (KFHE), which is a new
perspective on multi-class ensemble classification with performance significantly better or at least as good
as the state-of-the-art algorithms. We prove that the sample weight tuning method used in KFHE is a
version of adaptive boosting, and the weight distribution does not change anymore and leads to redundant
classifiers when the algorithm iterates enough times. This motivates us to select a sub-ensemble to alleviate
the redundancy and improve the performance of the ensemble. An Ordering-based Kalman Filter Selective
Ensemble (OKFSE) is proposed in this paper to select a sub-ensemble using the margin distance minimiza-
tion approach. We demonstrate the effectiveness and robustness of OKFSE through extensive experiments
on 20 real-world UCI datasets, and the statistical test shows that OKFSE significantly outperforms the state-
of-the-art KFHE and clustering-based pruning methods on these datasets with 5% and 10% class label noise.

INDEX TERMS Machine learning, classification, selective ensemble, ordering-based pruning, Kalman filter.

I. INTRODUCTION
Ensemble is one of the most promising areas of research in
machine learning and data mining. Multiple classifiers in an
ensemble could be combined to achieve better performance
than any individual classifier [1]. The learnability of strong
learners and weak learners are equivalent, and weak learners
can be boosted to be strong learners [2]. In an ensemble,
if all the classifiers make the same predictions, they alsomake
the same errors [3]. Thus, an ensemble requires its members
accurate and diverse.

Diversified ensemble components can be obtained by
using different training datasets, e.g., Boosting [4], [5],
Bagging [6], and Random Forest [7]. Recently, a novel
approach named Kalman Filter-based Heuristic Ensemble
(KFHE) was proposed in [8]. KFHE used a new sample
reweighting method to generate different training datasets for
a diversified ensemble. Moreover, a combing rule based on
Kalman filter was employed to predict the labels for new
data, which is different from majoring voting in Bagging
and weighted voting in AdaBoost. Kalman filter is a well-
known methodology for linear Gaussian state estimation in
dynamical systems [9]. The ensemble Kalman filter (EnKF)
can be viewed as an approximate version of the standard
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Kalman filter, in which the Kalman gain is estimated based
on the ensemble [10]. The ensemble in EnKF is a sample
drawn from the filter distribution and then propagated for-
ward through time and updated when new data become avail-
able [11]. Note that KFHE is different from EnKF, especially
in the definition of ensemble. In KFHE, the ensemble compo-
nents are classifiers. At time t , a classifier is generated on the
reweighted training dataset, and then the label of new sample
is predicted by combing the predictions of all classifiers using
Kalman filter rules [8].

Although KFHE is robust to class-label noise and possess
performance significantly better or at least as good as the
state-of-the-art algorithms [8], there remains room for further
improvement. We proved in this paper that, KFHE has redun-
dant classifiers due to similar sample weights, and a sub-
ensemble carefully selected is expected to have better per-
formance than the entire ensemble. In this paper, we selected
the sub-ensemble using the ordering-based algorithm margin
distance minimization (MDM) to improve the performance
of the ensemble generated by KFHE.

The main contributions are made in this paper as follows:

• The theoretical analysis of KFHE is presented, which
shows the potential redundancy of KFHE and motivates
us to prune the ensemble.

• Ordering-based Kalman Filter Selective Ensemble
(OKFSE) is proposed. OKFSE has the advantages of
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KFHE and MDM, i.e., OKFSE generates a robust
ensemble of classifiers by KFHE and then effectively
prunes the ensemble by MDM to improve the perfor-
mance further.

• Extensive experiments are conducted on 20 real-world
UCI datasets. Experiments show that OKFSE signifi-
cantly outperforms KFHE and the compared clustering-
based pruning algorithms on datasets with 5% and 10%
class label noise.

The remainder of this paper is organized as follows.
Section 2 reviews the related work. Section 3 presents the
proposed Ordering-based Kalman Filter Selective Ensemble.
Experiments and result analysis are introduced in section 4.
Finally, section 5 concludes this paper.

II. RELATED WORK
A. ORDERING-BASED SELECTIVE ENSEMBLE
An effective ensemble of classifiers requires its members
accurate and diverse. A diversified ensemble can be obtained
by using different training datasets, e.g., Boosting [4], [5],
Bagging [6], and Random Forest [7]. A Boosting algorithm,
e.g., AdaBoost [5], trains classifiers iteratively by focusing on
the data which were misclassified by the previous classifiers,
and then a biased classifier is obtained if the target class labels
for fitting were corrupted by noise. The output of AdaBoost is
produced by combining each weak classifier’s decision using
weighted majority voting. Therefore, AdaBoost is sensitive
to noisy class labels and performs poorly as the level of
noise increases [12]. Bagging-based algorithms sample the
training data repeatedly in each iteration, and then combine
all classifiers generated in iterations using majority voting
to make the final decisions. Random Forest [7] can be seen
as a variant of Bagging, since its components are trained by
randomly sampling the dataset and its features simultane-
ously. Studies have shown that the classifiers in an ensemble
generated by Bagging have redundancy between each other,
and a sub-ensemblemay outperform the entire one. For exam-
ple, 20-40% of the ensemble generated by Bagging has the
same or better performance than the entire ensemble [13],
and 25% of the ensemble is competitive with a state-of-
the-art technique for pruning Bagging ensemble in Meta-
learning method [14]. One of the reasons of redundancy is
related to the sampling weights, because Bagging samples
the training dataset with the same sampling weights for each
classifier, and the distance between two sampling probability
distributions is zero in the view of Kullback-Leibler diver-
gence [15]. Thus, the classifiers generated on similar samples
will have similar structures or predictive behaviors, which
lead to redundancy among classifiers.

Various methods were proposed to select the sub-ensemble
and decrease the number of classifiers without worsening the
performance of the ensemble [16]. There are three categories
of selective ensemble or ensemble pruning techniques [17]:

(1) Optimization-based: ensemble pruning can be viewed
as a combinatorial optimization problem aiming at finding a

sub-ensemble that optimizes a predefined criterion. Genetic
algorithms [18], [19] have been proposed to solve the prob-
lem approximately. However, these heuristic algorithms still
suffer from low scalability due to the difficulty of global
optimization [17].

(2) Clustering-based: classifiers with similar predictive
behaviors [20] or structures [21], [22] are clustered together,
and then a representative classifier is selected from each clus-
ter to compose a sub-ensemble. As shown above, diversity
and accuracy are two key factors to successful ensemble
selection. Existing ensemble pruningmethods consider diver-
sity and accuracy separately or simultaneously to prune an
ensemble [23]–[26]. Specially, diversity between classifiers
is an important measure for clustering-based pruning algo-
rithms. However, the effectiveness of existing diversity mea-
sures is discouraging since there seems to be no clear relation
between those diversity measurements and the ensemble per-
formance [27].

(3) Ordering-based: classifiers in the ensemble are ordered
based on some predefined evaluation measures, and then
members of the sub-ensemble are selected according to
this order. Examples include MDM [13], [20] and ori-
entation ordering [28]. Margin is another important mea-
sure in ensemble selection [29]–[31], and the algorithm
combing margin and diversity is effective in ensemble
learning [29]. As a margin ordering algorithm, MDM has
been widely used for ensemble pruning for its impressing
performance [13], [32]–[34]. A variant of MDM, named
MDM-Imb, can handle the skewed-class distribution in
imbalanced datasets [32], [33]. Zhu et al. proposed an
improved discrete artificial fish swarm algorithm for ensem-
ble pruning, which used a combination of diversity measure
andMDM to find the tradeoff between diversity and accuracy
of classifiers [34]. MDM is briefly summarized as follows:

MDM uses the distance among the output vectors of an
ensemble to prune. The output vectors of the ensemble have
the length equal to the size of training dataset. Let ck be a
classifier in the ensemble composed of T different classifiers.
If the ith example is misclassified, the value of the vector
of ck at ith position is set to −1 and otherwise is 1, which
is equal to the example margin. The sum of the vectors of
selected classifiers is referred to as the vector of the sub-
ensemble. The classifiers are added into the sub-ensemble
C in order to make the corresponding vector <c> be as
close as possible to a reference position o placed in the first
quadrant [20], [32]. Specially, o = (p, p, . . . , p), where p =
0.075 as suggested [20]. The uth selected classifier is the one
that minimizes

su = argmin
k

d(o,
1
T
(ck +

u−1∑
t=1

cst )) (1)

where st and su are the sub-ensemble with t and u classifiers
respectively, k runs through the classifiers outside C and
d(x, y) is the Euclidean distance between x and y.
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MDM is a highly efficient algorithm which outperforms
most state-of-the-art pruning algorithms [13], thus we select
MDM to prune the ensemble.

B. KFHE
KFHE [8] is the state-of-the-art multi-class ensemble clas-
sification method. It obtains an ensemble of classifiers, each
of which regards the labels of the training dataset as the ideal
state to be modeled. The individual component classifier ct
trained by KFHE can be viewed as an attempt to measure the
ideal state with a related uncertainty indicated by the training
error of ct . KFHE uses Kalman filter to estimate the ideal
state by combining these multiple noisy measurements. After
all component classifiers are trained on the training dataset,
the ensemble of these classifiers is used to predict the labels
of the test dataset.

At the tth iteration, the classifier ct is trained using a
weighted sample of the training dataset and a Kalman filter is
used to combine the prediction of ct and a priori estimation
to get a posteriori estimation.
Since the label vector of the training set is a static

state, the time update equations are omitted in practice.
Let yt = [yt1; yt2; . . . ; ytn], with yti denoting the pre-
diction for the ith data point xi, and training dataset be
D = {x1, x2, . . . , xn}.
The measurement zt is taken as the average of the previous

prediction, ŷt−1, and the prediction of ct , as in Eq.(2). The
measurement step and its related error are as follows:

zt =
1
2
(ŷt−1 + ct (D)), (2)

Rt =
1
n

n∑
i=1

(Yi 6= class(zti)), (3)

ŷt = ŷt−1 + Kt (zt − ŷt−1), (4)

Kt = Pt−1(Pt−1 + Rt )−1, (5)

Pt = (1− Kt )Pt−1, (6)

where zt = [zt1; zt2; . . . ; ztn] represents the measurement;
ct (D) indicates the predictions made by ct for the dataset D;
Rt is the misclassification rate and taken as the uncertainty
related to zt ; class(zti) is the class prediction made by the
ensemble for xi, whose ground truth class is Yi; Pt is the
uncertainty related to ŷt , and Kt is the Kalman gain. Pt and
Kt are scalars in the KFHE implementation.

KFHE used another Kalman filter to decide the weights
for the next sampling of the training dataset. Specially,
wt+1(xi), the weight estimation of xi, is updated as Eq.(7) for
KFHE_e [8]:

wt+1(xi)=wt (xi)(1+Kt (exp(
1
n
+(class(Zti) 6=Yi))−1)). (7)

KFHE initializes the Kalman filters and generates an
initial classifier on the sample of training set, and then
updates the measurements and related uncertainties using
Eqs.(2)-(6), and updates the sampling weights using Eq.(7),
finally resamples the training dataset for a new classifier in

the next iteration, see [8] for details. When 100 classifiers
(decision trees) are generated, KFHE stops with Kalman
gains in each iteration recorded for prediction of test samples.
KFHE has been validated with classification tasks, so it is
challenging to improve its performance further.

III. PROPOSED ORDERING-BASED KALMAN FILTER
SELECTIVE ENSEMBLE (OKFSE)
A. OKFSE
We are interested in the potential application of MDM for
KFHE pruning. Combining MDM with KFHE, we propose
an algorithm called Ordering-based Kalman Filter Selective
Ensemble (OKFSE) to prune the ensemble. OKFSE is com-
posed of three stages, as shown in Figure 1, where the red line
is our work and the others are compared algorithms, including
KFHE itself. The first two stages are training and pruning,
as shown in Algorithm 1.

In the first stage (lines 1-8 in Algorithm 1), KFHE is used
to generate the pool of candidate classifiers. We stored the
Kalman gains for each classifier. In the second stage (lines
9-10 in Algorithm 1), we used MDM to select the classifiers
to constitute the sub-ensemble C . As described previously,
MDM greedily selects the classifiers one by one to reduce
the distance between vector of the sub-ensemble and the
reference position.

Algorithm 1 OKFSE_Training_Pruning
Input: the training dataset D, the ensemble size T , the sub-
ensemble sizeM
Output: sub-ensemble C , Kalman gains {Kt }
1: set equal sampling weights for all examples in D
2: train the classifier c0 using D
3: t = 1,C = ∅
4: while t ≤ T
5: use Eqs. (2)-(6) to train the classifier ct , calculate Kt

and Pt
6: use Eq. (7) to update the weights of D for training the

next classifier
7: t = t + 1
8: end while // The original ensemble has been genera-

ted now
9: useMDM to select the classifiers according to Eq.(1) and

add into C , until |C| = M
10: add the classifier c0 into C
11: return: C , {Kt }

In the third stage, the outputs of the component classifiers
are combined into the final decision for the test sample.
Note that, Kalman filter is a sequential ensemble and the
individual classifier must be sorted in the order of the gen-
eration sequence. The initial classifier c0 is used to make
the prediction of ŷ0. Eqs. (2) and (4) are used to com-
bine the output from each selected classifier recursively.
Algorithm 2 summarizes the process of OKFSE_test.
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FIGURE 1. The diagram of OKFSE.

Algorithm 2 OKFSE_Test
Input: an instance d, the sub-ensembleC , Kalman gains {Kt }
Output: yd, the prediction for d
1: yd = c0(d)
2: t = 1
3: while t ≤ T
4: if ct ∈ C
5: update yd using Eqs.(2) and (4)
6: end if
7: end while
8: return yd

B. THEORETICAL BASIS OF OKFSE
We provide the theoretical basis for OKFSE in this section,
which shows the potential redundancy of KFHE and moti-
vates us to prune. We prove some theorems for KFHE with
proofs followed.
Theorem 1: lim

t→∞
Kt = 0, lim

t→∞
Pt = 0, where Kt and Pt

are calculated by Eqs.(5) and (6) respectively.
Proof: Since Rt is a misclassification rate, then 0 ≤

Rt ≤ 1. Pt−1 is the covariance representing the uncertainty
of ŷt−1 and is initialized to 1, thus 0 ≤ Pt−1 ≤ 1, and then
0 ≤ Kt ≤ 1 from Eq. (5).
Hence Pt = (1− Kt )Pt−1 ≤ Pt−1.
Therefore, {Pt , t = 1, 2, . . .} is a monotonically nonin-

creasing sequence with limited lower bound, then Pt has a
limitation.

We assume that lim
t→∞

Pt = β, then β ≥ 0.
First, we prove lim

t→∞
Pt = 0.

If β>0, let t → ∞ in Pt = (1 − Kt )Pt−1, thus, lim
t→∞

Kt
exists.

Let lim
t→∞

Kt = α, thus, β = (1− α)β, and then α = 0.

Substituting α = 0 into α = lim
t→∞

Kt = lim
t→∞

Pt−1(Pt−1 +

Rt )−1, then β = 0.
It is conflicted with the hypothesis β > 0. Hence, β = 0,

i.e., lim
t→∞

Pt = 0.
Next, we prove that lim

t→∞
Kt = 0.

(1) If Rt > 0 holds for any t , i.e., not all the training
instances are classified correctly, then Rt ≥ 1/n accord-
ing to its definition and Kt = Pt−1(Pt−1 + Rt )−1→ 0.

(2) If Rt0 = 0 holds for some t0, i.e., all the training
instances are classified correctly by the ensemble, then
Kt0 = Pt0−1(Pt0−1 + Rt0)−1 = 1.
Hence, Pt0 = (1 − Kt0)Pt0−1 = 0 and Kt0+1 =
Pt0(Pt0 + Rt0+1)−1 = 0. To make sure the denominator
is not equal to 0 in this special case, a tiny positive is
added into the denominator in [8]. From now on, Pt and
Kt will keep their values as 0.

In summary, lim
t→∞

Kt = 0, and lim
t→∞

Pt = 0. �

Theorem 1 proves that, both Pt and Kt will converge to
0, no matter what sampling method is used to generate the
training dataset for the next iteration.
Theorem 2: In the tth iteration of KFHE, if xi is misclassi-

fied by the ensemble (i.e., class(zti) 6= Yi), then the weight of
xi will increase, i.e., wt+1(xi) ≥ wt (xi) in the next resampling
for the (t + 1)th classifier training. Hence the KFHE is an
adaptive boosting algorithm.

Proof: According to Eq. (7),

wt+1(xi) = wt (xi)(1+ Kt (exp(
1
n
+ (class(Zti) 6= Yi))− 1))

where, (class(zti) 6= Yi) is an indicator with value 1 if
(class(zti) 6= Yi) is true, and 0, otherwise.

(1) If class(zti) 6= Yi, i.e., the instance xi is misclassified by
the ensemble with t classifiers, then
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wt+1(xi) = wt (xi)(1+ Kt (exp (
1
n
+ 1)− 1)). (8)

(2) If class(zti) = Yi, then

wt+1(xi) = wt (xi)(1+ Kt (exp (
1
n
)− 1)). (9)

Let

Qt =
∑

class(zti)6=Yi

wt+1(xi)+
∑

class(zti)=Yi

wt+1(xi).

Substituting Eqs.(8) and (9) into Qt , we can obtain

Qt = D1t (1+Kt (exp (
1
n
+ 1)−1))+D2t (1+Kt (exp (

1
n
)−1))

where

D1t =
∑

class(zti)6=Yi

wt (xi),

D2t =
∑

class(zti)=Yi

wt (xi),

and D1t + D2t = 1, due to the normalization of weights.

The normalized weight of an instance xi which was mis-
classified becomes:

w′t+1(xi)

=
wt (xi)(1+ Kt (exp ( 1n + 1)− 1))

D1t (1+ Kt (exp ( 1n+1)− 1))+D2t (1+Kt (exp ( 1n )− 1))

=
wt (xi)

D1t + D2t
1+Kt (exp( 1n )−1)

1+Kt (exp( 1n+1)−1)

(10)

Because Kt ≥ 0,
1+Kt (exp( 1n )−1)

1+Kt (exp ( 1n+1)−1)
≤ 1, thus, w′t+1(xi) ≥

wt (xi). Here, w′t+1(xi) = wt (xi) if and only if Kt = 0.
Similarly, the normalized weight of an instance xi which

was classified correctly becomes:

w′t+1(xi) =
wt (xi)

D1t
1+Kt (exp ( 1n+1)−1)

1+Kt (exp( 1n )−1)
+ D2t

≤ wt (xi)

�
Theorem 2 shows that, the (t + 1)th classifier will focus

on the instances misclassified by the ensemble of t classi-
fiers, so KFHE_e will generate diversified classifiers. The
update of weights is a characteristic of the adaptive boosting
algorithms [35]. Hence, KFHE is also an adaptive boosting
algorithm.

KL-divergence (Kullback-Leibler divergence) can be used
to calculate the distance between two probability distributions
P and Q [15].

KL(P(D)||Q(D)) =
∑
xi∈D

[P(xi) log
P(x)
Q(x)

].

Theorem 3: When t → ∞, KL(wt (D)||wt+1(D)) → 0,
where wt (D) and wt+1(D) denote the sampling weights of the
training datasets in two successive iterations respectively.

Proof: We use wt+1(xi) to represent w′t+1(xi) for conve-
nience.

The KL-divergence between the wt (D) and wt+1(D)
becomes:

KL(wt (D)||wt+1(D))

=

∑
xi∈D

[wt (xi) log(
wt (xi)
wt+1(xi)

)]

=

∑
class(zti)6=Yi

[wt (xi) log (D1t+D2t
1+Kt (exp ( 1n )−1)

1+Kt (exp ( 1n+1)−1)
)]

+

∑
class(zti)=Yi

[wt (xi) log (D1t
1+Kt (exp ( 1n+1)−1)

1+Kt (exp ( 1n )−1)
+D2t )]

= D1t log (D1t + D2t
1+ Kt (exp( 1n )− 1)

1+ Kt (exp ( 1n + 1)− 1)
)

+D2t log (D1t
1+ Kt (exp ( 1n + 1)− 1)

1+ Kt (exp( 1n )− 1)
+ D2t )

where D1t and D2t are defined as above, and D1t +D2t = 1.
Theorem 1 shows that lim

t→∞
Kt = 0, therefore, if t →∞,

1+ Kt (exp ( 1n + 1)− 1)

1+ Kt (exp( 1n )− 1)
→ 1.

Thus, KL(wt (D)||wt+1(D))→ 0. �
From Theorem 3, the resampling weights do not change

significantly if the ensemble size is large enough. The new
classifier is trained using a training dataset which is similar
to the one used to train the previous classifiers. Thus, the gen-
eralization abilities of the classifiers are similar to each other
and some of the classifiers are redundant.

IV. EXPERIMENTS AND DISCUSSIONS
A. DATASETS AND PERFORMANCE MEASURE
We carried out experiments on 20 real-world UCI
datasets [36] with different number of instances, attributes
and classes. Table 1 describes the details of these datasets.

Following [8], an extended macro-averaged F (macro)
1 is

used to evaluate the performance:

F (macro)
1 =

1
l

l∑
i=1

2×
precision(i) × recall(i)

precision(i) + recall(i)
,

where precision(i) and recall(i) are the precision and recall
values for the ith class respectively, and l is the number
of classes. F (macro)

1 is an extended multi-class version of
the macro-averaged F1-score for binary classification, and is
appropriate for potential class imbalance.

B. EXPERIMENTAL SETUP
We employed KFHE to generate an ensemble of decision
trees for classification, and then tried to prune the ensemble
to improve the performance. Clustering-based pruning algo-
rithms were used as a benchmark in the experiments, which
used Kappa [13], [37] and RCJac [21] as diversity measures
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FIGURE 2. Performance changes of the algorithms, the dashed horizonal line is KFHE.

respectively. Diversity of decision trees can be classified
into two categories, i.e., semantic and structural diversity.
Kappa is a semantic diversity which is measured by the κ

statistic [13], [37]. The lower κ , the higher diversity, thus
we used 1 − κ to measure the distance between two trees
in the experiments. RCJac is a structural diversity measure
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for decision trees, because it concerns the distributions of
instances in the leaves and calculates the distance between
these distributions [21]. In the experiments, we calculated
the diversity of each pair of classifiers using Kappa or RCJac
and created a similarity matrix, then called the hierarchical
clustering algorithm to divide the classifiers into different
clusters, finally, we selected one classifier from each cluster
to construct a sub-ensemble. Figure 1 illustrates the pruning
process.

To allow a fair comparison of the techniques, all eval-
uations use the same experimental protocol, i.e., the same
division of datasets for training and test, as well as the same
pool of classifiers. The component learners are decision trees
and the size of pool is set to 100 as suggested in [8]. The
sub-ensemble size is the number of clusters in the clustering-
based ensemble pruning algorithm and also is the num-
ber of trees in MDM for ordered sub-ensemble generation.
The parameter p in MDM was set to 0.075 as suggested
in [13], [20]. The combination of sub-ensemble used Kalman
Filter scheme to predict the labels of test samples. Similar
to KFHE, for a pair of dataset and algorithm, a 20 times
4-fold cross-validation experiment was performed, and the
mean of the F (macro)

1 -scores across the folds were computed.
Furthermore, 5% and 10% class-label noise were introduced
synthetically into each of the datasets in Table 1 respectively.
Taking 5% as an example, we selected 5% instances of the
dataset and replaced the class label of each instance with
a random label other than its ground truth class. For each
of these noisy datasets, a 20 times 4-fold cross-validation
experiment was performed. For each fold, the noisy class

TABLE 1. The datasets used in this paper.

labels were used in training, but the F (macro)
1 -scores were

computed with respect to the dataset without label noise [8].

C. EXPERIMENTAL RESULTS
For simplification, we denote the compared clustering-based
algorithms as Kappa and RCJac in the experiments. We tested
OKFSK, Kappa and RCJac by varying the sub-ensemble size
from 10 to 90 with step length 10, and computed the F (macro)

1 -
scores of each algorithm on each dataset for three levels
of class label noise. Due to space limits, we showed only
the best performances over all tested sub-ensemble sizes
in Tables 5-7 in Appendix for all algorithm-dataset pairs.

1) W/T/L(WINS/TIES/LOSES)
From Tables 5-7, we observed that, from the view of W/T/L,
OKFSE performs significantly better than other methods on
datasets with 5% and 10% noise level. Specially, OKFSE
wins on 9 and 10 datasets when the noise level is 5% and 10%
respectively, and ties on 5 and 4 datasets at the noise level 5%
and 10% respectively. In summary, OKFSE has higher wins
and ties than the others with the noisy data. Hence, in practice,
OKFSE can be more advantageous due to more or less class
label noise included in the obtained raw datasets.

2) FRIEDMAN TEST AND FRIEDMAN ALIGNED TEST
Weused Friedman rank test [38] for the statistical comparison
of these techniques over the 20 datasets. Table 2 presents
the average Friedman ranks summarized from Tables 5-7 in
Appendix. Lower ranks are better, the best performing algo-
rithm is the one presenting the lowest average rank. OKFSE is
the algorithmwith the lowest average ranks at noise levels 5%
and 10% (average rank = 1.58 and 1.53 respectively). From
the view of average rank, we observed that OKFSE is better
than the others when the training datasets were corrupted by
noise.

To compare the four algorithms (i.e., KFHE, OKFSE,
Kappa and RCJac), we evaluated the following hypothesis H0
using Friedman test.

Null hypothesis H0:
The four algorithms do not show any significant difference

when used for classification on the datasets.
We calculated p-value for each test, and the hypothesis was

checked at α = 0.05 significance level, as shown in Table 2.
At three noise levels, Friedman test results are all significant
at α = 0.05. Thus, we rejected Null hypothesis H0. Namely,
the four algorithms perform significantly different from each
other at the tested noise levels. We noticed that OKFSE is
the best one when the noise levels are 5% and 10%, hence,
OKFSE significantly outperforms the compared algorithms
with noisy data.

Generally, Friedman rank test is recommended if k>5 and
N>10, where k is the number of algorithms and N is the
number of datasets. In our experiments, k = 4, therefore we
further conducted Friedman aligned rank test to evaluate the
above hypothesis H0. Tables 5-7 in Appendix also show the
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TABLE 2. Average ranks and p-values for different levels of class label noise. Best ranks are high-lighted in boldface.

TABLE 3. Adjusted p-values for the Friedman test (OKFSE is the control method).

TABLE 4. Adjusted p-values for the Friedman aligned test (OKFSE is the control method).

Friedman aligned rank for each combination of algorithms
and datasets. Additionally, Table 2 presents the average Fried-
man aligned ranks summarized from Tables 5-7. As expected,
OKFSE is the algorithm with the lowest average ranks at
noise levels 5% and 10% (average aligned rank = 22.65 and
23.33 respectively). The average aligned ranks confirm that
OKFSE is better than the others when the training datasets
were corrupted by noise.

We also calculated p-value for each Friedman aligned test,
and the hypothesis was checked at α = 0.05 significance
level, as shown in Table 2. At three noise levels, Friedman
aligned test results are all significant at α = 0.05. Thus,
we reject Null hypothesis H0 based on Friedman aligned test.

3) POST-HOC TESTS
Both Friedman test and Friedman Aligned test detected sig-
nificant differences between the four algorithms, then post-
hoc tests are applied to compare OKFSE (the control method)
with other algorithms. The p-values can be obtained using the
ranks computed by the Friedman and Friedman Aligned tests,
respectively. Tables 3 and 4 show the unadjusted p-values
and p-values adjusted by Bonferroni-Dunn, Holm and Finner
procedures.

In Table 3, at noise level 5%, the Friedman test shows a
significant improvement of OKFSE over KFHE, Kappa,and
RCJac for all the post-hoc procedures considered, using a
significance level of 0.05. However, At noise level 10%,
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FIGURE 3. Kappa-error diagrams for OKFSE.

the Friedman test fails to show a significant improvement
of OKFSE over RCJac for all the post-hoc procedures
considered.

In Table 4, at noise levels 5% and 10%, the Friedman
aligned test shows a significant improvement of OKFSE
over KFHE, Kappa,and RCJac for every post-hoc procedure
considered, except Bonferroni at noise level 10%, which fails
to highlight the difference between OKFSE and RCJac as
significant. Since Friedman aligned test is desirable in our
experiments due to the small number of algorithms, again,
we confirmed that OKFSE is better than the others when the
training datasets were corrupted by noise.

4) EVIDENCE OF OVERFITTING
We summarized three typical trends of F (macro)

1 -scores over
the sub-ensemble size. Figure 2 shows these trends for each
algorithm on Balance, Blood and Image-segment datasets
respectively. The first, second and third rows of Figure 2 are
the performances on the datasets with class-label noise levels
0%, 5%,10% respectively. The dashed horizonal line in each
subplot shows the performance of KFHE on the correspond-
ing dataset. From the results, we observed:

• Balance dataset reaches its highest performance when
the sub-ensemble size is round 50. Increasing the tree
number increases F (macro)

1 when the number is less than
50, but decreases it when the number is larger than 50.
Three pruning algorithms support the similar observa-
tions, and the advantages of OKFSE over the other two
compared clustering-based algorithms become obvious

when the noise level increases. In addition, the per-
formances of three pruning algorithms are all better
than KFHE. Datasets with similar trend also include
BreastTissue, Ecoli, Glass, Iris and Seed .

• On Image-segment , increasing the tree number increases
F (macro)
1 monotonically, and KFHE achieves the best

performance. We will discuss the reason of pruning fail-
ure later. Datasets with similar trend also include Bupa,
Hayes-roth, Ionosphere, Tae and Wdbc.

• Blood obtains its best performance with very small
sub-ensemble size, and decreases the performance
monotonically as the tree number increases, which
demonstrates overfitting of the ensemble. Moreover,
OKFSE is better than the others at all noise levels,
and the performances of three pruning algorithms are
all better than KFHE. Datasets with similar trend also
include Ferbility, Haberman and Surgery.

In summary, on more than half of the tested datasets, per-
formances reach the peakswhen the sub-ensemble sizes reach
some thresholds, which are closely related to the datasets, and
then decrease as the tree number increases. The decreasing of
generalization performance shows overfitting of the ensem-
ble with larger size.

5) REDUNDANCY VS. DIVERSITY OF A SUB-ENSEMBLE
Previous studies as well as our experiments have shown that
the classifiers in an ensemble have redundancy between each
other, and diversity is a key factor for measuring redundancy.
Generally, the more diversified, the less redundancy. We used
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TABLE 5. F (macro)
1 -scores for each algorithm performed on each dataset without noise. The values in parenthesis are the Friedman ranking (FR) and the

Friedman aligned ranking (FAR),respectively.

TABLE 6. The results of each algorithm for each dataset with 5% noise included.The values in parenthesis are the Friedman ranking (FR) and the
Friedman aligned ranking (FAR),respectively.

the kappa-error diagrams to visualize the diversity-accuracy
patterns of the ensemble classifiers [37]. A kappa-error dia-
gram is a scatter plot where each point corresponds to a pair

of classifiers ci and cj. The x-axis coordinate of the point is the
diversity between ci and cj measured by the statistic kappa κ ,
the same measure used in the compared method Kappa. The
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TABLE 7. The results of each algorithm for each dataset with 10% noise included.The values in parenthesis are the Friedman ranking (FR) and the
Friedman aligned ranking (FAR),respectively.

y-axis coordinate of the point is the mean error of ci and cj.
Both κ and the error rates are measured on the training data
set [37], [39]. According to the definition of κ , the lower
κ , the higher diversity. Thus, the desirable points indicating
better accuracy and higher diversity should lie in the bottom
left corner of the scatter plot.

Figure 3 is the kappa-error diagrams for OKFSE on the
Balance, Blood and Image-segment datasets at noise level
5%. We performed 20 times 4-fold cross validations on these
datasets, and set the sub-ensemble sizeM for OKFSE to 10 at
Figure 3(a)-(c). From the Figure 2(d)-(f), we observed that
the ensembles can be pruned to small size sub-ensembles
on the Balance and Blood datasets, and the ensemble for
Image-segment can’t be pruned. Correspondingly, in Fig-
ure 3, the kappa-error diagram calculated on Blood has sig-
nificantly better diversity than those on Balance and Image-
segment , and the diversity of Balance is better than that of
Image-segment . Low diversity means the sub-ensemble on
Image-segment are highly redundant, thus it is very likely
poor performed on the tested dataset. However, as the tree
number increases on Image-segment , more diverse decision
trees are added gradually into the sub-ensemble, as shown
in Figure 3(d)-(f), and the performance increases accordingly.

D. DISCUSSIONS
Theorem 3 illustrates the potential redundancy of the ensem-
ble generated by KFHE, and our experiment results validated
the existence of redundancy and showed the effectiveness

and robustness of OKFSE on 20 UCI datasets with class-
label noises. Due to class-label noise included in the training
dataset, the trained classifier deviates from the true data
model in order to fit the noisy data. As the number of biased
classifiers increases, the votes on wrong labels increase,
thus the possibility of wrong ensemble decision increases.
However, if only a suitable subset of the biased classifiers
is selected, the sub-ensemble will make a tradeoff between
generalization ability and deviation, and thus the decisions
will be more reliable.

Since in practical classification tasks, the obtained datasets
are more or less corrupted by noise, the ground truth model of
these data maybe far from the classifiers built on the training
data, an effective and robust ensemble technique is preferred
to alleviate the impact of noise. Our experiments illustrated
that all pruning algorithms show similar performance changes
on a given dataset, however, our proposed OKFSE is usually
the one with highest performance.

V. CONCLUSION
We analyzed the state-of-the-art multi-class ensemble classi-
fication KFHE and found that KFHE is an adaptive boost-
ing algorithm and generates redundant classifiers when it
iterates enough times. An ordering-based pruning method,
OKFSE, is proposed in this paper to reduce the redundancy
of the ensemble and further improve the performance of
KFHE. Extensive experiments were conducted on 20 real-
world datasets to compare OKFSE with the state-of-the-art
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methods. The results show that, OKFSE is more effective and
robust on the datasets with class-label noise than all baselines,
including KFHE.

In the future work, it would be interesting to extend
OKFSE to the dynamic ensemble selection, which is more
promising in classification task than static ensemble selec-
tion.

APPENDIX A
EXPERIMENTAL RESULTS
See Tables 5–7.
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