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a b s t r a c t

Heterogeneous graphs consist of multiple types of nodes and edges, and contain comprehensive
information and rich semantics, which can properly model real-world complex systems. However, the
attribute values of nodes are often incomplete with many missing attributes, as the cost of collecting
node attributes is prohibitively expensive or even impossible (e.g., sensitive personal information).
While a handful of graph neural network (GNN) models are developed for attribute completion in
heterogeneous networks, most of them either ignore the use of similarity between nodes in feature
space, or overlook the different importance of different-order neighbor nodes for attribute completion,
resulting in poor performance. In this paper, we propose a general Attribute Completion framework for
HEterogeneous Networks (AC-HEN), which is composed of feature aggregation, structure aggregation,
and multi-view embedding fusion modules. Specifically, AC-HEN leverages feature aggregation and
structure aggregation to obtain multi-view embeddings considering neighbor aggregation in both
feature space and network structural space, which distinguishes different contributions of different
neighbor nodes by conducting weighted aggregation. Then AC-HEN uses the multi-view embeddings
to complete the missing attributes via an embedding fusion module in a weak supervised learning
paradigm. Extensive experiments on three real-world heterogeneous network datasets demonstrate
the superiority of AC-HEN against state-of-the-art baselines in both attribute completion and node
classification. The source code is available at: https://github.com/Code-husky/AC-HEN.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Many real-world complex applications are naturally repre-
ented in graph data structures, such as social networks, com-
unication networks, brain neural networks and E-commerce
etworks. There has been a surge in interest in learning from
hese graph data, especially heterogeneous graphs. Heteroge-
eous graphs are composed of multiple types of nodes and edges,
orresponding to describing various entities and their relation-
hips in real-world complex systems. For instance, we can model
itation network in ACM dataset as a heterogeneous network,
here entities such as authors, papers and subjects are regarded
s different types of nodes, and the relationships between them
re represented as different edge types (e.g., paper–paper, paper–
uthor, paper–subject). Since heterogeneous graphs contain more
omprehensive information and rich semantics, they can better
odel the real-world complex systems than conventional homo-
eneous graphs. Analyzing and mining what information in these
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networks has been a very active research topic for decades both
in academia and industry.

Among various graph mining techniques, network embed-
ding (or network representation learning), which projects high-
dimensional network data to a low-dimensional continuous space
while captures the intrinsic information of the network, is shown
to be especially effective for various network analytical tasks
[1–4]. Recently, graph neural networks (GNNs) [5,6] have demon-
strated state-of-the-art performance and attracted considerable
attention from researchers. To capture the rich neighborhood
contexts, various GNN-based models have been developed to
aggregate feature information from neighbor nodes, such as graph
convolutional networks (GCN) [7], graph attention networks
(GAT) [8], inductive graph learning (GraphSAGE) [9] and meta-
path aggregated graph neural network (MA-GNN) [10]. To learn
better node representations for various downstream tasks, all
nodes’ attributes are required in these GNN-based models. How-
ever, this is not always satisfied due to the problem of missing
attributes. Absence of attributes in the real world is widespread.
Some entity attributes require extremely expensive costs to ob-
tain, while some entity attributes are almost impossible to obtain.
For example, some users are unwilling to fill their gender while
others do not disclose their age information in social networks or
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-commerce networks. Since more types of nodes are involved,
his problem is more serious in heterogeneous networks, and
hus it is usually impossible to obtain all the attributes of all
ypes of nodes. Many studies [2,10,11] have shown that the
ttribute information of nodes has a great impact on various
etwork analytical tasks for heterogeneous networks. Therefore,
he missing attributes will significantly affect the performance of
NN-based models.
In this work, we are interested in completing the missing

ttributes of nodes in GNN-based model for heterogeneous net-
orks. Towards this end, previous studies have made significant
fforts on attribute completion with heterogeneous graph neural
etworks. For example, HGAT [12] leverages heterogeneous graph
earning in a semi-supervised manner to complete users’ miss-
ng attribute features. AGCN [13] joints item recommendation
nd attribute inference tasks and adaptively updates network
mbedding by considering both ground-truth attributes and the
redicted attributes, which is guided by supervised information
o facilitate the two tasks. HGNN-AC [14] first employs pre-
rained existing heterogeneous network embedding models to get
odes’ representation vectors. Then it uses the topology of the
raph as guidance to complete the missing attributes for target
odes from the directly connected attributed nodes by weighted
ggregation with attention mechanism. However, these existing
ethods still have three key limitations. First, most methods
nly consider the use of network topological structure for node
ttribute completion, but ignore the direct use of similarity be-
ween nodes in the feature space for attribute filling. In many
ases, the attributes of the nodes are not completely absent,
ut partially missing. The similarity in the feature space can
ffectively help fill in the attributes, but sometimes GNN models
n heterogeneous networks cannot achieve this, because nodes
f the same type do not necessarily have edges. For example, in
BLP, there is no direct connection between authors. Second, al-
hough multi-layer GNN networks consider high-order neighbors,
hey ignore that the importance of different-order neighbors for
ttribute completion is different. It is obvious that neighbors of
ifferent orders must have different effects, and many studies
ave also shown that first-order neighbors are likely to have
ore contributes [14,15]. Third, in fact, GNN models are usually
et to two or three layers, that is, higher-order neighbors are
ot actually considered for attribute completion. For example,
GNN-AC only uses the first-order neighbors to perform aggrega-
ion of attributes for no-attribute nodes. Nevertheless, high-order
eighbors can be used as an effective supplement to first-order
eighbors, especially heterogeneous networks where there are no
dges between same typed nodes.
To tackle the aforementioned challenges, we propose Attribute

ompletion framework for HEterogeneous Net-works (AC-HEN),
hich solves the problem of missing attributes of some types of
odes in heterogeneous networks by a learning manner. Specif-
cally, AC-HEN consists of feature aggregation, structure aggre-
ation and multi-view embedding fusion modules. AC-HEN first
btains the feature embeddings for target nodes by weighted
ggregating their k nearest neighbor (kNN) in feature space. Then
C-HEN uses structure aggregation to learn the node embed-
ings considering both the first-order and high-order network
tructure, which distinguishes different contributions of differ-
nt neighbor nodes by conducting weighted aggregation. Finally,
he multi-view embeddings are used to complete the missing
ttributes via the embedding fusion module in a weak supervised
earning paradigm. Our extensive experiments on three real-
orld heterogeneous networks show that our proposed AC-HEN

s significantly better than state-of-the-art GNN-based models on
oth attribute completion and node classification tasks.
The key contributions of this work are summarized as follows:
 m

2

• We propose a universal GNN-based attribute completion
framework for heterogeneous networks, considering fea-
ture aggregation in feature space and first- and high-order
neighbor aggregation in network structure space.

• We propose an attention-based high-order neighbor ag-
gregation, which explicitly explores the different effects of
high-order neighbor nodes on attribute completion for tar-
get nodes instead of multi-layer GNN model.

• We perform extensive experiments on three real-world
heterogeneous networks to demonstrate the superiority of
our proposed model when competing with state-of-the-
art baselines. Furthermore, ablation studies also verify the
rationality of our designed sub-modules.

. Related work

Homogeneous Network Embedding. Network embedding is
o embed the nodes in the graph to a low dimension space,
n which the node embeddings preserve graph topology and
ode attribute similarities, such as random walk based meth-
ds [1], matrix factorization based approaches [16,17] and deep
eural network models [18]. For GNNs, GCN [7] performs con-
olutional operations on graph-structured data and has recently
chieved appealing performance in a variety of tasks ranging from
ode classification to link prediction. Graph Attention Network
GAT) [19] extends the convolutional operations in GCN with
asked self-attention layers, which attends different weights to
ifferent neighborhoods. To capture the rich contextual neighbor
essages, various GNN-based models have been developed to
ggregate feature information from neighboring nodes, such as
nductive graph learning (GraphSAGE) [9], simplifying graph con-
olutional network (SGC) [20] and adaptive multi-channel graph
onvolutional network (AM-GCN) [21].
Heterogeneous Network Embedding. Recently there are va-

ieties of embedding methods for heterogeneous graphs. Most
xisting models focus on preserving the heterogeneous meta-
ath based structural information. Metapath2vec [22] generates
eterogeneous neighborhood of target nodes from random node
equences obtained by meta-paths [23,24], and then uses skip-
ram model to learn node embeddings. HHNE [25] further im-
roves metapath2vec by embedding nodes into the hyperbolic
pace, where the nodes and their neighbors preserve triangle in-
quality in heterogeneous information network. HERec [26] also
btains heterogeneous node sequences from meta-path based
andom walks and then employs matrix factorization (MF) to
ntegrate final node embeddings. HAN [2] uses the hierarchical
ttention mechanism on heterogeneous networks to learn the
ontributions of different meta-paths. Recently, MA-GNN [10]
pplies node content transformation, intra-metapath aggrega-
ion and inter-meta-path aggregation to generate node embed-
ings for heterogeneous graphs. However, these methods do not
rovide any solutions for the problem of missing attributes in
eterogeneous graphs.
Traditional Attribute Completion. Existing methods usually

everage features from texts, relation and behaviors to predict
issing features. [27] employs LDA to extract users’ seman-

ics based on their interests and searches the users who share
he similar interests, which can complete the missing attributes
ased on the similar users in feature space. VIAL [28] completes
he missing attributes based on social-behavior-attribute network
odel. It first spreads the weight from the source user to other
sers, which can illustrate the different contributions of the
eighbors. Then, the missing values are completed by highest
eight of the neighbor’s attributes. LSVM [29] completes the
issing attributes from user features and attribute relations. Both
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exical and visual features make contributions to feature com-
letion. UNHB [30,31] aims at inferring node missing attributes
n an supervised learning manner with features extracted from
ser-generated texts and user names. GBCM [32] proves that
riendship links and group affiliations carry the latent information
f missing attributes. It maps attribute completion to link-based
nd group-based classification problems. SAN [33] completes the
issing attributes of nodes by link prediction with social attribute
etwork.
GNN-based Attribute Completion. Recently, several deep

raph neural network models aiming to complete missing feature
alues by graph embedding are proposed. HGAT [12] develops an
ttention-based solution based on heterogeneous graph learning
o complete users’ missing features in a semi-supervised manner.
GCN [13] joints item recommendation and attribute inference
asks and adaptively updates network embedding by considering
oth ground-truth attributes and the estimated attribute, which
s guided by supervised information to facilitate the two tasks.
GNN-AC [14] first employs pre-trained existing heterogeneous
etwork embedding models to get nodes’ structural embedding.
hen it uses the topological structure of the graph as guidance to
omplete the missing attributes from the directly connected at-
ributed nodes by weighted aggregation of attention mechanism.
owever, all of these methods aggregate high-order neighbor-
ood features based on multiply GCN layers, which can lead
ver-smoothness. In addition, these methods focus on structure
ggregation and ignore feature-space aggregation.

. Problem definition

A network, denoted as G = {V , E}, is composed of a node
et V and an edge set E . Each edge eij ∈ E is an ordered pair
ij = (vi, vj) and contains a weight wij > 0, which represents
he strength of the relation. G can be divided into two categories:
ndirected network where we have eij ≡ eji and wij ≡ wji and
irected network where we have eij ̸= eji and wij ̸= wji.

efinition 1 (Heterogeneous Network). A heterogeneous network
s defined as a network G = {V , E} with a node type mapping
function φ : V → O and an edge type mapping function ψ :

E → R, in which O denotes the set of all node types and R
represents the set of all edge types. If |O|+ |R| > 2, the network
is heterogeneous.

Definition 2 (Attributed Network). An attributed network is de-
fined as a network G affiliated with an attribute feature matrix,
i.e., G = {V , E,X}, where X ∈ Rn×m is the attribute feature matrix,
each row corresponding to the node feature vector of node vi.
Here, n and m denote the number of nodes and the dimension of
attributes, respectively.

Given an attributed network G = {V , E,X}, if network G′
=

{V , E} is heterogeneous, then G is an attributed heterogeneous
network.

Definition 3 (Attributed Heterogeneous Network with Missing Fea-
tures). An attributed heterogeneous network with missing fea-
tures is defined as a network G = {V , E,X,M}, where G′

=

V , E,X} is an attributed heterogeneous network, and M ∈

0, 1}n×m is a mask matrix where the attribute feature of Xij can
e observed only if Mij = 1. On the contrary, Mij = 0 indicates
he attribute feature Xij is missing.

Based on the above definitions, we next formally define our
tudied problem of attribute completion for heterogeneous net-

orks.

3

Table 1
Main notations and their definitions.
Notation Definition

G The given network
V, E The node set and edge set of G
O,R The node type set and edge type set of G
X The node attribute feature matrix of G
M The mask matrix
A The adjacency matrix
Z The node embedding
z fu The feature embedding of target node vu
znu The neighborhood embedding of target node vu
zhu The high-order embedding of target node vu

Problem (Heterogeneous Network Attribute Completion). Given an
attributed heterogeneous network with missing features G =

{V , E,X,M}, the goal of attribute completion is to predict missing
attribute features of target nodes at Mij = 0.

Key notations are summarized in Table 1.

4. Methodology

Fig. 1 presents the overview of our proposed AC-HEN frame-
work, which consists of three key components: (i) feature ag-
gregation, (ii) structure aggregation and (iii) multi-view embedding
fusion module. Feature aggregation aims to obtain the feature
embeddings of target nodes by aggregating their k-nearest neigh-
bor nodes in feature space. Structure aggregation is to learn the
embeddings of target nodes by considering the first-order and
high-order structural proximities in the heterogeneous network.
Multi-view embedding fusion module is used to fuse the learned
multi-view embeddings in both feature space and structure space
to predict the missing attribute features.

4.1. Feature aggregation module

The nodes in networks can be divided in two categories:
target nodes with incomplete attributes and source nodes with
complete attributes. The attributes of the target nodes can be
also divided in two categories: missing attributes and existing
attributes. Intuitively, we can use the source nodes to complete
the missing attributes of the target nodes. However, networks
generally contain a large number of nodes, and thus it is impos-
sible to use all the source nodes to predict the missing attributes
of the target nodes. Therefore, we use a k-nearest neighbor (k-
NN) method [34] to select the source nodes to generate the
feature embeddings for target nodes. Specifically, we compute the
similarity scores between source nodes and target nodes by the
existing attributes of the target nodes. For instance, we can use
the cosine similarity between two vectors to measure the feature
similarity:

Su,v =
xeu · xev

| xeu || xev |
, (1)

where xeu are the existing attributes of target node vu and xev are
he corresponding attributes of source node vv .

Then, we choose the top-k similar source nodes for each target
ode. However, there may exist multiple factors that affect the
mpact of the source nodes on the target nodes, such as whether
wo nodes are directly connected, and the weights on edges be-
ween nodes may be different. Therefore, different source nodes
ave different impacts on the target nodes. To model the impacts
f source nodes, we use k learnable parameters to dynamic adjust

the weights of the top-k source nodes for the target node:

z fu =
1
k

∑
wu
vxv, (2)
vv∈Nk(vu)
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here Nk(u) denotes the set of top-k similar neighbors of target
ode vu, xv are the attribute features of source node vv , and wu

v

s the learnable weight for node vv w.r.t. target node vu. z
f
u is the

aggregated feature embedding for target node vu in feature space.

4.2. Structure aggregation module

Although feature aggregation contributes to predict the miss-
ing attributes of target nodes in the feature space, it cannot
cover all potential useful source nodes. For example, in academic
networks, authors and papers are directly connected, but the
similarity between their attributes may be low. However, the
connected papers are essential for the completion of the miss-
ing attributes of authors. Therefore, we propose to leverage the
topological structure between nodes to guide to complete the
missing attributes for target nodes. To model both the first-order
and high-order structure, our proposed structure aggregation mod-
ule consists of two sub-modules: neighborhood aggregation and
ttention-based high-order aggregation.

.2.1. Neighborhood aggregation
For some nodes without attributes, previous works [2,10,35]

olve this problem by averagely aggregating the attributes of
irectly connected neighbors. However, we observe that for at-
ribute completion, directly connected neighbors also have differ-
nt effects, since these nodes may be of different types, or their
ocal topological structures are different. Therefore, the neigh-
orhood aggregation process for attribute completion needs to
onsider weighted aggregation. Inspired by SGC [20], the specific
ggregation process is defined as follows:
(l)

= A · H(l−1)
· W(l) (3)

here W(l) is the learnable weight matrix for the lth layer, H(l)

s the output of the lth layer (i.e., hidden representation of the
etwork), and H(0)

= X. Eventually, znu = H(l)
u is the neighborhood

ggregation embedding of the target node vu.
Considering that the multi-layer GCN will flatten the feature

imilarity of all nodes, and that the first-order neighbor con-
ributes more to the attribute completion, we only set l = 1,
hat is, we only use one-layer GCN to learn the embeddings of
ggregating first-order neighbors for target nodes.
4

4.2.2. Attention-based high-order aggregation
To further use higher-order neighbors structure to complete

the missing attributes, we also propose an attention-based high-
order aggregation to explicitly explore the effects of high-order
neighbors on attribute completion of target nodes.

Specifically, we regard each target node as root node. Based on
the root node, we sample random walks of fixed length len. Let ci
denote the ith node in the walk, starting with c0 = vu. Node ci is
sampled by the following distribution:

P(ci = vt | ci−1 = vv) =

{
wvt∑

evi∈E
wvi

if evt ∈ E

0 otherwise,
(4)

here wvt is the weight on the edge evt from node vv to node vt .
For each sampled random walk, we drop the directly con-

ected nodes of the root node, and define the remaining nodes
s high-order neighbor nodes. Obviously, higher-order neigh-
or nodes have different effects on target nodes. Therefore, we
ropose an attention-based high-order aggregation approach.
Given a node list Vu = (vu, vv1 , vv2 , . . . , vvh ), where vu is the

oot node (target node) and vvi is a high-order neighbor of vu in
he sampled random walks. The importance of each high-order
eighbor node vvi to node vu can be learned through an attention
ayer. The formulation of attention layer is as follows:

ZVu = Softmax
(
QVu (KVu )

T

√
d

)
VVu ,

QVu = HVuW
Q ,

KVu = HVuW
K ,

VVu = XVuW
V ,

(5)

where HVu represents the hidden embeddings for Vu after neigh-
borhood aggregation, XVu denotes the attribute features of Vu,

Q , WK , WV are the learnable projection matrices, and d is
the dimension of hidden embeddings. Softmax(·) is a softmax
function, which is used to normalize the weights.

As shown in Eq. (5), we learn the weights for each high-
order neighbor according to the similarities between the hidden
embeddings of target node and its high-order neighbor nodes,

because the hidden embeddings imply the structural proximities
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Therefore, the embedding of target node vu w.r.t. its high-order

neighbor nodes in structure space is defined as:

zhu = ZVu (u), (6)

where ZVu (u) denotes the aggregation embedding of vu in ZVu .
In addition, the above attention can be extended to a multi-

head attention [19,36] to capture multiple dependencies between
target nodes and their high-order neighbor nodes (brought by
the heterogeneity of networks). Then, the obtained embeddings
of target node vu from multi-head attention mechanism are sent
to a pooling layer to get the final aggregation embedding:

zhu = Mean-Pooling
(
z(1)u , z

(2)
u , . . . , z

(#head)
u

)
, (7)

where z(i)u is the embedding of node vu obtained from ith head,
and #head is the number of heads.

4.3. Multi-view embedding fusion module

Now we have three specific embeddings for each target node
vu, i.e., z

f
u , znu , and zhu . Considering the missing attributes of the

target nodes can be correlated with one of them or even their
combinations, we use the Multilayer Perception (MLP) to predict
the missing attributes by fusing the learned multi-view embed-
dings. The formulation of multi-view embedding fusion module
is as follows:

zu = Concat(z fu, z
n
u , z

h
u ),

X̂u = MLP(zu),
(8)

where Concat(, , ) denotes the concatenate function, and X̂u is the
predicted attributes of target node vu.

4.4. Model optimization

Our goal in this work is to complete the missing attributes
for heterogeneous networks, and we expect the completed at-
tributes can be close to the ground truth attributes and show
a performance as good as the ground truth attributes in the
downstream tasks. To evaluate these new attributes predicted
by the proposed model, following [14], we adopt a strategy of
dropping some attributes. That is, we first randomly drop some
attributes of nodes and then reconstruct these attributes by the
proposed model. In this way, a completion loss can be calculated
between reconstructed attributes and the ground truth attributes,
which guides the parameter learning of our attribute completion
model. More specifically, we randomly divide the nodes into two
categories: target nodes and the source nodes. For target nodes,
we randomly drop their attributes and set the corresponding
mask matrix elements to 0. Then we use the source nodes to
complete the missing attributes of the target nodes. Take ACM
dataset as example, we randomly choose 20% author nodes as
target nodes and drop 50% attributes of target nodes.

Specifically, we only update the missing attribute values with
the predicted results, and the existing attributes keep the same.
The completed attributes can be calculated as follows:

X̂c
= X ⊙ M + X̂ ⊙ (E − M), (9)

where X̂ denotes the predicted attribute matrix by the attribute
completion model, ⊙ is the element-wise product operation, i.e.,
adamard product, and E presents the all-ones matrix.
Based on the strategy of dropping attributes, we propose a

upervised loss to optimize the parameters of our attribute com-
letion model. Specifically, we adopt Euclidean distance between
5

completed attributes and ground truth attributes of target nodes
to design the loss function as:

L =
1

| Vtarget |

∑
vu∈Vtarget

√
(X̂c

u − Xg
u)

2
(10)

where Vtarget denotes the set of target nodes, Xg
u is the ground

truth attributes of node vu, and X̂c
u is the completed attributes for

node vu.

4.5. Time complexity analysis

We now analyze the time complexity of our proposed AC-HEN
for completing the missing attributes in heterogeneous networks.
AC-HEN is mainly composed of three sub-modules including fea-
ture aggregation, neighborhood aggregation and attention-based
high-order aggregation. For feature aggregation, the time com-
plexity of computing feature similarity between nodes is O(n2 m),
where n is the number of nodes in the graph, and m is the dimen-
sion of node attribute features. For neighborhood aggregation, we
only perform one-layer simplified GCN to aggregate first-order
neighbors’ features. Therefore, the computational complexity is
O(|E| d) for the GCN operation, where |E| is the number of edges
in the graph and d is embedding dimension. For attention-based
high-order aggregation, the computational complexity of sam-
pling high-order nodes of target node is O(nh), where h is the
number of the high-order neighbor nodes. The computational
complexity of multi-head self-attention is O(ηnhd), where η is the
number of heads. Hence the main time complexity of attention-
based high-order aggregation is O(ηnhd). Therefore, the total
time complexity of AC-HEN is O(n2m + |E| d + ηnhd). Never-
theless, the three sub-modules of our model are independent
of each other, that is, they can be performed in parallel, so
the total time complexity of our AC-HEN can be reduced to
max(O(n2 m),O(|E| d),O(ηnhd)).

5. Experiment

In this section, we first introduce the details of three eval-
uation datasets and the competitor algorithms. We study the
effectiveness of our proposed model in completing missing at-
tributes on these datasets compared to state-of-the-art baselines.
Then we focus on downstream node classification task to evaluate
the performance of the proposed model against other state-of-
the-art methods. Finally, ablation study and parameter sensitivity
are discussed.

5.1. Datasets

• DBLP.1 This is a subset extracted from DBLP dataset, which
contains 14328 papers, 4057 papers, 20 venues and 8789
terms [14]. In this dataset, the attributes of papers are
bag-of-words representation of their keywords, and the at-
tributes of authors are bag-of-words representations of af-
filiates, titles and keywords extracted from their published
papers. The attributes of terms uses no computer-science-
specialized pre-trained word vectors and the attributes of
venues uses one-hot vectors. Authors are grouped into four
research areas based on the conferences they published.

• ACM.2 This is a subset extracted from ACM [14], which
comprises 4019 papers, 7167 authors and 60 subjects. In

1 https://dblp.uni-trier.de/
2 http://dl.acm.org/

https://dblp.uni-trier.de/
http://dl.acm.org/
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Table 2
Statistics of experimental datasets.
Datasets Nodes Edges Attributes

DBLP

#author(A): 4057
# A-P: 19645
# P-T: 85810
# P-V: 14328

A: missing#paper(P): 14328
#term(T): 7723
#venue(V): 20

ACM
#paper(P): 4019 # P-P: 9615

A: missing#author(A): 7167 # P-A: 13407
#subject(S): 60 # P-S: 4019

IMDB
#movie(M): 4278

# M-D: 4278
# M-A: 12828

M: missing#director(D): 2081
#actor(A): 5257

this dataset, the attributes of papers are bag-of-words rep-
resentations of their keywords, and the attributes of au-
thors are bag-of-words representations of affiliates, titles
and keywords extracted from their published papers. For
subjects, their attributes are bag-of-words representations
of keywords from their connected papers. The authors are
categorized into three classes according to the conference
where they published the most papers.

• IMDB.3 This is a subset of IMDB that includes 4780 movies,
5841 actors and 2269 directors [14]. In this dataset, the
attributes of movies are bag-of-words representations of
their plots. The attributes of actors and directors are bag-
of-words representations of movies they have appeared in
and directed, respectively. We divide all movies into three
classes according to their genres.

Notice that we assume that some attributes of some authors
n ACM and DBLP datasets are missing, and some attributes
f some movies on IMDB are missing. The statistics of three
valuation datasets are summarized in Table 2.

.2. Baselines

To evaluate the performance of our proposed model, we com-
are it with two categories of baselines: traditional completion
ethods and GNN-based methods.
Four traditional completion methods are:

• Matrix Completion (MC) [37] - MC is able to recover most
low-rank matrices from incomplete sets of entries, which
can fill in the missing entries of a partially observed matrix.

• Expectation Maximization (EM) [38] - EM algorithm is
an iterative optimization method to produces maximum
likelihood estimates of unknown values when there is a
many-to-one mapping from an underlying distribution to
the distribution governing the observation.

• Multilayer Perceptron (MLP) [39] - MLP is a four-layer fully
connected neural network, where each dimension of the
output in each layer is weighted by each dimension of the
input, and an activation function is inserted in the middle to
enable the model to learn nonlinear relationships.

• Support Vector Regression (SVR) [40] - SVR is character-
ized by the use of kernels, sparse solution and Vapnik–
Chervonenkis control of the margin and the number of
support vectors. Although less popular than SVM, SVR has
been proven to be an effective tool in real-value function
estimation.

Three state-of-the-art GNN-based methods are:

3 https://www.imdb.com/
 c

6

• HGAT [12] - HGAT learns user representation in heteroge-
neous graphs by embedding both the graph structure and
node features with attention mechanism, and then trains an
end-to-end semi-supervised predictor using partial labels of
users to infer user profiles.

• AGCN [13] - AGCN recursively adjusts the graph embed-
ding learning parameters with the previously learned at-
tribute values to optimize both attribute inference and item
recommendation.

• HGNN-AC [14] - HGNN-AC is a state-of-the-art attribute
completion method based on heterogeneous network em-
bedding. It first uses existing heterogeneous network em-
bedding methods to learn node embedding, and then
leverages the topological structure of the graph as guidance
to predict attributes for target nodes by aggregating the
attributes of neighbor nodes with attention operation.

5.3. Experimental setting

For all semi-supervised learning methods, on each dataset, we
divide the attributed nodes into training, validation and testing
sets by 20%, 40%, 40%, respectively. We set the dropout ratio
to 50% for the target nodes. For example, when training the
model on DBLP, we choose 20% nodes (e.g., authors) and randomly
dropout the 50% attributes of them. The same processing is per-
formed on validation and test sets. For our model, the attention
in high-order aggregation module is set to a multi-head attention
with the number of attention heads #head = 8. We set k to 4 for
the number of nearest neighbors in feature aggregation. We set
len to 15 for the length of random walks, and select first sampled
h = 5 high-order neighbor nodes. We use Adam to optimize our
model, and the initial learning rate is set to 0.001 during model
training. We use early stopping mechanism to stop the model
learning once the performance decreases in the validation data.

For a fair comparison, we set the embedding dimension to 256
for all embedding-based attribute completion model. We use the
source codes released by authors for baseline evaluation. Specifi-
cally, we use the parameter settings provided in their paper, and
parameters of all baselines are tuned to be optimal. In experi-
ments, we repeat each experiment 10 times for all methods to
report average results. The source code of our model is available
at https://github.com/Code-husky/AC-HEN.

5.4. Performance on attribute completion

For attribute completion, we choose two evaluation metrics –
Heat Kernel [21] and Pearson correlation coefficient [41], which are
defined as:

Heat Kernel = e−
∥Xcu−Xgu∥

2

t ,

Pearson Correlation =
cov(Xc

u,X
g
u)

σXc
u , σXg

u

(11)

here t is the time parameter in heat conduction equation,
ov(Xc

u,X
g
u) is the covariance of Xc

u and Xg
u , and σXc

u and σXg
u

re the variances of Xc
u and Xg

u , respectively. Heat Kernel di-
ectly calculates the similarity between the completed attributes
nd ground-truth attributes. Following [21], we set t = 2 in
eat Kernel. Pearson correlation measures the correlation between
he completed attributes and ground-truth attributes. For both
etrics, the larger value means the better performance. The ex-
erimental results of all methods on three datasets are reported
n Table 3. The best results are shown in bold.

As we see, our AC-HEN significantly outperforms all base-
ine methods for attribute completion on three datasets. Specifi-

ally, AC-HEN achieves average 7.81% and 15.36% improvement in

https://www.imdb.com/
https://github.com/Code-husky/AC-HEN
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Table 3
Results of attribute completion in terms of heart kernel and Pearson correlation coefficient on three datasets.
Method ACM DBLP IMDB

Heat Kernel Correlation Heat Kernel Correlation Heat Kernel Correlation

MC 0.6747 ± 0.0032 0.2369 ± 0.0051 0.3641 ± 0.0045 0.0924 ± 0.0002 0.5158 ± 0.0195 0.1168 ± 0.0079
EM 0.7534 ± 0.0112 0.2446 ± 0.0121 0.2611 ± 0.0102 0.1824 ± 0.0104 0.4037 ± 0.0112 0.1489 ± 0.0104
MLP 0.7739 ± 0.0091 0.3119 ± 0.0102 0.2987 ± 0.0131 0.1486 ± 0.0124 0.3724 ± 0.0095 0.1429 ± 0.0072
SVR 0.7376 ± 0.0074 0.3029 ± 0.0079 0.2819 ± 0.0201 0.1504 ± 0.0156 0.4372 ± 0.0212 −0.0121 ± 0.0011
HGAT 0.7931 ± 0.0101 0.3723 ± 0.0108 0.3821 ± 0.0141 0.3541 ± 0.0150 0.5815 ± 0.0991 0.2965 ± 0.0105
AGCN 0.7832 ± 0.0021 0.4433 ± 0.0024 0.3942 ± 0.0045 0.3872 ± 0.0051 0.5721 ± 0.0045 0.2954 ± 0.0051
HGNN-AC 0.8057 ± 0.0052 0.4632 ± 0.0061 0.4241 ± 0.0054 0.4098 ± 0.0048 0.5874 ± 0.0021 0.3219 ± 0.0027

AC-HEN 0.8903 ± 0.0028 0.5327 ± 0.0045 0.4556 ± 0.0031 0.4691 ± 0.0029 0.6171 ± 0.0018 0.3754 ± 0.0012
Table 4
P-values of t-test for heat kernel and Pearson correlation on attribute completion.
Method ACM DBLP IMDB

Heat Kernel Correlation Heat kernel Correlation Heat kernel Correlation
p-value p-value p-value p-value p-value p-value

MC 6.79 ∗ e−15 3.39 ∗ e−16 1.27 ∗ e−9 8.20 ∗ e−17 1.46 ∗ e−11 7.88 ∗ e−16

EM 7.98 ∗ e−12 1.08 ∗ e−16 4.48 ∗ e−12 4.58 ∗ e−15 5.69 ∗ e−16 1.27 ∗ e−14

MLP 3.76 ∗ e−12 3.40 ∗ e−16 5.27 ∗ e−12 1.16 ∗ e−15 3.09 ∗ e−16 2.44 ∗ e−14

SVR 2.97 ∗ e−13 1.84 ∗ e−15 2.32 ∗ e−12 2.86 ∗ e−15 2.02 ∗ e−13 3.17 ∗ e−16

HGAT 1.26 ∗ e−11 4.06 ∗ e−14 1.70 ∗ e−8 1.10 ∗ e−12 1.45 ∗ e−8 7.52 ∗ e−10

AGCN 2.67 ∗ e−12 1.21 ∗ e−11 1.76 ∗ e−8 1.50 ∗ e−12 1.20 ∗ e−7 1.76 ∗ e−10

HGNN-AC 1.50 ∗ e−10 6.39 ∗ e−11 1.75 ∗ e−7 3.32 ∗ e−10 5.63 ∗ e−7 1.44 ∗ e−8
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terms of Heat Kernel and Pearson correlation in comparison to the
est performed baseline (i.e., HGNN-AC) across all datasets. The
ain reason is that our AC-HEN considers neighbor aggregation

n both feature space and network structure space. Feature ag-
regation guides AC-HEN to use cosine similarity to aggregate the
ttributes of top-k similar neighbors in feature space, which may
esult in the large improvement in Pearson correlation. Addition-
lly, attention-based high-order aggregation further captures the
ffects of high-order neighbors on attribute completion for target
odes, improving model performance in both two evaluation
etrics.
We also observe that GNN-based methods (i.e., HGAT, A-GCN

nd HGNN-AC) are obviously better than traditional completion
ethods (i.e., MC, EM, MLP and SVR). This is because the GNN-
ased methods can effectively capture similar feature information
hrough network structures, as well as the propagation of infor-
ation. The traditional methods only fill in the missing values
ased on the attribute matrix, which leads to lower performance
or attribute completion. Among the baselines, HGNN-AC per-
orms the best. This may be because it does not use multi-layer
NN, but only considers first-order neighbors and distinguishes
he importance of different neighbors. Inspired by this idea, we
se only one layer to aggregate first-order neighbors in GCN, and
ample high-order neighbors through random walks, avoiding
ulti-layer GCN and in same time taking into account the impact
f high-order neighbors on attribute completion in heterogeneous
etworks. Therefore, we can empirically conclude the superiority
f our AC-HEN for attribute completion, as AC-HEN can aggre-
ate the first-order neighbors’, high-order neighbors’ and feature
eighbors’ information simultaneously.
We next employ t-test to further verify if there is a significant

ifference between the result of AC-HEN and those of baselines
ver three datasets on attribute completion. Specifically, the null
ypothesis H0 and the alternative hypothesis H1 for each pair of
ethods are defined:

0 : A ≈ B,

1 : A < B,
(12)

here B denotes the result of AC-HEN, and A represents the
esults of a specific baseline. Namely, H0 means that the result
f AC-HEN is equal to that of the baseline, and H means that
1 n

7

C-HEN is significantly better than the baseline. We calculate
-value for each test, and the hypothesis is checked at p =

.05 significance level. The p-values of t-test for Heat Kernel and
earson Correlation on attribution completion task are shown in
able 4.
As we see, all p-values of t-test for Heat Kernel and Pearson

orrelation on three datasets are significantly less than 0.05.
herefore, we can reject the null hypothesis H0 and accept al-

ternative Hypothesis H1. That is, our proposed AC-HEN is sig-
ificantly better than all baselines in terms of Heat Kernel and
earson Correlation. In summary, this experiment confirms that
he improvement of our proposed model over state-of-the-art
aselines in attribute completion is statistically significant.

.5. Performance on node classification

Node classification is an important downstream network an-
lytical task to evaluate the quality of the learned node embed-
ings with node attributes. We perform node classification task
n the evaluation datasets to compare the performance of our AC-
EN with the baselines. We first complete the missing attributes
or target nodes by performing our model or baselines. Then, we
end the whole graph into MAGNN [10] to obtain embeddings of
odes. Finally we feed the embeddings to a linear support vector
achine (SVM) [42] classifier to get the classification results. The
verage Macro-F1 and Micro-F1 of all methods with variance on
hree datasets are summarized in Table 5.

Since all the node representations for all methods are learned
hrough MAGNN, there is no big difference in the results of node
lassification. However, as shown in Table 5, our AC-HEN achieves
he best performance in terms of both Macro-F1 and Micro-F1 on
ll datasets. More specifically, after completing missing attributes
or movie nodes, we perform node classification tasks on movies
n IMDB data. We observe that AC-HEN is significantly better
han state-of-the-art HGNN-AC by 1.67% and 1.91% improvement
n terms of Macro-F1 and Micro-F1 on IMDB dataset. This is due
o the fact that the proposed AC-HEN provides more compre-
ensive embeddings of target nodes than HGNN-AC in attribute
ompletion. We also perform node classification on authors on
CM and DBLP after completing the missing attributes for author

odes. Our AC-HEN achieves average gains of 0.85% Macro-F1
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Table 5
Results of node classification task in terms of Macro-F1 and Micro-F1 on three datasets.
Method ACM DBLP IMDB

Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1

MC 89.37 ± 0.21 89.62 ± 0.22 91.08 ± 0.05 91.22 ± 0.08 57.49 ± 0.12 58.07 ± 0.21
EM 89.39 ± 0.10 89.68 ± 0.11 91.22 ± 0.21 91.97 ± 0.28 53.75 ± 0.06 54.58 ± 0.05
MLP 90.99 ± 0.54 91.03 ± 0.43 92.27 ± 0.12 92.82 ± 0.12 57.39 ± 0.61 57.94 ± 0.52
SVR 90.13 ± 0.10 90.25 ± 0.09 92.45 ± 0.31 93.03 ± 0.27 56.84 ± 0.59 57.47 ± 0.62
HGAT 91.19 ± 0.21 91.30 ± 0.17 92.52 ± 0.14 93.20 ± 0.11 57.96 ± 0.31 58.55 ± 0.37
AGCN 91.53 ± 0.17 91.62 ± 0.19 92.51 ± 0.09 93.17 ± 0.11 58.74 ± 0.45 58.86 ± 0.39
HGNN-AC 91.69 ± 0.11 91.75 ± 0.13 93.07 ± 0.25 93.68 ± 0.33 59.29 ± 0.18 59.74 ± 0.11

AC-HEN 91.94 ± 0.21 92.31 ± 0.17 94.39 ± 0.22 94.99 ± 0.21 60.28 ± 0.15 60.88 ± 0.17
Table 6
P-values of t-test for Macro-F1 and Micro-F1 on node classification.
Method ACM DBLP IMDB

Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1
p-value p-value p-value p-value p-value p-value

MC 3.01 ∗ e−12 7.14 ∗ e−16 2.73 ∗ e−16 1.22 ∗ e−14 8.77 ∗ e−15 6.89 ∗ e−14

EM 4.42 ∗ e−13 3.76 ∗ e−15 3.51 ∗ e−13 3.78 ∗ e−13 6.38 ∗ e−19 1.01 ∗ e−18

MLP 1.23 ∗ e−8 2.75 ∗ e−9 8.37 ∗ e−13 9.21 ∗ e−13 4.64 ∗ e−11 1.26 ∗ e−11

SVR 7.23 ∗ e−12 3.73 ∗ e−13 4.53 ∗ e−11 1.14 ∗ e−12 7.91 ∗ e−12 9.82 ∗ e−12

HGAT 3.73 ∗ e−8 7.24 ∗ e−10 8.79 ∗ e−13 1.20 ∗ e−12 3.62 ∗ e−13 5.11 ∗ e−12

AGCN 7.25 ∗ e−7 1.17 ∗ e−8 2.21 ∗ e−12 1.67 ∗ e−13 3.90 ∗ e−10 1.21 ∗ e−10

HGNN-AC 3.32 ∗ e−4 4.49 ∗ e−8 1.55 ∗ e−9 1.97 ∗ e−10 4.50 ∗ e−11 5.46 ∗ e−11
Fig. 2. Experimental results of ablation study for AC-HEN.
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nd 1.00% Micro-F1 compared to the best performed baseline
i.e., HGNN-AC) on these two datasets. In these two academic
etworks, there is no direct connection between authors, and the
irect connection of author nodes has only paper nodes. That is,
he P-V and P-T edges on DBLP, and the P-P and P-S edges on
CM are not used as HGNN-AC only aggregates the attributes of
irst-order neighbors. This is why our model is better than all
aselines, because our AC-HEN not only considers the similarity
etween author nodes through feature aggregation, but also fuses
he connections of the above edges in ACM and DBLP through
ttention-based high-order aggregation.
We also employ t-test to verify if there is a significant differ-

nce between the result of AC-HEN and those of state-of-the- art
aselines on node classification task after attribute completion.
he null hypothesis H0 is that the mean result of AC-HEN is equal
o that of the baselines (i.e., MC, EM, MLP, SVR, HGAT, AGCN and
GNN-AC). The alternative hypothesis H1 is that the mean result
f AC-HEN is significantly better than that of the baselines. The p-
alues of t-test for Macro-F1 and Micro-F1 on node classification
re summarized in Table 6.
As we can see, all p-values for both Macro-F1 and Micro-F1

.r.t. all baselines on three datasets are less than 0.05, which
eans that we need to reject the null hypothesis and accept the
lternative hypothesis. The results show that AC-HEN can signif-
cantly improve the performance of node classification in terms
8

f Macro-F1 and Micro-F1 after attribute completion, which indi-
ates the superiority of AC-HEN when competing with state-of-
he- art baselines.

.6. Ablation study

To verify each component of AC-HEN, we further conduct
he ablation study. We compare our model with two carefully
esigned variations. Despite the changed part(s), all variations
ave the same framework structure and parameter settings. The
erformance of all variations in terms of Pearson correlation and
acro-F1 on three datasets are shown in Fig. 2.

• Varf—This variation removes the feature aggregation mod-
ule, which means that the multi-view embeddings only
contain znu and zhu .

• Varh—In this variation, we remove the attention-based high-
order aggregation module, meaning that the multi-view em-
beddings only include z fu and znu .

• Vars—In this variation, we employ self-attention instead of
multi-head attention in attention-based high-order aggre-
gation module, meaning that zhu is learned only by self-
attention.
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Effect of feature aggregation. The comparison between Varf
nd AC-HEN highlights the effectiveness of the proposed feature
ggregation for attribute completion in heterogeneous networks.
rom Fig. 2(a), we can see that Varf performs the worst on all

datasets. Specifically, AC-HEN significantly improves 11.5%, 6.11%,
and 5.99% over Varf in terms of Pearson correlation on ACM,
DBLP, and IMDB datasets, respectively. This indicates that our
proposed feature aggregation, considering the similarity between
nodes in feature space, is essential for attribute completion in
heterogeneous networks.

Effect of attention-based high-order aggregation. The compari-
son between Varh and AC-HEN reflects the importance of attention
based high-order aggregation module for attribute completion. As
shown in Fig. 2(b), Varh produces worse results than AC-HEN on
all datasets, reducing 4.41% performance in terms of Macro-F1 on
DBLP dataset, which demonstrates the crucial role of our designed
attention-based high-order aggregation module in capturing the
effects of high-order neighbors on attribute completion for target
nodes.

Effect of multi-head attention. The comparison between Vars
and AC-HEN demonstrates the necessary of employing multi-
head attention in attention-based high-order aggregation module
for attribute completion. As shown in Fig. 2, multi-head atten-
tion produces better results than self-attention on all datasets,
improving 7.01% and 2.23% in terms of Pearson correlation and
Macro-F1 on ACM dataset. Multi-head attention allows our AC-
HEN to capture multiple dependencies from high-order neighbor
nodes.

5.7. Parameter sensitivity

We now investigate the sensitivity of our model with respect
to the important parameters, including the number of high-order
neighbors h, the hidden embedding dimension d, the number
of layers l, and the number of nearest neighbors k. All experi-
ments are conducted on ACM dataset, and the results on attribute
completion and node classification are depicted in Figs. 3 and 4,
respectively.

The number of high-order neighbor nodes: we first test the effect
of the number of high-order nodes h in attention-based high-
order aggregation module. We can see that with the growth of
the number of high-order nodes, the performance shows a trend
of first rising and then remains stable. This is because high-
order aggregation helps improve the performance of our model.
However, in reality, due to the sparsity of the network, most
9

nodes have not many high-order neighbors. When the number
of walk samples is fixed, some high-order neighbors are sampled
repeatedly. Therefore, when h ≥ 5, no more new high-order
neighbors are actually sampled.

The hidden embedding dimension: we next test the effect of the
hidden embedding dimension d. From Fig. 3(b) and Fig. 4(b), we
can find that the performance of our model shows a trend of first
rising and then decreasing, as the dimension d increases. This
is because too small embedding dimension cannot capture the
all essential information of nodes to complete missing attributes,
while too large embedding dimension may contain superfluous
information which hurts the attribute completion performance.

The number of GCN layers: we also study the effect of the
number of GCN layers l on model performance. We can observe
that with the growth of the number of GCN layers, the per-
formance of AC-HEN continuously decreases. This is consistent
with our previous analysis. The reason is that graph convolutions
can be regraded as feature smoothing in the graph. With the
increment of the number of GCN layers, GCN can get high-order
neighbors’ information, but the obtained node embeddings tend
to be over smooth. Therefore, we only use one-layer GCN to cap-
ture first-order neighbors’ features in neighborhood aggregation,
and design the attention-based high-order aggregation to capture
high-order information to get the best overall performance.

The number of nearest neighbors k in feature space: we finally
evaluate the effect of k-NNs in feature space on model perfor-
mance. As shown in Fig. 3(d) and Fig. 4(d), the performance first
increases and then gradually decreases, as the number of nearest
neighbors k increases. This is intuitive because the proper similar
eighbors in feature space are more conducive to attribute com-
leting. Specifically, our model achieves the best performance on
oth attribute completion and node classification at the same
ime when k is set to 4.

.8. Model efficiency analysis

We also compare the efficiency of our AC-HEN with other GNN
aselines for attribute completion. We report the experiment
esults on three datasets in Table 7.

From the results in Table 7, we can see that our AC-HEN
chieves the second best efficiency performance after HGAT.
owever, from above experimental results (Tables 3 and 5), AC-
EN is better than HGAT in both direct measurement for attribute
ompletion and the downstream task on node classification. AC-
EN is faster than the best performed baseline HGNN-AC on all
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Table 7
Run time comparison of HGNN-AC with GNN baselines.
Method ACM DBLP IMDB

HGAT 2295.66 3869.32 1032.01
AGCN 8269.55 9133.40 3232.65
HGNN-AC 4528.36 7018.00 2203.32

AC-HEN 3155.47 6176.97 1644.61

Speedup* 2.66× 1.48× 1.96×

*Speedup of AC-HEN over AGCN.

datasets. This is because the pre-learning stage of HGNN-AC is
time-cost, as it needs to sample meta-path from the datasets and
employs existing heterogeneous graph embedding methods to
get node embeddings based on the sampled meta-paths. More
specifically, our AC-HEN achieves up to 2.66× speedup over state-
f-the-art AGCN on ACM dataset. The main reason is that our
C-HEN adopts the idea of simplifying graph convolutional net-
orks, that is, omitting non-linear activation function. Therefore,
he training efficiency of AC-HEN can be improved significantly.

. Conclusion

We present an effective attribute completion framework AC-
EN for heterogeneous networks. AC-HEN first uses feature ag-
regation and structure aggregation to obtain the multi-view
mbeddings that consider neighbor aggregation in both feature
pace and network structural space. Additionally, the obtained
ulti-view embeddings distinguish contributions of different
eighbor nodes by conducting weighted aggregation. Finally,
he multi-view embeddings are used to complete the missing
ttributes in a weak supervised learning manner. Experiments
n three real-world heterogeneous networks show that AC-HEN
chieves better performance compared to state-of-the-art base-
ines in both attribute completion and node classification tasks.
or future work, we are interested in inducing an effective and
fficient dynamic heterogeneous graph neural network to pre-
erve both structural and temporal information for attribute
ompletion.
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