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a b s t r a c t 

Decision tree learning algorithms are known to be unstable, because small changes in the training data 

can result in highly different decision trees. An important issue is how to quantify decision tree stability. 

Two types of stability are defined in the literature: structural and semantic stability. However, existing 

structural stability measures are meaningless when applied to apparently different decision trees, and 

semantic stability only focuses on prediction accuracy without considering structural information. This 

paper proposes a region compatibility based structural stability measure for decision trees that considers 

the structural distribution of leaves from the view of basic probability assignments in evidence theory. 

To the best of our knowledge, we are the first to use basic probability assignments to quantify decision 

tree stability. We prove convergence for region compatibility, and show that apparently different decision 

trees have some inherent similarity from the view of region compatibility. We also clarify the meaning 

of region compatibility for measuring decision tree stability, and derive a method to select a relatively 

stable learning algorithm for a given dataset. Experimental results validate that region compatibility is 

effective to quantify the stability of decision tree learning algorithms. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Knowledge representation and knowledge acquisition are both

essential components to design and maintain expert systems.

Many knowledge representation methods have been proposed,

ranging from production rules, first order logic to semantic net-

works. Production rules are widely adopted as basic representa-

tions in rule based expert systems, automated planning, and de-

cision making, due to their modularity and easy interpretation.

Decision tree is a frequently used model for knowledge acquisi-

tion from a given dataset, and can be transformed into an equiv-

alent set of rules. A stable decision tree would provide credible

rules, hence decision tree learning algorithms have been widely

studied. 

Decision tree learning is widely used for classification in ma-

chine learning, and efficiently infers a tree-like classifier model

from a labeled dataset ( Quinlan, 1986; Rokach & Maimon, 2005 ).

A decision tree has clear structure and semantic interpretation,

which makes it an attractive model for supervised learning. Con-
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equently, decision trees and variations have been employed for

any applications, such as credit scoring ( Xia, Liu, Li, & Liu, 2017 ),

ominal data clustering ( Ghattas, Michel, & Boyer, 2017 ), and sub-

pace partitioning ( Kim, 2016 ). However, decision tree learners are

ighly unstable, producing significantly different classifiers from

lightly different training sets ( Dwyer & Holte, 2007; Turney, 1995 )

ue to the large number of candidate variables with similar dis-

rimination power, from which only a few are selected ( Aluja-

anet & Nafria, 2003 ). In Dwyer and Holte (2007) , Dwyer ap-

ended a single instance to the training dataset, and showed

hat C4.5 produced a substantially different decision tree, explic-

tly demonstrating instability. More specifically, these two trees

ere produced by C4.5 using data from the lymphography dataset,

hich was obtained from the UCI repository. T 106 was induced

rom a random sample with 106 examples. A single instance,

andomly chosen from the unused examples, was appended to

his training set, from which C4.5 produced the tree T 107 . T 107 

ontained nearly double the number of decision nodes appear-

ng in T 106 . This instability undermines the objective of extract-

ng knowledge, and raises suspicion about the validity of the de-

ision tree: is the output model an integration of the informa-

ion extracted from the training data or is it an artifact reacting

o the training instances? ( Mirzamomen & Kangavari, 2016 ). In the

ontext of active learning ( Dwyer & Holte, 2007 ) or incremental
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earning ( Kalles & Papagelis, 20 0 0 ), stability problems become

ore important when an induction algorithm must revise a de-

ision tree. 

An ensemble of decision trees, e.g. random for-

st ( Breiman, 2001 ), usually provides a stable prediction for

ew instances ( Parvin, MirnabiBaboli, & Alinejad-Rokny, 2015;

ang, Roe, & Zhu, 2007 ). Kuncheva et al. argued that diversity

s a key issue for classifier ensembles, and although the general

otivation for designing diverse classifiers is correct, the problem

f measuring this diversity and using it effectively to build better

lassifier teams remains open ( Kuncheva & Whitaker, 2003 ). In the

nsemble of decision trees, component decision tree diversity can

lso help to generate smaller ensembles with stronger generaliza-

ion ability ( Banfield, Hall, Bowyer, & Kegelmeyer, 2007; Zhou, Wu,

 Tang, 2002 ). Thus, the proposed decision trees stability metric

tudied in this paper can also serve as a decision tree diversity

etric. 

An important issue is how to quantify stability. Two types of

tability are defined in the literature: semantic and structural sta-

ility ( Dwyer & Holte, 2007; Mirzamomen & Kangavari, 2016 ). Se-

antic stability measures the degree to which two classifiers make

he same predictions, whereas structural stability measures the

imilarity between particular structural properties of two trees.

tructural stability is a sufficient condition for semantic stability,

ince structurally similar decision trees will produce the same pre-

ictions, but the converse is not true. 

Structural stability is meaningful when decision trees are iden-

ical or partially identical, but it is meaningless otherwise. Se-

antic stability measures the prediction results of given instances

ithout considering structural information. Therefore, structural 

nd semantic stability are somewhat complimentary metrics, and

t would be appropriate to measure decision tree stability consid-

ring structural and semantic stability simultaneously. 

This paper introduces a structural method, region compatibil-

ty, to quantify stability. Region compatibility quantifies the simi-

arity of two trees even if they are apparently different. Although

t is defined based on a structural term, called a region, it also

onsiders semantic factors because region compatibility directly

ompares region instance sets between two trees. Extensive ex-

eriments demonstrate the proposed metric effectiveness to quan-

ify decision tree stability. The evaluations also suggest the pro-

osed metric helps to identify stable decision trees that can be

ransformed to be a set of credible expert system rules. Therefore,

he proposed metric constitutes a knowledge evaluation method

or expert and intelligent systems, and has significant impact on

nowledge acquisition and maintenance. 

The main contributions of this paper are as follows: 

1. The region compatibility metric is proposed to evaluate de-

cision tree structural stability, even where the trees are ap-

parently different. To the best of our knowledge, this is the

first use of basic probability assignments (BPAs) in evidence

theory to quantify decision tree stability. 

2. Region compatibility advantages over existing metrics are

discussed. Since it explicitly considers leaf structural distri-

bution, region compatibility provides more subtle compari-

son between two decision trees than current structural sta-

bility metrics. 

3. Region compatibility convergence is proved and validated.

Experimental results show an interesting region compatibil-

ity convergence property for a special case, providing new

insights to understand decision tree stability. 

4. Three well-known decision tree learning algorithms are

compared, and the algorithm with lowest region compatibil-

ity is expected to induce relatively stable decision trees and
derive credible rules for a given dataset. s  
The remainder of the paper is organized as follows.

ection 2 reviews previous studies related to decision tree

tability. Section 3 presents region compatibility, the proposed

ecision tree stability metric, and provides a theoretical expla-

ation of its properties. Section 4 presents experiments on UCI

atasets to evaluate decision tree region compatibility. Finally,

ection 5 summarizes and concludes the paper, and discusses

ome future research directions. 

. Decision tree stability 

.1. Decision trees 

Decision tree induction offers a highly practical method for su-

ervised learning. A decision tree is a directed tree consisting of

nternal nodes and leaves. The most common approach is to parti-

ion labeled examples recursively until a stop criterion is met. Gen-

rally, an internal node is created and assigned with a test that

as a small set of outcomes, and then a branch for each possible

utcome is created, and each example is passed down the corre-

ponding branch. Each partition block is treated as a sub-problem,

or which a sub-tree is built recursively. The root of the directed

ree is a special internal node, and all non-internal nodes are called

eaves ( Quinlan, 1986; Rokach & Maimon, 2005 ). 

.2. Semantic stability 

Turney proposed a method to quantify decision tree semantic

tability based on agreement between trees built on samples from

he same distribution ( Turney, 1995 ). The agreement metric was

efined as the probability that a randomly chosen unlabeled ex-

mple was assigned to the same class by both trees. This approach

as subsequently been widely adopted as the decision tree seman-

ic stability metric ( Dwyer & Holte, 2007 ). In practice, the agree-

ent is generally estimated by classifying a randomly selected set

f instances, and calculating the ratio of the set assigned to the

ame class by both trees. 

Paul et al. proposed class prediction stability as an indicator of

emantic stability for classification algorithms ( Paul, Verleysen, &

upont, 2012 ). Class prediction stability measures the extent each

ndividual test example is assigned to the same class label across

arious re-samplings. Stability = 1 when every test example is al-

ays assigned the same class label, although this may not neces-

arily be correct. 

.3. Structural stability 

Syntactic similarity measures are not suitable to measuring de-

ision tree similarity, although it seems intuitive. The main syn-

actic metric drawback is that they are heavily dependent on

he chosen representation, and it is difficult to compare stabil-

ty across different representations. Syntactic similarity metrics can

lso consider logically equivalent trees as different, because the

dit distance between two logically equivalent trees can be signif-

cant ( Turney, 1995 ) (refer to Fig. 1 in Section 3.1 ). 

Dwyer appended a single instance to the training dataset, and

howed that C4.5 produced a decision tree containing nearly dou-

le the number of nodes compared to before appending that in-

tance, explicitly demonstrating instability ( Dwyer & Holte, 2007 ).

hus smaller difference in tree size and depth have been con-

idered good indicators for structural stability ( Mirzamomen &

angavari, 2016; Zimmermann, 2008 ). Dwyer also defined a re-

ion stability metric of decision tree structural stability ( Dwyer &

olte, 2007 ), where each decision tree leaf was defined as a deci-

ion region, and region stability measured the difference between
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Table 1 

Metric comparison. 

Metric Description Type Data usage Ensemble 

Agt Agreement Semantic Training + testing No 

GE Generalization error Semantic Training + testing Yes 

CPS Class prediction stability Semantic Training + testing Yes 

ReSt Region stability Structural Training No 

SD Tree size and depth Structural Training Yes 

VC Variable selection and Structural Training No 

Cut-point stability 

RC Region compatibility Structural Training + testing No 

Agt : ( Turney, 1995 ), GE : ( Breiman, 2001 ), CPS : ( Paul et al., 2012 ), ReSt : ( Dwyer & 

Holte, 2007 ), SD : ( Zimmermann, 2008 ), VC : ( Briand et al., 2009 ), RC : this paper. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Apparently different decision trees with identical decision regions. 
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decision regions in two trees. In particular, Dwyers proposed met-

ric estimates the probability that two trees classify a randomly se-

lected instance into equivalent decision regions. 

Briand proposed a similarity metric based on variable selection

and cut-point stability associated with internal decision tree nodes

to evaluate decision tree stability ( Briand, Ducharme, Parache, &

Mercat-Rommens, 2009 ). However, it is very complex to compare

two trees node by node. 

We compare these stability metrics from three aspects. 

1. Type. Almost all semantic stability metrics focus on predic-

tion accuracy of the test set, regardless of the particular pre-

diction error or agreement. On the other hand, structural

stability focuses on various decision tree structural aspects,

including tree size (i.e., total number of the nodes), depth

(i.e., length of the longest branch), leaf intension (i.e., logical

formulas for the paths from root node to leaves), to measure

similarity for variable selections and cut-point stability with

decision tree internal nodes. 

2. Data usage. The training set is used to build a decision tree,

and the test set to assess semantic stability. Once the tree is

constructed, the nodes, size, depth, and leaf intensions are

fixed to test new instances. Hence, structural stability as-

sessments are independent of the test set. However, the pro-

posed region compatibility measure applies to both training

and test sets, because it also considers semantic factors. 

3. Ensemble. Stability indicators are used to test ensemble or

single decision tree stability. Table 1 summarizes compar-

ison of seven metrics. Approximately half the approaches

assess ensemble stability; i.e., prediction accuracy improve-

ment when a new decision tree is added to the ensemble for

the semantic metric, or the accumulated number of nodes of

all trees in the ensemble for the structural metric. 

3. Proposed region compatibility 

3.1. Decision region and two indicators 

Dwyer defined region stability ( Dwyer & Holte, 2007 ) with each

decision tree leaf corresponding to a decision region. A decision re-

gion was then determined by the path from the root to the leaf,

i.e., the set of nodes and branches on the path, and decision re-

gions were considered equivalent if they performed the same set

of tests and predicted the same class label for the tests. 

Given a labeled dataset, D , a randomly selected subset of D is

used as training set to produce a decision tree, T , using an induc-

tion algorithm, such as C4.5 or CART. This paper does not adopt

a specific induction algorithm, i.e., any decision tree learning algo-

rithm is compatible with the proposed stability evaluation metric.

We assume that the whole of D is tested by T , i.e., each instance
f D is classified exactly by one leaf of T , and the set of instances

alling in each leaf forms a decision region. 

Let us look closer at Dwyer’s decision region definition. 

1. A one-to-one mapping exists from the set of leaves to the

set of decision regions, i.e., instances falling in a leaf com-

pose its corresponding decision region. 

2. Each decision region, R , has a class label, Label ( R ), deter-

mined by majority voting by instance labels in R . 

3. Each decision region has an intension and an extension. The

intension of a decision region is a logical formula, that is,

conjunctions of all tests on the path from the root to the

leaf, while the extension of a decision region is the set of in-

stances classified to the leaf. As far as the dataset D is con-

cerned, all instances are partitioned into different decision

regions with labels. 

Thus, we formally define a decision region as follows. 

efinition 1. The decision region, R , of a leaf in decision tree, T , is

efined as 

 (lea f ) = { x ∈ D | ∧ 

t i ∈ path (lea f ) 

t i (x ) } , (1)

here ∧ denotes the conjunction operation, path ( leaf ) is the set of

ests on the path from the root to the leaf, and test t i ( x ) is true if

 satisfies t i ( x ). For example, if t i ( x ) is the test “age(x) < 20”, then

 i ( Alice ) is true if she is younger than 20. 

The decision region can be used to define two indicators: region

tability ( Dwyer & Holte, 2007 ), and agreement ( Turney, 1995 ). 

In the following sections, we assume that two decision trees T 1 
nd T 2 are built from two randomly selected training sets drawn

rom D , and the whole D is tested by each tree respectively. We

btain the decision region set, F , for each tree, 

 1 = { R 1 , 1 , R 1 , 2 , ..., R 1 ,s } , F 2 = { R 2 , 1 , R 2 , 2 , ..., R 2 ,t } . (2)
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Dwyer did not formally define region stability ( Dwyer &

olte, 2007 ), hence we define it as follows. 

efinition 2. The region stability ( ReSt ) between T 1 and T 2 is de-

ned as: 

eSt(T 1 , T 2 , D ) = 

1 

| D | 
∑ 

R 1 ,i ∈ F 1 
| R 1 ,i | I(∃ R 2 , j ∈ F 2 , R 1 ,i = R 2 , j ) , (3)

where I(p) = 1 if p is true, 0 otherwise; and | D | is the cardinality

f D . 

Intension and extension are both semantic notions, extension

s relatively clear, but intension is harder to grasp ( Turney, 1995 ).

hus, we compare the extension (rather than intension) of R 1, i 

ith that of R 2, j , because apparently different path descriptions

ay cover the same set of instances. Fig. 1 shows that the deci-

ion region {1, 2, 3} can be described as A 1 = 2 in the left tree, but

 3 = a in the right tree. From the view of extension, the leaf sets

f two trees in Fig. 1 are equal to each other, namely, the two de-

ision trees are logically equal. However, the edit distance between

wo trees are not zero even if we omit the branch values, because

onverting the left tree into the right one, the edit script needs

o delete one vertex ( A 2 ) and substitute one vertex (i.e., replace A 1 

ith A 3 ). Therefore, the cost of this edit script turns out to be 1 + 1

 2 ( Pawlik & Augsten, 2016; Tai, 1979 ). This example also shows

hat syntactic similarity metrics can consider logically equivalent

rees as different, and are not suitable to measuring decision tree

imilarity. 

Agreement is a semantic indicator of decision tree stability, and

s defined as the probability that a randomly chosen unlabelled in-

tance is assigned to the same class by both trees ( Turney, 1995 ).

his paper estimates this agreement by testing the whole D . There-

ore, we represent it from the view of decision regions. 

efinition 3. Given two decision trees, T 1 and T 2 , with R 1, i ∈ F 1 
nd R 2, j ∈ F 2 , the agreement ( Agt ) with respect to test data D 1 is

efined as 

Agt ( T 1 , T 2 , D 1 ) = 

1 

| D | 
∣∣{x ∈ D 1 |∃ R 1 ,i ∃ R 2 , j 

(
x ∈ (R 1 ,i ∩ R 2 , j ) 

∧ Label ( R 1 ,i ) = Label (R 2 , j ) 
)}∣∣, (4) 

here D 1 ⊆D , and Label ( R ) is the majority voting label in region R ,

s above. 

There are some commonalities between the definitions of re-

ion stability ( ReSt ) and agreement ( Agt ). On one hand, instances

alling in the same region must be predicted with the same label,

.e., when two trees have an identical decision region, they have

he consistent agreement in this region. On the other hand, region

tability only considers exactly identical decision regions in two

ecision trees from the view of structural stability, whereas agree-

ent includes all consistent instances with the same labels regard-

ess of the decision region(s) the instances fall into, i.e., agreement

s a semantic indicator that only considers the predicted labels of

egions. 

The following properties are derived from Definitions 2 to 3 . 

heorem 1. If T 1 and T 2 are identical decision trees, then

eSt(T 1 , T 2 , D ) = 1 and Agt(T 1 , T 2 , D ) = 1 . 

roof. Since T 1 and T 2 are identical decision trees, they have the

ame set of decision regions. Thus, F 1 = F 2 and each decision re-

ion R 1, i ∈ F 1 is also a decision region of T 2 , i.e., R 1, i ∈ F 2 , and

eSt(T 1 , T 2 , D ) = 1 from Definition 2 . 

Consequently, Label ( R 1, i ) is the same in T 1 and T 2 , hence Agt ( T 1 ,

 2 , D ) = 1. �
heorem 2. Agreement can be calculated recursively if there is ex-

ctly one pair of identical decision regions between the trees. Suppose

 1, 1 in T 1 is identical to R 2, 1 in T 2 , i.e., R 1 , 1 = R 2 , 1 , F 1 ∩ F 2 = { R 1 , 1 } ,
hen 

eSt(T 1 , T 2 , D ) = | R 1 , 1 | / | D | 
nd 

gt(T 1 , T 2 , D ) = ReSt(T 1 , T 2 , D ) + Agt(T 1 , T 2 , D − R 1 , 1 ) . 

roof. If F 1 ∩ F 2 = { R 1 , 1 } , then the other decision regions in T 1 are

ot equivalent to those in T 2 . From Eq. (3) , R 1, 1 and R 2, 1 consist of

nly the pair such that R 1 ,i = R 2 , j , hence ReSt(T 1 , T 2 , D ) = | R 1 , 1 | / | D | .
Decision region R 1, 1 in T 1 contributes | R 1, 1 |/| D | to Agt , and

he remaining decision regions in T 1 and T 2 correspond to

gt(T 1 , T 2 , D − R 1 , 1 ) tested by the remaining dataset D − R 1 , 1 . �

orollary 1. For two decision trees T 1 and T 2 with k pairs of identical

ecision regions between them, i.e., R 1 , 1 = R 2 , 1 , . . . , R 1 ,k = R 2 ,k , F 1 ∩
 2 = { R 1 , 1 , . . . , R 1 ,k } then 

eSt(T 1 , T 2 , D ) = 

1 

| D | 
k ∑ 

i =1 

| R 1 ,i | , and 

gt (T 1 , T 2 , D ) = ReSt (T 1 , T 2 , D ) + Agt (T 1 , T 2 , D − R 1 , 1 − R 1 , 2 
− ... − R 1 ,k ) . 

Corollary 1 is intuitive, the proof is similar to that for

heorem 2 . 

heorem 3. For two decision trees T 1 and T 2 , if no decision region in

 1 is identical to any decision regions in T 2 , then ReSt(T 1 , T 2 , D ) = 0 . 

roof. From Definition 2 , if there no decision region in T 1 is

dentical to any decision regions in T 2 , then for any decision re-

ion R 1, i ∈ F 1 , there exists no R 2, j ∈ F 2 such that R 1 ,i = R 2 , j , i.e.,

 R 2, j ∈ F 2 , R 1, i 	 = R 2, j , hence ReSt(T 1 , T 2 , D ) = 0 . �

Theorems 1 –3 show that region stability and agreement are

imple to calculate for identical decision trees or partial identical

rees, and their values are meaningful. However, region stability is

ero, and agreement loses structure comparison clarity and degen-

rates to simply semantics for apparently different trees. 

.2. Region compatibility based on evidence theory 

We propose a region compatibility stability indicator based on

istance metrics from evidence theory (Dempster–Shafer theory).

he concept is to evaluate structural stability between two appar-

ntly different trees, because there may be common patterns with

he decision regions of decision trees produced from the same D ,

ven if the decision regions are not entirely equivalent. 

Table 2 shows the notations used throughout this paper. 

.2.1. Introduction to evidence theory 

Evidence theory, also referred to as Dempster–Shafer theory, is

 general framework to represent and combine all available evi-

ence from different sources, and is particularly useful in the fields

f expert systems and information fusion. The theory was first in-

roduced by Dempster in the context of statistical inference and

ater developed by Shafer into a general framework for modeling

ncertainty. It can be regarded as a generalization of classical prob-

bility theory by assigning a basic probability to a subset A of the

rame of discernment, D , which is distributed in some unknown

anner among the elements of A ( Yager, 1987 ). 

Let D be a frame of discernment containing N distinct objects

 i , i = 1 , ..., N. The power set of D (2 D ), is the set of the 2 N sub-

ets of D . A basic probability assignment (BPA) m is a mapping

rom 2 D to [0,1] satisfying 
∑ 

A ⊆D m (A ) = 1 and m (φ) = 0 . A sub-

et A of D is called a focal element if m ( A ) > 0 and we denote the
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Fig. 2. Proposed region compatibility metric framework. 

Table 2 

Notations employed throughout this paper. 

Notation Description 

D = { x 1 , x 2 , ... , x N } Data set including N instances. 

| D | Cardinality of D . 

T i Decision tree. 

R i Decision region. 

Label ( R i ) Label for decision region R i . 

F = { R 1 , R 2 , ... , R s } Set of decision regions. 

ReSt ( T 1 , T 2 , D ) Region stability between T 1 and T 2 . 

Agt ( T 1 , T 2 , D ) Agreement between T 1 and T 2 . 

m Basic probability assignment, 

m is a mapping from 2 D to [0,1]. 

V = [ m (R 1 ) , m (R 2 ) , ... , m (R s )] T Non-zero entries in m sorted 

in the form of column vector. 

RC ID ( F 1 , F 2 ) Region compatibility of F 1 and F 2 
based on identity matrix. 

RC Jac ( F 1 , F 2 ) Region compatibility of F 1 and F 2 
based on Jaccard matrix. 

W Jaccard matrix. 

W 12 Upper right corner block of W . 
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set of all the focal elements as F = { A ⊆ D | m (A ) > 0 } ( Jousselme &

Maupin, 2012 ). 

We may regard a decision tree dataset as a frame of discern-

ment, hence each decision region corresponds to a focal element,

and F is the set of all decision regions. We may use F to denote

the set of all the focal elements as well as the set of all decision

regions ( Eq. (2) ), because they have the same meaning in this pa-

per. 

We define BPA m : 2 D → [0, 1] as follows. 

m (R ) = 

{| R | / | D | i f R ∈ F 
0 otherwise. 

(5)

Since F is a partition of D , 
∑ 

R ∈ F m (R ) = 1 . Therefore, Eq. (5) sat-

isfies both BPA conditions. 

3.2.2. Region compatibility 

Fig. 2 shows the framework for the proposed region compat-

ibility metric based on evidence theory. T 1 and T 2 are decision

trees trained on randomly selected subsets D 1 and D 2 of D ,

respectively. Testing the all D by each tree produces decision

regions F 1 and F 2 , respectively. Then we use Eq. (5) to define m 1 

and m 2 as the BPAs of F 1 and F 2 , respectively. We can represent

sorted non-zero entries in m and m in the form of column vec-
1 2 
ors. For example, let V 1 = [ m 1 (R 1 , 1 ) , m 1 (R 1 , 2 ) , · · · , m 1 (R 1 ,s )] T ,

.t. 0 < m 1 ( R 1, 1 ) ≤ m 1 ( R 1, 2 ) ≤ ��� ≤ m 1 ( R 1, s ), V 2 = [ m 2 (R 2 , 1 ) ,

 2 (R 2 , 2 ) , · · · , m 2 (R 2 ,t )] T , s.t. 0 < m 2 ( R 2, 1 ) ≤ m 2 ( R 2, 2 ) ≤ ��� ≤ m 2 ( R 2, t

here F 1 = { R 1 , 1 , R 1 , 2 , · · · , R 1 ,s } , F 2 = { R 2 , 1 , R 2 , 2 , · · · , R 2 ,t } . 
Since m 1 : 2 

D → [0, 1], m 2 : 2 
D → [0, 1], then m 1 − m 2 is a map-

ing from 2 D to [ −1 , 1] , i.e., m 1 − m 2 : 2 
D → [ −1 , 1] . 

We define two region compatibility indicators for T 1 and T 2 
ased on distance metrics in the form of inner products ( Jousselme

 Maupin, 2012 ). 

efinition 4. The region compatibility ( RC ) of decision trees T 1 and

 2 is defined as 

RC ID (F 1 , F 2 ) = 

√ 

(m 1 − m 2 ) T (m 1 − m 2 ) 

RC Jac (F 1 , F 2 ) = 

√ 

(m 1 − m 2 ) T W (m 1 − m 2 ) , 
(6)

here F 1 and F 2 are decision regions sets corresponding to T 1 
nd T 2 , respectively; T indicates vector transposition; and W de-

otes the Jaccard matrix, with Jaccard index elements: W A,B =
| A ∩ B | 
| A ∪ B | (A, B ∈ 2 D , W ∅ , ∅ = 0) . 

The region compatibility indicators are both defined on m 1 and

 2 , and each BPA is determined by F 1 and F 2 , hence we choose F 1 
nd F 2 as the arguments of RC . 

Each indicator in Definition 4 is based on the distance between

wo BPAs, so RC = 0 for two identical trees, and RC ≈ 0 means the

PAs are only slightly different, i.e., the trees are similar in terms

f the decision region extensions. 

For example, suppose D = { 1 , 2 , ..., 12 } , with two decision

egion sets F 1 = {{ 1 , 2 , 3 } , { 4 , 5 , 6 } , { 7 , 8 , 9 , 10 , 11 , 12 }} , and F 2 =
{ 1 , 2 , 3 } , { 4 , 7 , 8 , 12 } , { 5 , 6 , 9 , 10 , 11 }} . 

Then, m 1 ({ 1 , 2 , 3 } ) − m 2 ({ 1 , 2 , 3 } ) = 0 . 25 − 0 . 25 = 0 , and hence

on-zero entries of m 1 − m 2 correspond to {4, 5, 6}, {7, 8, 9, 10, 11,

2}, {4, 7, 8, 12} and {5, 6, 9, 10, 11}. For simplification, we omit the

ero entries and represent m 1 − m 2 = [0 . 25 , 0 . 5 , −0 . 33 , −0 . 42] T .

ence, 

RC ID (F 1 , F 2 ) 

= 

√ 

(m 1 − m 2 ) T (m 1 − m 2 ) 

= 

√ 

[0 . 25 , 0 . 5 , −0 . 33 , −0 . 42] × [0 . 25 , 0 . 5 , −0 . 33 , −0 . 42] T 

= 

√ 

0 . 5978 

= 0 . 7732 . 
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to deeply combine structural and semantic stability. 
The Jaccard matrix can be expressed as 

 = 

⎡ 

⎢ ⎣ 

1 0 1 / 6 2 / 6 

0 1 3 / 7 3 / 8 

1 / 6 3 / 7 1 0 

2 / 6 3 / 8 0 1 

⎤ 

⎥ ⎦ 

. 

For example, W 1, 3 is the Jaccard index of {4, 5, 6} and {4, 7, 8,

2}, so 

 1 , 3 = 

|{ 4 , 5 , 6 } ∩ { 4 , 7 , 8 , 12 }| 
|{ 4 , 5 , 6 } ∪ { 4 , 7 , 8 , 12 }| = 

1 

6 

. 

hen, 

RC Jac (F 1 , F 2 ) 

= 

√ 

(m 1 − m 2 ) T W (m 1 − m 2 ) 

= 

√ 

[0 . 25 , 0 . 5 , −0 . 33 , −0 . 42] × W × [0 . 25 , 0 . 5 , −0 . 33 , −0 . 42] T 

= 0 . 4487 . 

Bouchard et al. proved that W with elements that are Jac-

ard indexes of all pairs of subsets (excluding the empty set)

f a reference frame D is positive definite, for any integer

 D | > 1 ( Bouchard, Jousselme, & Doré, 2013 ). Therefore, the asso-

iated distance properties are derived from W , and we propose the

ollowing Theorem. 

heorem 4. If T 1 and T 2 are two decision trees, then RC ID (F 1 , F 2 ) = 0

f and only if F 1 = F 2 and RC Jac (F 1 , F 2 ) = 0 if and only if F 1 = F 2 . 

roof. Since the metric is positive definite, RC ID (F 1 , F 2 ) = 0 if and

nly if m 1 = m 2 . Eq. (5) shows that m 1 = m 2 if and only if F 1 = F 2 . 

Similarly, we can prove the second proposition. �

We analyze several useful indicator properties, with proofs

iven in Appendix A . 

heorem 5. Region compatibility can be calculated recursively if

here is exactly one pair of identical decision regions between two

rees. Assume R 1, 1 in F 1 is identical to R 2, 1 in F 2 , i.e., F 1 ∩ F 2 = { R 1 , 1 } ,
hen 

C ID (F 1 , F 2 ) = RC ID (F 1 − { R 1 , 1 } , F 2 − { R 1 , 1 } ) 
nd 

C Jac (F 1 , F 2 ) = RC Jac (F 1 − { R 1 , 1 } , F 2 − { R 1 , 1 } ) . 
orollary 2. For two decision trees, if there are k pairs of

dentical decision regions, i.e., R 1 , 1 = R 2 , 1 , ..., R 1 ,k = R 2 ,k , F 1 ∩ F 2 =
 R 1 , 1 , ..., R 1 ,k } , then 

C ID (F 1 , F 2 ) = RC ID (F 1 − { R 1 , 1 , · · · , R 1 ,k } , F 2 − { R 1 , 1 , · · · , R 1 ,k } ) , 
nd 

C Jac (F 1 , F 2 ) = RC Jac (F 1 − { R 1 , 1 , · · · , R 1 ,k } , F 2 − { R 1 , 1 , · · · , R 1 ,k } ) . 
heorem 6. For two distinct decision trees, T 1 and T 2 , if there is no

ecision region in T 1 identical to any decision region in T 2 , i.e., F 1 ∩
 2 = φ, then 

RC ID (F 1 , F 2 ) = 

1 

| D | 
√ ∑ 

i 

| R 1 ,i | 2 + 

∑ 

j 

| R 2 , j | 2 , 

RC Jac (F 1 , F 2 ) = 

√ 

1 

| D | 2 ( 
∑ 

i 

| R 1 ,i | 2 + 

∑ 

j 

| R 2 , j | 2 ) − 2 V 

T 
1 

W 12 V 2 , 

(7) 

here W 12 denotes a block of Jaccard matrix W; W 12 (A, B ) =
| A ∩ B | 
| A ∪ B | , A ∈ F 1 , B ∈ F 2 ; and V 1 and V 2 are the column vectors of sorted

on-zero entries in m 1 and m 2 , respectively. 

heorem 7. If F 1 ∩ F 2 = φ and V 1 = V 2 , then 

C ID (F 1 , F 2 ) = 

√ 

2 V 

T V 1 . 
1 
For example, assume F 1 = {{ 1 , 2 } , { 3 } , { 4 , 5 , 6 } , { 7 } , { 8 }} , F 2 =
{ 1 , 3 } , { 2 } , {5, 7, 8}, {4}, {6}}, then V 1 = V 2 =
0 . 125 , 0 . 125 , 0 . 125 , 0 . 25 , 0 . 375] T , and RC ID (F 1 , F 2 ) =
 

(m 1 − m 2 ) T (m 1 − m 2 ) = 

√ 

0 . 5 = 

√ 

2 V T 
1 

V 1 . 

Theorem 6 represents RC Jac as dependent on W 12 , V 1 , and V 2 . If

 1 and V 2 are fixed, then the size of each focal element R 1, i and

 2, j in F 1 and F 2 , respectively, is also fixed. However, R 1, i and R 2, j 

lements may be different, and RC Jac would still change with W 12 .

hus, we have the following theorem for the expectation of RC Jac . 

heorem 8. If F 1 ∩ F 2 = φ and V 1 = V 2 , then the expectation of RC Jac 

s 

(RC Jac (F 1 , F 2 )) = 

√ 

2 V 

T 
1 

V 1 − 2 V 

T 
1 

E(W 12 ) V 2 , 

(W 12 (R 1 ,i , R 2 , j )) = 

n i × n j 

N × (n i + n j ) − n i × n j 

, 

here 

 1 ,i ∈ F 1 , R 2 , j ∈ F 2 , | R 1 ,i | = n i , | R 2 , j | = n j , | D | = N. 

The above theoretical result can be confirmed by empirical

tatistics based on the law of large numbers. 

heorem 9 (General weak law of large numbers) . Let X 1 , X 2 , ���,

 n be independent and identically distributed random variables, with

 (| X 1 |) < ∞ and write E(X 1 ) = μ, and S n = X 1 + X 2 + ... + X n . Then

or any ε > 0, P (| S n n − μ| > ε) → 0 as n → ∞ . ( Meester, 2008 ). 

The general weak law of large numbers is useful here. If we

est RC Jac ( F 1 , F 2 ) n times for a given dataset, then the average

f RC Jac ( F 1 , F 2 ) tends to μ (the expectation of RC Jac ( F 1 , F 2 ) in

heorem 8 ) when n tends to infinity. We show how to obtain this

xpectation value in the following experiments. 

.3. Discussion on region compatibility 

The above analysis shows that RC Jac has more interesting prop-

rties than RC ID . Therefore we compare RC Jac with other two sta-

ility indicators. 

Region stability, ReSt , is the most closely related concept to

C Jac . Both consider the decision regions, but they have different

tability definitions. ReSt considers only pairs of identical decision

egions, i.e., other decision region pairs are ignored even if a deci-

ion region R 1, i in T 1 is a subset of a decision region R 2, j in T 2 . In

ontrast, RC Jac considers all cases, because W A, B is non-zero for any

et A and B if A ∩ B is not empty. Therefore, RC Jac provides more

ubtle observations on the decision region set compared to ReSt.

eSt and RC Jac are both capable of recognizing two identical sets of

ecision regions F 1 and F 2 , because ReSt = 1 if and only if F 1 = F 2 
 Theorem 1 ), and RC Jac = 0 if and only if F 1 = F 2 ( Theorem 4 ). 

Agreement is a semantic stability indicator, and significantly

ifferent from RC Jac . Agt focuses on test instance prediction consis-

ency between the decision trees, whereas RC Jac also considers the

ecision regions. Two decision trees with equal Agt on the same

est data may have different decision region sets, because the test

nstances may fall into different leaves with the same label be-

ween the two trees. In short, RC Jac emphasizes decision tree struc-

ural stability whereas Agt is a semantic stability indicator. 

Thus, we can make two conclusions regarding RC Jac . 

1. RC Jac is the distance between BPAs, which provides a more

subtle comparison than ReSt between decision region sets. 

2. Agt is a pure semantic stability indicator, whereas RC Jac is a

structural stability indicator that also includes semantic fac-

tors from the Jaccard index. Future research will clarify how
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Algorithm 1 (Perturbation algorithm). 

Input: F 1 , perturbation ratio ∈ [0, 0.5] 

Output: F 2 
(1) Randomly select a pair i, j, i 	 = j , from {1, 2, ���, N }, where N is the 

number of instances of D . 

(2) Exchange the positions of x i and x j , i.e., if x i and x j belong to R i and R j , 

respectively, then they belong to R j and R i , respectively, after exchanging. 

(3) Repeat (1) and (2) k times, where k = N × ratio. 
4. Experimental evaluation 

4.1. Validation 

We provide an example to show how region compatibility

works, and validate the proposed approach. 

Assume that dataset D = { 1 , 2 , ..., 12 } , with instance labels 

Label ( 1 ) = 0 ; Label ( 2 ) = 0 ;
Label ( 3 ) = 0 ; Label ( 4 ) = 1 ;

Label ( 5 ) = 1 ; Label ( 6 ) = 0 ;
Label ( 7 ) = 1 ; Label ( 8 ) = 1 ;

Label ( 9 ) = 1 ; Label ( 10 ) = 1 ;
Label ( 11 ) = 0 ; Label ( 12 ) = 0 . 

4.1.1. Two trees with a single identical decision region 

Suppose two trees, T 1 and T 2 , are trained by randomly selected

subsets of D , producing decision regions F 1 = {{ 1 , 2 , 3 } , { 4 , 5 , 6 } , {7,

8, 9, 10, 11, 12}}, and 

F 2 = {{ 1 , 2 , 3 } , { 4 , 7 , 8 , 12 } , { 5 , 6 , 9 , 10 , 11 }} , 
respectively, with corresponding BPAs m 1 and m 2 . 

We determinate the decision region labels by majority vote, 

Label(F 1 ) = [0 , 1 , 1] , 

Label(F 2 ) = [0 , 1 , 1] , 

and 

m 1 − m 2 = [0 . 25 , 0 . 5 , −0 . 33 , 0 . 42] T . 

Thus, from Section 3.2.2 , 

ReSt(T 1 , T 2 , D ) = 3 / 12 = 0 . 25 , 

Agt(T 1 , T 2 , D ) = 1 , 

RC ID (F 1 , F 2 ) = 0 . 7732 , 

and 

RC Jac (F 1 , F 2 ) = 0 . 4487 . 

4.1.2. Two trees without identical decision regions 

Consider a third tree, T 3 , with region set 

F 3 = {{ 1 , 2 , 4 } , { 3 , 11 , 12 } , { 5 , 6 , 7 , 8 , 9 , 10 }} , 
and corresponding BPA, m 3 . 

From majority voting, Label(F 3 ) = [0 , 0 , 1] , hence 

ReSt(T 1 , T 3 , D ) = 0 . 0 , 

Agt(T 1 , T 3 , D ) = 9 / 12 = 0 . 75 , 

and 

m 1 − m 3 = [0 . 25 , 0 . 25 , 0 . 5 , −0 . 25 , −0 . 25 , −0 . 5] T . 

Thus, 

RC ID (F 1 , F 3 ) = 

√ 

(m 1 − m 3 ) T (m 1 − m 3 ) = 0 . 8660 , 

and 

RC Jac (F 1 , F 3 ) = 

√ 

(m 1 − m 3 ) T W (m 1 − m 3 ) = 0 . 4946 , 
here W is the Jaccard matrix of F 1 and F 3 , 

 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

1 0 0 2 / 4 1 / 5 0 

0 1 0 1 / 5 0 2 / 7 

0 0 1 0 2 / 7 4 / 8 

2 / 4 1 / 5 0 1 0 0 

1 / 5 0 2 / 7 0 1 0 

0 2 / 7 4 / 8 0 0 1 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

. 

Now consider a fourth tree, T 4 , with region set 

 4 = {{ 1 , 2 , 7 } , { 3 , 5 , 6 } , { 4 , 8 , 9 , 10 , 11 , 12 }} , 
nd corresponding BPA, m 4 . Then 

abel(F 4 ) = [0 , 0 , 1] , 

eSt(T 1 , T 4 , D ) = 0 . 0 , 

gt(T 1 , T 4 , D ) = 8 / 12 = 0 . 667 , 

nd 

 1 − m 4 = [0 . 25 , 0 . 25 , 0 . 5 , −0 . 25 , −0 . 25 , −0 . 5] T . 

hus, 

C ID (F 1 , F 4 ) = 

√ 

(m 1 − m 4 ) T (m 1 − m 4 ) = 0 . 8660 , 

nd 

C Jac (F 1 , F 4 ) = 

√ 

(m 1 − m 4 ) T W (m 1 − m 4 ) = 0 . 4247 , 

here W is the Jaccard matrix of F 1 and F 4 , 

 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

1 0 0 2 / 4 1 / 5 0 

0 1 0 0 2 / 4 1 / 8 

0 0 1 1 / 8 0 5 / 7 

2 / 4 0 1 / 8 1 0 0 

1 / 5 2 / 4 0 0 1 0 

0 1 / 8 5 / 7 0 0 1 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

. 

Thus, although RC ID (F 1 , F 3 ) = RC ID (F 1 , F 4 ) , RC Jac ( F 1 , F 3 ) 	 = RC Jac ( F 1 ,

 4 ), because F 1 and F 3 are not overlapped, hence, m 1 − m 3 =
 m 1 , −m 3 ] 

T . This same situation applies for F 1 and F 4 , hence

C ID (F 1 , F 3 ) = RC ID (F 1 , F 4 ) . However, the Jaccard matrix of F 1 and F 3
s different from that of F 1 and F 4 , thus RC Jac ( F 1 , F 3 ) 	 = RC Jac ( F 1 , F 4 ).

herefore, RC Jac is more sensitive than RC ID to distinguish decision

rees. 

.2. Evaluation on UCI datasets 

.2.1. Data sets 

We evaluate the proposed region compatibility indicators on

0 real-world datasets from the UCI repository ( Lichman, 2017 ).

able 3 summarizes the datasets. 

.2.2. Region compatibility convergence for a special case 

We simulate a special case suitable to apply Theorems 7 and 8 .

iven a labeled dataset D = { x 1 , x 2 , ..., x N } , let F 1 be the decision

egion set for a decision tree trained on D , and F 2 be the perturbed

ersion of F 1 obtained as shown in Algorithm 1 . 



L. Wang et al. / Expert Systems With Applications 105 (2018) 112–128 119 

Table 3 

UCI datasets for validation. 

Data set # of attributes # of classes # of instances 

Balance 4 3 625 

Car Evaluation 6 4 1728 

Chess 36 2 3196 

Ecoli 7 8 336 

Glass 9 7 214 

Heart 13 2 270 

Image Segmentation 19 7 2310 

Ionosphere 34 2 351 

Iris 4 3 150 

Nursery 8 5 12,960 

Page-blocks 10 5 5473 

Pima Indians 8 2 768 

Seed 7 3 210 

Soybean 35 4 47 

Tic-tac-toc 9 2 958 

Waveform 21 3 50 0 0 

Wdbc 30 2 569 

Wine 13 3 178 

Yeast 8 10 1484 

Zoo 16 7 101 
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Thus, Algorithm 1 perturbs F 1 , and we generate a new decision

egion set, F 2 . For example, let F 1 = {{ 1 , 2 } , { 3 } , { 4 , 5 , 6 } , { 7 , 8 }} . If

2, 3) and (4, 7) are selected to exchange positions, then F 2 =
{ 1 , 3 } , { 2 } , { 5 , 6 , 7 } , { 4 , 8 }} . Some blocks of F 1 are changed in F 2 ,

ut F 2 has the same structure as F 1 , i.e., V 1 = V 2 . Therefore, we can

chieve F 1 ∩ F 2 = φ if enough instances are exchanged to ensure

ach F 1 decision region is perturbed. 

To calculate the region compatibility for each dataset, we obtain

 decision tree T for each dataset using CART with default setting,

andomly selecting 70% of the dataset for training. Specifically, we

se the function tree (class ∼ ., data = data _ train ) in R package tree

o create a tree. We vary the perturbation ratio from 1% to 49%

ith step length 1%, and compute region compatibility between T

nd each perturbed tree. We conducted the experiment on 20 real-

orld datasets. Due to space limits, we show only graphical results

or eight datasets in Fig. 3 . Fig. 3 shows the average results for 30

epeated measures. As we see, RC Jac increases with increasing per-

urbation ratio, because the distance between a decision tree and
Table 4 

Theoretical and experimental convergence. 

Dataset RC ID _ T RC ID _ E MAE ID

Balance 0.396 ± 0.023 0.396 ± 0.023 5.83E −
Car Eval. 0.598 ± 0.002 0.598 ± 0.002 1.11E −
Chess 0.550 ± 0.015 0.550 ± 0.015 2.22E −
Ecoli 0.617 ± 0.034 0.617 ± 0.034 2.78E −
Glass 0.398 ± 0.019 0.398 ± 0.019 1.11E −
Heart 0.487 ± 0.043 0.487 ± 0.043 7.11E −
Image Seg. 0.483 ± 0.015 0.483 ± 0.015 2.22E −
Ionosphere 0.725 ± 0.025 0.725 ± 0.025 7.77E −
Iris 0.767 ± 0.014 0.767 ± 0.014 2.22E −
Nursery 0.588 ± 0.008 0.588 ± 0.008 1.05E −
Page-blo. 1.119 ± 0.036 1.119 ± 0.036 5.55E −
Pima Ind. 0.536 ± 0.059 0.536 ± 0.059 5.55E −
Seed 0.674 ± 0.029 0.674 ± 0.029 2.22E −
Soybean 0.734 ± 0.008 0.734 ± 0.008 6.11E −
Tic-tac-toc 0.483 ± 0.081 0.483 ± 0.081 4.44E −
Waveform 0.558 ± 0.021 0.558 ± 0.021 2.22E −
Wdbc 0.834 ± 0.043 0.834 ± 0.043 2.01E −
Wine 0.733 ± 0.015 0.733 ± 0.015 2.19E −
Yeast 0.652 ± 0.037 0.652 ± 0.037 3.33E −
Zoo 0.706 ± 0.009 0.706 ± 0.009 5.55E −

Notes: RC ID _ T and RC Jac _ T denote the theoretical values o

the experimental values of RC ID and RC Jac , respectively. 
ts perturbed version is positively correlated with the perturbation

atio. 

Table 4 compares theoretical and experimental convergence on

he 20 datasets, averaged over the 30 repeated cases. In statistics,

ean Absolute Error (MAE) is a measure of difference between

wo continuous variables ( Willmott & Matsuura, 2005 ). Assume

 = [ x 1 , x 2 , . . . , x n ] and Y = [ y 1 , y 2 , . . . , y n ] are variables of theoret-

cal expectation and experimental measurement, MAE is given by

ollowing equation: 

AE = 

∑ n 
i =1 | y i − x i | 

n 

. 

As shown in Table 4 , region compatibility shows the interesting

onvergence properties as expected from Theorems 7 to 8 , where

he specific convergence value depends on the particular dataset.

t is easy to see that the experimental value for each dataset is

ighly consistent with the theoretical values, which also validate

heorems 7 and 8 . 

.2.3. Understanding region compatibility 

We need to consider what region compatibility means in terms

f decision tree stability. Therefore, let us try to align RC Jac for de-

ision trees T 1 and T 2 to the RC Jac values of T 1 and its perturbed

ersions. 

Using the 30 decision trees with 70% training ratio for each

ataset from Section 4.2.2 , we computed RC Jac for each pair of

rees, i.e., 30 × 29 / 2 = 435 measures, reported the maximum, min-

mum, and average metrics with the RC Jac convergence for each

ataset, and only presented the details of eight datasets in Fig. 4

ue to space limits. 

Since the RC Jac curve is monotonic increasing, it is trivial to

lign RC Jac between two trees T 1 and T 2 to the curve to identify its

orresponding perturbation ratio. In particular, Fig. 4 (f) shows that

ax( RC Jac ) corresponds to perturbation ratio < 4%. In other words,

he maximum difference between these 30 decision trees on Iris

ata is less unstable than perturbing one tree within 4% pairs of

otal instances by exchanging their positions in decision regions. 

We also computed RC Jac for other two decision tree induc-

ion algorithms: CTREE (R package party with default setting,

.e., ctree (class ∼ ., data = data _ train ) ) and C4.5 (R package RWeka

ith default setting, i.e., J48(class ∼ ., data = data _ train ) ). Similar

o Fig. 4 , Figs. B.6 and B.7 in Appendix B show the performance of
 

RC Jac _ T RC Jac _ E MAE Jac 

17 0.301 ± 0.021 0.301 ± 0.021 0.001 

17 0.460 ± 0.0 0 0 0.460 ± 0.002 0.002 

17 0.402 ± 0.007 0.401 ± 0.007 0.0 0 0 

17 0.464 ± 0.024 0.463 ± 0.024 0.004 

05 0.309 ± 0.015 0.307 ± 0.015 0.003 

06 0.383 ± 0.033 0.382 ± 0.035 0.003 

17 0.341 ± 0.008 0.338 ± 0.008 0.003 

17 0.539 ± 0.014 0.539 ± 0.014 0.004 

17 0.509 ± 0.003 0.506 ± 0.004 0.003 

16 0.439 ± 0.002 0.438 ± 0.002 0.001 

17 0.650 ± 0.005 0.650 ± 0.006 0.003 

17 0.403 ± 0.049 0.402 ± 0.049 0.002 

17 0.473 ± 0.014 0.470 ± 0.015 0.004 

17 0.489 ± 0.007 0.481 ± 0.010 0.008 

17 0.370 ± 0.057 0.370 ± 0.057 0.001 

17 0.408 ± 0.015 0.408 ± 0.015 0.0 0 0 

07 0.579 ± 0.019 0.580 ± 0.019 0.003 

06 0.496 ± 0.007 0.495 ± 0.006 0.002 

17 0.478 ± 0.029 0.478 ± 0.030 0.001 

17 0.502 ± 0.002 0.498 ± 0.005 0.006 

f RC ID and RC Jac , while RC ID _ E and RC Jac _ E denote 
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Fig. 3. Region compatibility for eight datasets. 
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Fig. 4. RC Jac for CART. 



122 L. Wang et al. / Expert Systems With Applications 105 (2018) 112–128 

Table 5 

Rank and p -value of Friedman test on eight datasets. 

dataset 50% 60% 70% 80% 90% 

Ecoli CART 2.04 2.10 2.02 2.34 2.28 

CTREE 2.36 2.44 2.37 2.10 2.07 

C4.5 1.60 1.46 1.60 1.56 1.65 

p -value .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 

Glass CART 1.43 1.29 1.62 1.65 1.93 

CTREE 2.78 2.67 2.24 1.93 1.36 

C4.5 1.79 2.04 2.14 2.42 2.73 

p -value .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 

Heart CART 1.36 1.47 1.54 1.60 1.79 

CTREE 2.37 2.18 2.00 1.80 1.84 

C4.5 2.27 2.35 2.47 2.59 2.37 

p -value .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 

ImageSeg CART 1.64 1.54 1.71 1.78 1.90 

CTREE 2.79 2.75 2.82 2.83 2.47 

C4.5 1.57 1.71 1.47 1.39 1.63 

p -value .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 

Ionosphere CART 1.96 1.82 1.64 1.89 1.67 

CTREE 1.74 1.89 1.89 1.73 2.03 

C4.5 2.30 2.29 2.48 2.38 2.30 

p -value .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 

Iris CART 1.95 1.77 2.06 2.18 2.37 

CTREE 1.99 2.14 1.88 1.87 1.70 

C4.5 2.06 2.09 2.06 1.95 1.93 

p -value .215 .0 0 0 .009 .0 0 0 .0 0 0 

Wdbc CART 2.11 2.40 2.30 2.37 2.27 

CTREE 1.85 1.66 1.63 1.60 1.59 

C4.5 2.04 1.94 2.06 2.03 2.15 

p -value .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 

Wine CART 1.80 1.78 1.84 1.78 2.04 

CTREE 2.30 2.26 2.23 2.31 1.95 

C4.5 1.90 1.96 1.93 1.94 2.01 

p -value .0 0 0 .0 0 0 .0 0 0 .0 0 0 .445 
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CTREE and C4.5, respectively. We can understand the meaning of

RC Jac similarly. 

4.2.4. Comparing three decision tree algorithms 

Furthermore, we evaluated the impact of training ratio on re-

gion compatibility. We repeated each experiment 30 times, with

mean values shown in Fig. 5 . The different decision tree algorithms

produce various mean values for each dataset under the same

training ratio. Generally, larger training data implies more stability

between the decision trees, and the experimental results confirm

that mean RC Jac between decision trees decreased with increased

training data. 

To compare the three algorithms (i.e., CART, CTREE and

C4.5), we evaluated the following hypothesis H 0 using Friedman

test ( Friedman, 1937 ). 

Null hypothesis H 0 : Decision tree induction algorithms (CART,

CTREE and C4.5) do not show any significant difference when eval-

uated using RC Jac . 

The statistics of Friedman test is based on chi-square distribu-

tion with n − 1 degrees of freedom, where n corresponds to the

number of compared algorithms in this paper. As the study com-

pares 3 algorithms, the degrees of freedom is 2. The Friedman test

was applied by using all RC Jac values of 30 rounds under each

training ratio. We calculated the rank and p-value for each test,

and the hypothesis was checked at α = 0.05 significance level, as

shown in Table 5 . 

Only 2 cases in Table 5 have p -value > .05, which means the

Friedman test results are not significant at α= 0.05. Thus, we ac-

cept Null hypothesis H 0 and the three algorithms have similar sta-

bility on Iris dataset with training ratio 50% and Wine dataset with

training ratio 90%. 
The other 38 cases show that the Friedman test results are sig-

ificant at α= 0.05. Thus, we reject Null hypothesis H 0 . Namely,

he three algorithms perform significantly different from each

ther when evaluated using RC Jac . Fig. 5 gives us a way to se-

ect a relatively stable decision tree learning algorithm. We applied

he interpretation “the lower RC Jac , the better algorithm”, since low

C Jac indicates stable decision trees and credible rules derived from

he decision trees. For a given dataset, we can recommend the al-

orithm with lowest mean RC Jac in Fig. 5 . In particular, CTREE is

ecommended to Wdbc dataset, and C4.5 is recommended to Ecoli

ataset according to Fig. 5 . 

This section evaluated region compatibility on 20 real world UCI

atasets and obtained the following important observations. 

1. Region compatibility suggests that some similarity exists for

any two decision trees, even if they are apparently different. 

2. Region compatibility convergence was proved in Section 3.2.2 ,

and validated in the current section using the perturbation al-

gorithm. 

3. Region compatibility shows more data involved in decision tree

training implies more stable between the resultant trees, which

is consistent with intuition. 

4. We clarified the meaning of region compatibility in terms of

decision tree stability, by aligning RC Jac for two trees to the

RC Jac curve of perturbation ratio ( Fig. 4 ) to identify the corre-

sponding perturbation ratio, r . Region compatibility shows dif-

ference between two decision trees is less unstable than per-

turbing one tree within r pairs of total instances by exchanging

their positions in decision regions. 

5. Three well-known decision tree learning algorithms perform

significantly different on tested real-world datasets, and the al-

gorithm with lowest RC Jac is expected to induce relatively stable

decision trees and derive credible rules for a given dataset. 

In summary, the experiments show that region compatibility

as a solid theoretical foundation, and provides a reasonable and

eaningful assessment for decision tree stability. 

. Conclusions 

Decision tree learners are highly unstable, producing signifi-

antly different classifiers from slightly different training sets, and

arious metrics have been proposed to quantify stability. However,

urrent metrics fail to consider potential similarities of apparently

ifferent decision trees. This paper proposed a region compatibil-

ty metric based on Dempster–Shafer theory and explained RC Jac 

xperimentally by its corresponding perturbation ratio. The pro-

osed region compatibility metric was effective and powerful to

uantify decision tree learning algorithm stability. Therefore, re-

ion compatibility has a potentially broad range of applications,

ncluding image understanding ( Gardner, Kanno, Duncan, & Selmic,

014 ) and preference learning ( Liu & Liao, 2015 ). 

In future research, we plan to explore the region compatibility

pproach for a range of potential applications. 

• Compare decision trees labeled regions, matching leaves with

the same label to provide more reasonable comparisons. 

• Assess preference decision trees stability, to predict the prefer-

ence relationships between each pair of objects by combining

decision trees with conditional preference networks (CP-nets). 

• Investigate clustering evaluation metrics using region compat-

ibility, particularly for the k-means algorithm, which suffers

from similar stability problem. K-means algorithm is unstable

because initial cluster centers are randomly selected, and the

random initial centers always lead k-means to local optimum

easily. 
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Fig. 5. Mean values of RC Jac . 
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• Investigate complex object matching in image understanding

regarding region compatibility as a distance metric between

complex objects that include multiple parts. 
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Appendix A. Proofs of Theorems 

A.1. Proof of Theorem 5 

Proof. In Eq. (5) , the entry that corresponds to R 1, 1 is updated to

m 1 (R 1 , 1 ) − m 2 (R 2 , 1 ) = 0 , hence it has no effect on the inner prod-

uct 〈 m 1 − m 2 , m 1 − m 2 〉 , and region compatibility between two

partially identical trees is equivalent to comparing the difference

of the trees. �

A.2. Proof of Theorem 6 

Proof. For two completely distinct decision trees, F 1 ∩ F 2 = φ, non-

zero entries of m 1 − m 2 can be regarded as a column vector formed

by appending −V 2 to V 1 , i.e., 

m 1 − m 2 = 

[
V 1 

−V 2 

]
. 

Hence, 

RC ID (F 1 , F 2 ) = 

√ 

(m 1 − m 2 ) T (m 1 − m 2 ) 

= 

√ 

[ V 

T 
1 

, −V 

T 
2 

] 

[
V 1 

−V 2 

]
= 

√ 

V 

T 
1 

V 1 + V 

T 
2 

V 2 . 

Since (see Eq. (5) ) 

 1 = [ m 1 (R 1 , 1 ) , m 1 (R 1 , 2 ) , . . . , m 1 (R 1 ,s )] T , 

 2 = [ m 2 (R 2 , 1 ) , m 2 (R 2 , 2 ) , . . . , m 2 (R 2 ,t )] T , 

and 

m 1 (R 1 ,i ) = | R 1 ,i | / | D | , m 2 (R 2 , j ) = | R 2 , j | / | D |;
then 

 

T 
1 V 1 = 

∑ 

i 

| R 1 ,i | 2 
| D | 2 , V 

T 
2 V 2 = 

∑ 

j 

| R 2 , j | 2 

| D | 2 . 

Therefore, 

RC ID (F 1 , F 2 ) = 

1 

| D | 
√ ∑ 

i 

| R 1 ,i | 2 + 

∑ 

j 

| R 2 , j | 2 . 

The Jaccard matrix, W , can be regarded as a block matrix, 

 = 

[
I 1 W 12 

W 

T 
12 I 2 

]
, 
here I 1 is the | F 1 | × | F 1 | identity matrix, and I 2 is the | F 2 | × | F 2 |

dentity matrix. Therefore, 

RC Jac (F 1 , F 2 ) = 

√ 

(m 1 − m 2 ) T W (m 1 − m 2 ) 

= 

√ 

[ V 

T 
1 

, −V 

T 
2 

] 

[
I 1 W 12 

W 

T 
12 I 2 

][
V 1 

−V 2 

]
= 

√ 

V 

T 
1 

V 1 + V 

T 
2 

V 2 − 2 V 

T 
1 

W 12 V 2 . 

Thus, 

C Jac (F 1 , F 2 ) = 

√ 

1 

| D | 2 ( 
∑ 

i 

| R 1 ,i | 2 + 

∑ 

j 

| R 2 , j | 2 ) − 2 V 

T 
1 

W 12 V 2 . 

�

.3. Proof of Theorem 7 

roof. Since V 1 = V 2 , 

RC ID (F 1 , F 2 ) = 

√ 

(m 1 − m 2 ) T (m 1 − m 2 ) 

= 

√ 

V 

T 
1 

V 1 + V 

T 
2 

V 2 

= 

√ 

2 V 

T 
1 

V 1 . 

�

.4. Proof of Theorem 8 

roof. Let D = { x 1 , x 2 , ..., x N } , F 1 = { R 1 , 1 , R 1 , 2 , ..., R 1 ,s } , F 2 = { R 2 , 1 ,
 2 , 2 , ..., R 2 ,t } , 
 1 = [ m 1 ( R 1 , 1 ) , m 1 ( R 1 , 2 ) , ..., m 1 ( R 1 ,s ) ] 

T 
, s.t. 

0 < m 1 ( R 1 , 1 ) ≤ m 1 ( R 1 , 2 ) ≤ ... ≤ m 1 ( R 1 ,s ) , 

 2 = [ m 2 ( R 2 , 1 ) , m 2 ( R 2 , 2 ) , ..., m 2 ( R 2 ,t ) ] 
T 
, s.t. 

0 < m 2 ( R 2 , 1 ) ≤ m 2 ( R 2 , 2 ) ≤ ... ≤ m 2 ( R 2 ,t ) . 

To simplify, we assume that 

 1 , 1 = { x 1 , x 2 , . . . , x i 1 } ︸ ︷︷ ︸ 
n 1 

, 

 1 , 2 = { x i 1 +1 , x i 1 +2 , . . . , x i 2 } ︸ ︷︷ ︸ 
n 2 

, . . . , 

nd 

 1 ,s = { x i s −1 +1 , x i s −1 +2 , . . . , x N } ︸ ︷︷ ︸ 
n s 

. 

Since V 1 = V 2 implies cardinality of F 1 equals that of F 2 , i.e., s =
, and the cardinalities of focal elements in F 1 correspond to those

f focal elements in F 2 , 

 2 , 1 = { x ′ 1 , x ′ 2 , . . . , x ′ i 1 } ︸ ︷︷ ︸ 
n 1 

, 

 2 , 2 = { x ′ i 1 +1 , x 
′ 
i 1 +2 , . . . , x 

′ 
i 2 
} ︸ ︷︷ ︸ 

n 2 

, . . . , 

nd 

 2 ,s = { x ′ i s −1 +1 , x 
′ 
i s −1 +2 , . . . , x 

′ 
N } ︸ ︷︷ ︸ 

n s 

. 

https://doi.org/10.13039/501100001809
http://www.internationalscienceediting.com
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From the definition of W 12 in Theorem 6 , 

 12 (R 1 ,i , R 2 , j ) = 

| R 1 ,i ∩ R 2 , j | 
| R 1 ,i ∪ R 2 , j | , R 1 ,i ∈ F 1 , R 2 , j ∈ F 2 . 

We need the expectation of | R 1, i ∩ R 2, j | due to the random

ature of F 1 and F 2 . If we regard | R 1, i ∩ R 2, j | as a random vari-

ble, then it has a hypergeometric distribution ( N, n i , n j ), where

 i = | R 1 ,i | , n j = | R 2 , j | . 
| R 1 ,i ∩ R 2 , j | = 1 means there is exactly one element shared by

 1, i and R 2, j , i.e., only one element in R 1, i comes from R 2, j , and

he other elements come from focal elements other than R 2, j . The

orresponding probability is 

 (| R 1 ,i ∩ R 2 , j | = 1) = 

(
n j 

1 

)(
N − n j 

n i − 1 

)
(

N 

n i 

) . 

If | R 1 ,i ∩ R 2 , j | = 2 , then 

 (| R 1 ,i ∩ R 2 , j | = 2) = 

(
n j 

2 

)(
N − n j 

n i − 2 

)
(

N 

n i 

) . 

ince n i ≤ N − n j , and | R 1, i ∩ R 2, j | ≤ min (| R 1, i |, | R 2, j |), 

 (| R 1 ,i ∩ R 2 , j | = m ) = 

(
n j 

m 

)(
N − n j 

n i − m 

)
(

N 

n i 

)
or 0 ≤ m ≤ min (| R 1 ,i | , | R 2 , j | ) = min (n i , n j ) , and P (| R 1 ,i ∩ R 2 , j | =
 ) = 0 otherwise. 

Thus the expectation of | R 1, i ∩ R 2, j | is 
(| R 1 ,i ∩ R 2 , j | ) = n i ×
n j 

N 

= 

n i × n j 

N 

. 

Hence, 

W 12 (R 1 ,i , R 2 , j ) = 

| R 1 ,i ∩ R 2 , j | 
| R 1 ,i ∪ R 2 , j | 

= 

| R 1 ,i ∩ R 2 , j | 
| R 1 ,i | + | R 2 , j | − | R 1 ,i ∩ R 2 , j | 

= 

| R 1 ,i ∩ R 2 , j | 
n i + n j − | R 1 ,i ∩ R 2 , j | . 

, 

nd 

(W 12 (R 1 ,i , R 2 , j )) = 

n i × n j /N 

n i + n j − n i × n j /N 

= 

n i × n j 

N × ( n i + n j ) − n i × n j 

.

From Theorem 6, if F 1 ∩ F 2 = φ, 

RC Jac (F 1 , F 2 ) = 

√ 

(m 1 − m 2 ) T W (m 1 − m 2 ) 

= 

√ 

[ V 

T 
1 

, −V 

T 
2 

] 

[
I 1 W 12 

W 

T 
12 I 2 

][
V 1 

−V 2 

]
= 

√ 

V 

T 
1 

V 1 + V 

T 
2 

V 2 − 2 V 

T 
1 

W 12 V 2 . 

Fixing V 1 = V 2 , the expectation of RC Jac is 

E(RC Jac (F 1 , F 2 )) = 

√ 

V 

T 
1 

V 1 + V 

T 
2 

V 2 − 2 V 

T 
1 

E(W 12 ) V 2 

= 

√ 

2 V 

T 
1 

V 1 − 2 V 

T 
1 

E(W 12 ) V 2 . 

�

ppendix B. RC Jac for CTREE and C4.5 
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Fig. B.6. RC Jac for CTREE. 
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Fig. B.7. RC Jac for C4.5. 
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