
Speech Communication 83 (2016) 34–41 

Contents lists available at ScienceDirect 

Speech Communication 

journal homepage: www.elsevier.com/locate/specom 

Cross-corpus speech emotion recognition based on transfer 

non-negative matrix factorization 

Peng Song 

a , ∗, Wenming Zheng 

b , Shifeng Ou 

c , Xinran Zhang 

b , Yun Jin 

d , Jinglei Liu 

a , 
Yanwei Yu 

a 

a School of Computer and Control Engineering, Yantai University, Yantai 264005, P.R. China 
b Key Laboratory of Child Development and Learning Science of Ministry of Education, Southeast University, Nanjing 210096, P.R. China 
c School of Science and Technology for Opto-electronic Information, Yantai University, Yantai 264005, P.R. China 
d School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, P.R. China 

a r t i c l e i n f o 

Article history: 

Available online 1 August 2016 

Keywords: 

Speech emotion recognition 

Transfer learning 

Non-negative matrix factorization 

Dimension reduction 

a b s t r a c t 

Automatic emotion recognition from speech has received an increasing amount of interest in recent years, 

and many speech emotion recognition methods have been presented, in which the training and testing 

procedures are often conducted on the same corpus. However, in practice, the training and testing speech 

utterances are collected from different conditions or devices, which will have adverse effects on recogni- 

tion performance. To address this problem, in this paper, a novel cross-corpus speech emotion recogni- 

tion method, called transfer non-negative matrix factorization (TNMF) is proposed. Specifically, the NMF 

approach, which is popular in computer vision and pattern recognition fields, is utilized to obtain low 

dimensional representations of emotional features. Meanwhile, the discrepancies between source and tar- 

get data sets are considered, and the maximum mean discrepancy (MMD) algorithm is used for similarity 

measurement. Then, the TNMF method, which jointly optimizes the NMF and MMD algorithms, is pre- 

sented. Moreover, to further improve the recognition performance, two variants of TNMF, called transfer 

graph regularized NMF (TGNMF) and transfer constrained NMF (TCNMF), are proposed, respectively. Sev- 

eral experiments are carried out on three popular emotional databases, and the results demonstrate the 

effectiveness and robustness of our scheme. 

© 2016 Elsevier B.V. All rights reserved. 
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1. Introduction 

Speech emotion recognition, which aims at predicting emo-

tional states from his or her speech, has been a hot research

topic in speech signal processing field. With the development of

computer technologies, the demands for emotion recognition in

new spoken dialogue systems are very urgent. It has been proven

very useful in many real applications ( Cowie et al., 2001; El Ayadi

et al., 2011; Ververidis and Kotropoulos, 2006 ). For example,

in health care field, the intelligent robots, which monitor the

patients’ emotional states, can help doctors diagnose the mental

illness. In intelligent vehicle, the emotion recognition system can

monitor the drivers’ emotion variations to avoid accidents. It
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an be also deployed in many human-computer interaction (HCI)

ased entertainment systems. 

In speech signal processing and affective com puting fields,

peech emotion recognition plays a very important role. Re-

earchers have long sought robust feature representations and clas-

ification algorithms. As shown in Fig. 1 , a classic speech emotion

ecognition system can be divided into two parts, i.e., feature ex-

raction versus emotion classification. The goal of feature extrac-

ion aims to achieve useful emotional features from speech signal

hile the main task of emotion classification is to obtain the emo-

ional categories for a testing sample. Over the past decades, many

lassification approaches, popular in pattern recognition and ma-

hine learning, have been developed to implement the classifica-

ion function, e.g., support vector machine (SVM), neural network

NN), Gaussian mixture model (GMM) and hidden Markov model

HMM) ( El Ayadi et al., 2011; Ververidis and Kotropoulos, 2006 ).

esides, the extreme learning machine (ELM) ( Han et al., 2014 )

nd deep neural network (DNN) ( Amer et al., 2014; Zheng et al.,

015 ) approaches are also introduced for speech emotion recog-

ition. All these methods can achieve satisfactory performance to

http://dx.doi.org/10.1016/j.specom.2016.07.010
http://www.ScienceDirect.com
http://www.elsevier.com/locate/specom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.specom.2016.07.010&domain=pdf
mailto:pengsong@ytu.edu.cn
mailto:pengsongseu@gmail.com
mailto:wenming_zheng@seu.edu.cn
mailto:ousfeng@ytu.edu.cn
mailto:230139080@seu.edu.cn
mailto:jiny@jsnu.edu.cn
mailto:jinglei_liu@sina.com
mailto:yuyanwei@ytu.edu.cn
http://dx.doi.org/10.1016/j.specom.2016.07.010


P. Song et al. / Speech Communication 83 (2016) 34–41 35 

Fig. 1. Flowchart of speech emotion recognition. 
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ome extent. However, it should be noted that they are performed

n the assumption that the training and testing data are obtained

nder the same condition. In practice, the speech utterances are

ften collected under different conditions. As a result, the recogni-

ion rates will obviously drop when the training and testing data

re from different corpora. 

To solve the above mentioned problem, various researchers

ave considered the case when the speech utterances are drawn

rom different scenarios, e.g., languages, noises, ages, genders. Re-

ently, a considerable amount of studies have been made in speech

ommunity. Some algorithms popular in speech and speaker

ecognition, e.g., maximum a posteriori (MAP) ( Hu et al., 2007 ),

actor analysis (FA) ( Mariooryad and Busso, 2014; Song et al.,

015 ), nuisance attribute projection (NAP) ( Sanchez et al., 2010 ),

ave been successfully applied to speech emotion recognition. In

ia et al. (2014) , Xia et al. propose to model gender information to

btain robust emotional representations. In Schuller et al. (2011) ,

chuller et al. evaluate the performance of cross-corpus emotion

ecognition on six different emotional data sets, in which two

ovel voting strategies are investigated to improve the cross-corpus

ecognition rates. In Jeon et al. (2013) , Jeon et al. conduct a pre-

iminary study on three different languages to investigate the ef-

ects of cross-lingual emotional data on human perception and au-

omatic recognition. To realize cross-corpus speech emotion recog-

ition, Deng et al. (2014) introduce an adaptive denoising based

omain adaptation method. Abdelwahab and Busso (2015) ex-

lore a supervised domain adaptation algorithm to reduce the

ismatch problems between training and testing conditions. In

ao et al. (2016) , Mao et al. present a new domain adaptation

ethod where the priors of source and target classes are consid-

red. 

All these previously studies focus on reducing the difference be-

ween different data sets. However, they fail to consider the di-

ergence between feature distributions of different corpora ( Pan

nd Yang, 2010; Song et al., 2014 ). Recently, NMF algorithms ( Jeong

t al., 2009; Kim et al., 2009 ) have been studied on speech emotion

ecognition, in which robust feature representations can be ob-

ained to boost the recognition performance. However, they do not

ake into account the differences between the training and testing

ata. Inspired by recent progress in matrix factorization and trans-

er learning, in this paper, we propose a novel cross-corpus speech

motion recognition algorithm, called transfer non-negative matrix

actorization (TNMF), which explicitly considers the difference be-

ween feature distributions of training and testing data. Our goal

s to obtain common robust feature representations for both la-

eled source and unlabeled target data sets. To achieve this, two

ypes of NMF algorithms, namely graph regularized NMF (GNMF)

 Cai et al., 2011 ) and constrained NMF (CNMF) ( Liu et al., 2012 ),

re employed to learn robust low-dimensional feature represen-

ations. Meanwhile, the maximum mean discrepancy (MMD) ap-

roach ( Borgwardt et al., 2006 ) is adopted for similarity measure-

ent. Then two novel transfer NMF approaches, called transfer

NMF (TGNMF) and transfer CNMF (TCNMF) are proposed, respec-
 t  
ively, and the corresponding optimization schemes are also pre-

ented to solve the objective functions. This paper is an extended

ersion of our work presented at ICASSP 2016 ( Song et al., 2016 ).

ew contributions include the newly proposed TCNMF algorithm,

nalysis of the TGNMF and TCNMF approaches, and extensive ex-

erimental results. Meanwhile, Different from our previous work

n transfer learning based speech emotion recognition ( Song et al.,

014 ), instead of using traditional unsupervised dimensionality re-

uction algorithms, in this work, the NMF is employed to learn

obust feature representations, and two novel transfer NMF algo-

ithms, i.e., TGNMF and TCNMF, are presented. 

The remainder of this paper is organized as follows. In

ection 2 , we briefly review the NMF method and introduce the

dea of TNMF. In Section 3 , Two extensions of TNMF methods

nd their corresponding optimization algorithms are provided in

etail. Experimental results are presented in Section 4 . Finally,

ection 5 provides some conclusion remarks. 

. Transfer non-negative matrix factorization 

.1. Non-negative matrix factorization 

Non-negative matrix factorization (NMF) is an unsupervised

earning algorithm, solving many real-world problems with non-

egative data ( Lee and Seung, 1999 ). It aims to find two non-

egative matrices whose product is an approximation of the origi-

al matrix. It has been successfully used in widespread tasks ( Cai

t al., 2011; Lee and Seung, 1999; Liu et al., 2012 ), e.g., face recog-

ition, gene expression, text mining and document representation. 

Given a data matrix X = [ x 1 , . . . , x N ] ∈ R M × N , NMF aims to seek

n approximation of X via the product of dictionary matrix U =
 u ik ] ∈ R M×K and the corresponding coding matrix V = [ v k j ] ∈ R K×N ,

hich minimizes the objective function as follows: 

in 

U,V 
‖ X − UV ‖ 

2 
F (1) 

here U, V ≥ 0, ‖ · ‖ F is a Frobenius norm and K � { M, N }. 

Although the above objective function is not convex when op-

imizing U and V together, it is convex in U and V only. In Lee and

eung (2001) , Lee et al. propose an iterative algorithm to solve this

roblem, and the update rules are given as 

 ik ← u ik 

(X V ) ik 
(UV 

T V ) ik 
(2) 

 k j ← v k j 

(X 

T U) k j 

(V U 

T U) k j 

(3) 

here T refers to the transposition of a matrix. 

.2. Minimizing the distribution divergence 

By NMF algorithm, the latent low dimensional coding ma-

rix V can be obtained. One may expect that this coding matrix
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can capture the commonality underlying labeled source and un-

labeled target corpora. However, it should be found that the dif-

ference between the feature distributions of the two corpora is

often very large, even in the K low dimensional feature space

( Pan and Yang, 2010 ). In this paper, following ( Long et al., 2013;

Pan et al., 2008; Pan and Yang, 2010 ), the maximum mean

discrepancy (MMD) as a nonparametric distance measurement

( Borgwardt et al., 2006 ), which compares the distributions in re-

producing kernel Hilbert space (RKHS), is employed for similarity

measurement. Let V src and V tar be the coding representations of la-

beled source and unlabeled target emotional features, and n l and

n u be the corresponding feature numbers, respectively, the distance

between V src and V tar is written as 

dist(V src , V tar ) = 

∥∥∥∥∥
1 

n l 

n l ∑ 

i =1 

v i −
1 

n u 

N ∑ 

j= n l +1 

v j 

∥∥∥∥∥
2 

H 

= 

N ∑ 

i, j=1 

v T i v j m i j = T r(V MV 

T ) (4)

where H refers to a universal RKHS, Tr ( ·) is the trace of a matrix,

N = n u + n l and M = [ m i j ] 
N 
i, j=1 

with 

m i j = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

1 

n 

2 
l 

v i , v j ∈ V src 

1 

n 

2 
u 

v i , v j ∈ V tar 

−1 

n l n u 
otherwise 

(5)

2.3. The transfer NMF approach 

The transfer learning techniques have been proven very

successful in many applications, e.g., image classification, text

categorization and sentiment analysis ( Pan and Yang, 2010; Song

et al., 2016 ). Meanwhile, the NMF algorithm can learn robust

low dimensional feature representations. To perform robustly

across the labeled source and unlabeled target data, a transfer

NMF (TNMF) approach is presented. With TNMF, we aim to learn

robust representations for emotional speech from different data

sets. In this way, a classifier trained on labeled source corpus can

generalize better on unlabeled target corpus. 

By combining Eqs. (1) and (4) , the objective function of TNMF

can be written as follows: 

min 

U,V 
‖ X − UV ‖ 

2 
F + λT r(V MV 

T ) 

s.t. U, V ≥ 0 (6)

where λ is a regularization parameter to balance feature represen-

tation and distribution matching. 

3. Extensions of the transfer NMF 

Recently, some improved methods have been proposed under

the framework of NMF. For example, Cai et al. (2011) present

a graph regularized NMF (GNMF) approach, in which a nearest

neighbor graph is constructed to encode the geometric informa-

tion of the data space. In Liu et al. (2012) , Liu et al. propose a

constrained NMF (CNMF) method, which considers the label infor-

mation as a hard constraint. Motivated by these recent progresses,

in this paper, we will extend the TNMF algorithm and present two

novel methods, called transfer GNMF (TGNMF) and transfer CNMF

(TCNMF), respectively. In this section, the objective functions of

TGNMF and TCNMF approaches are firstly constructed, and then

the iterative algorithms are developed to optimize them. 
.1. Transfer graph regularized NMF 

Many previous studies ( Belkin and Niyogi, 2001; Cai et al., 2011;

oweis and Saul, 20 0 0 ) have shown that naturally occurring data

ften reside on or close to an underlying low dimensional sub-

anifold, so a graph regularized NMF, called GNMF, is presented in

ai et al. (2011) , where a graph structure is used as a regularization

f NMF. Given a set of M -dimensional data points X = [ x 1 , . . . , x N ] ∈
 

M × N , we can construct a graph G with N vertices, in which each

ertex represents a data point. Let W = [ w i j ] ∈ R N×N be the weight

atrix of G , the most commonly and simplest 0 − 1 weighting al-

orithm is adopted, which is written as 

 i j = 

{
1 if x j ∈ N p (x i ) or x i ∈ N p (x j ) 

0 otherwise 
(7)

here N p ( x i ) and N p ( x j ) are the p nearest neighbors of x i and x j ,

espectively. 

Let d i = 

∑ N 
j=1 w i j be the degree of x i , and D = diag (d 1 , · · · , d N )

e a diagonal matrix. Considering the problem of mapping the

raph G to the coding representations V , a reasonable solution

 Belkin and Niyogi, 2001 ) to find a good map is to minimize the

ollowing objective function 

1 

2 

N ∑ 

i =1 

N ∑ 

j=1 

(v i − v j ) 2 w i j = T r(V LV 

T ) (8)

here L = D − W is the graph Laplacian matrix. By combining

q. (1) with Eq. (8) , the objective function of GNMF can be written

s 

in 

U,V 
‖ X − UV ‖ 

2 
F + γ T r(V LV 

T ) 

.t. U, V ≥ 0 (9)

here γ ≥ 0 is a regularization parameter. By incorporating the

MD algorithm into Eq. 9 , the objective function of our proposed

ransfer GNMF is 

in 

U,V 
‖ X − UV ‖ 

2 
F + γ T r(V LV 

T ) + λT r(V MV 

T ) 

.t. U, V ≥ 0 (10)

Given T = γ L + λM, the above objective function can be modi-

ed as 

in 

U,V 
‖ X − UV ‖ 

2 
F + T r(V T V 

T ) 

.t. U, V ≥ 0 (11)

As conventional NMF, the above equation is not convex in com-

uting both U and V together ( Lee and Seung, 2001 ). Therefore it is

nrealistic to find a global minimization of the objective function.

n the following, an iterative alternating algorithm is introduced. 

The Eq. 11 can be rewritten as 

in 

U,V 
T r(X X 

T ) + T r(UV V 

T U 

T ) − 2 T r(X V 

T U 

T ) + T r(V T V 

T ) 

.t. U, V ≥ 0 (12)

Let β = [ βik ] ∈ R M×K and σ = [ σk j ] ∈ R K×N be the Lagrange mul-

iplier matrices, the Lagrange function L is 

 = T r(X X 

T ) + T r(UV V 

T U 

T ) − 2 T r(X V 

T U 

T ) 

+ T r(V T V 

T ) + T r(βU) + T r(σV ) (13)

The partial derivatives of L with respect to U and V are given

s 

∂L 

∂U 

= −2 X V 

T + 2 UV V 

T + β = 0 (14)

∂L 

∂V 

= −2 U 

T X 2 U 

T UV + 2 V T + σ = 0 (15)
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Table 1 

The statistics of the databases. 

Database Language Size # of classes # of features 

Emo-DB German 494 7 1582 

eNTERFACE English 1170 6 1582 

FAU Aibo German 48401 11 1582 
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According to the Karush-Kuhn-Tucker (KKT) conditions

ik u ik = 0 and σk j v k j = 0 ( Bishop et al., 2006 ), the following

quations for u ik and v kj will be obtained as 

(UV V 

T ) ik u ik − (X V ) ik u ik = 0 (16)

(U 

T U) k j v k j + (V T ) k j v k j − (U 

T X ) k j v k j = 0 (17)

he above equations lead to the following update rules: 

 ik ← u ik 

(X V ) ik 
(UV V 

T ) ik 
(18) 

 k j ← v k j 

(U 

T X + V T −) k j 

(V U 

T U + V T + ) k j 

(19) 

here T + and T − are the positive and negative parts of T , respec-

ively. 

.2. Transfer constrained NMF 

The above mentioned NMF and GNMF are unsupervised algo-

ithms. That is, they are not very applicable to many real-world

lassification problems where some labeled data are provided.

any previous studies have shown that a small amount of labeled

ata combined with unlabeled data can significantly improve the

earning performance ( Cai et al., 2007; Yao et al., 2015 ). This can

aturally give rise to a semi-supervised extension of NMF. 

Recently, Liu et al. (2012) present a semi-supervised NMF ap-

roach, called constrained NMF (CNMF). Given a feature set X =
 X src , X tar } , where X src = { x i } n l i =1 

and X tar = { x i } n u i =1 
denote the la-

eled source and unlabeled target data, respectively, a c × n l la-

el indicator matrix L is built, where l i j = 1 if x i is labeled with

he j -th class, l i j = 0 otherwise. Then, a label constraint matrix A is

efined as 

 = 

(
L c×n l 0 

0 I n u 

)
(20) 

here I n u is an n u × n u identity matrix. 

To impose the label constraint, an auxiliary matrix D is intro-

uced, and the coding matrix V can be represented as 

 = DA (21) 

n CNMF, the NMF is extended to semi-supervised NMF with the

abel constraint. The goal of CNMF is to find two non-negative ma-

rices U and D , and the objective function becomes 

in 

U,D 
‖ X − UDA ‖ 

2 
F (22) 

As TGNMF, by introducing the MMD constraints, a trans-

er CNMF (TCNMF) approach is also presented. By combining

qs. 4 and 22 , the objective function is represented as follows: 

min 

U,D 
‖ X − UDA ‖ 

2 
F + λT r(DAM(DA ) T ) 

s.t. U, D ≥ 0 (23) 

here λ is a regularization parameter. As traditional NMF algo-

ithms, the objective function of TCNMF is not convex to jointly

ptimize U and D , and an iterative algorithm is also proposed. 

With the matrix properties T r(AD ) = T r (DA ) and T r (A ) =
 r(A 

T ) , the Eq. 23 can be rewritten as 

in 

U,D 
T r(X X 

T ) + T r 
(
U(DA )(DA ) T U 

T 
)

− 2 T r 
(
X (DA ) T U 

T 
)

+ λT r 
(
(DA ) M(DA ) T 

)
s.t. U, D ≥ 0 (24) 
s

The Lagrange function L is given as 

 = T r(X X 

T ) + T r 
(
UDA (DA ) T U 

T 
)

− 2 T r 
(
X (DA ) T U 

T 
)

+ T r 
(
λDAM(DA ) T 

)
+ T r(βU) + T r(γ DA ) (25) 

here β = [ βik ] ≥ 0 and γ = [ γk j ] ≥ 0 are the Lagrange multiplier

atrices. 

Requiring the derivatives of L with respect to U and D vanish,

e will obtain 

∂L 

∂U 

= 2 UDAA 

T D 

T − 2 X A 

T D 

T + β = 0 (26) 

∂L 

∂D 

= 2 U 

T U DAA 

T − 2 U 

T X + 2 λDAMA 

T + γ = 0 (27) 

By the KKT conditions βik u ik = 0 and γk j d k j = 0 ( Bishop et al.,

006 ), the equations for u ik and d kj are given as follows: 

UDAA 

T D 

T 
)

ik 
u ik − (X DA ) ik u ik = 0 (28) 

(U 

T U) k j d k j + λ(DAMA ) k j d k j − (U 

T X ) k j d k j = 0 (29) 

These equations lead to the update rules as 

 ik ← u ik 

(X DA ) ik (
UDAA 

T D 

T 
)

ik 

(30) 

 k j ← d k j 

(U 

T X + DAλM 

−) k j 

(DAU 

T U + DAλM 

+ ) k j 

(31) 

here M 

+ and M 

− correspond to the positive and negative parts

f M , respectively. 

. Experimental results 

In this section, several experiments are carried out to evalu-

te our proposed transfer NMF approaches for cross-corpus speech

motion recognition. 

.1. Descriptions of data sets 

Three popular emotional databases are employed for our

xperiments, i.e., Emo-DB ( Burkhardt et al., 2005 ), eNTERFACE

 Martin et al., 2006 ) and FAU Aibo ( Schuller et al., 2009 ). The im-

ortant statistics of each corpus are summarized below (see also

able 1 ). 

The Emo-DB database ( Burkhardt et al., 2005 ) is one of the

ost popular and earliest emotional data sets. It consists of seven

ypes of basic emotions, i.e., happiness, anger, boredom, disgust,

ear, sadness and neutral. The sentences are uttered by 10 German

rofessional actors with predefined content. Finally, as shown in

able 2 , 494 utterances in which emotions can be clearly recog-

ized are obtained. 

The eNTERFACE database ( Martin et al., 2006 ) is an audio-visual

nglish emotional data set. It includes six types of basic emotions,

.e., happiness, anger, disgust, fear, sadness and surprise. With pre-

efined English content, the utterances are recorded by 42 subjects

rom 14 countries. Hence, total 1170 video samples are collected as

hown in Table 3 . 
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Table 2 

The number of each emotion category in the Emo-DB database. 

Database Happiness Anger Boredom Disgust Fear Sadness Neutral Sum 

Emo-DB 64 127 79 38 55 53 78 494 

Table 3 

The number of each emotion category in the eNTERFACE database. 

Database Happiness Anger Disgust Fear Sadness Surprise Sum 

eNTERFACE 205 200 189 189 195 192 1170 

Table 4 

The number of each emotion category in the FAU 

Aibo database. 

Database Neutral Non-neutral Sum 

FAU Aibo 39169 9232 48401 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5 

LLDs for our tests. 

LLDs Number 

Loudness 1 

MFCC [0–14] 15 

Log Mel frequency band [0–7] 8 

LSP [0–7] 8 

F0 1 

F0 envelope 1 

Voicing probability 1 

Jitter local 1 

Jitter consecutive frame pairs 1 

Shimmer local 1 
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The FAU Aibo database ( Schuller et al., 2009 ) is another com-

monly used emotional speech database, which is chosen for In-

terspeech 2009 emotion challenge. The emotional speech utter-

ances are recorded by 51 children (21 boys and 30 girls) from two

schools, who are interacted with a sony’s robot Aibo for recording.

Then five professional labelers are employed to annotate the emo-

tion label for each recording. Finally, total 48401 words with 11

types of emotions are recorded, among which, over 80% are neu-

tral, while the others are non-neutral. As shown in Table 4 , in our

experiments, only two types of emotions, i.e., neutral versus non-

neutral, are considered for evaluation. 

4.2. Experimental setup 

In our experiments, three types of cross-corpus speech emotion

recognition schemes are considered for evaluation, i.e., case1, case2

and case3 . It should be noted that, in all cases, the source corpus is

labeled, while the target corpus is unlabeled. In case1 , the eNTER-

FACE database is used as the source database, while the Emo-DB is

used for testing. Meanwhile, in case2 and case3 , the Emo-DB cor-

pus is used as the training corpus, while the eNTERFACE and FAU

Aibo are chosen as the target databases, respectively. In case1 and

case2 , five common emotional categories, i.e., happiness, anger, dis-

gust, fear and sadness are used for evaluation. Meanwhile, in case3 ,

two types of emotions, i.e., neutral versus non-neutral, are chosen

for evaluation. Each corpus is divided into five parts, among which,

in each test, random 4/5 of the source and target data are used for

training, while the others are chosen for testing. And among the

target training data, the 5% are labeled for CNMF and TCNMF al-

gorithms. The tests are repeated 10 times to cover all the possible

cases for training and testing databases. 

The openSMILE toolkit ( Eyben et al., 2010 ) is chosen to extract

the acoustic features. And the baseline feature set of Interspeech

2010 paralinguistic challenge ( Schuller et al., 2010 ) is used for our

tests. As shown in Table 5 , it consists of 34 basis low level de-

scriptors (LLDs). 21 functionals are applied to the above 34 LLDs

and their corresponding delta coefficients, while 19 functional are

applied to 4 F0 related LLDs and their corresponding delta coeffi-

cients. In addition, the durations and F0 onsets are also considered

and included into the feature set. Thus, the dimension of the emo-

tional feature vector is 1582. 

To demonstrate how the recognition performance can be im-

proved by our proposed approach, the following 9 methods are

compared: 
• Baseline method ( Baseline ), in which the training and testing

procedures are carried out on the same single database. 
• Traditional method ( Automatic ), in which the classifier trained

in source corpus is directly applied to emotion recognition of

target corpus. 
• Dimension reduction based transfer learning method (DR) ( Pan

et al., 2008; Song et al., 2014 ), one of the classic transfer learn-

ing algorithms. 
• Transfer component analysis method (TCA) ( Pan et al., 2011 ),

one of the classic transfer learning algorithms. 
• Conventional NMF method (NMF) ( Lee and Seung, 2001 ). 
• Graph regularized NMF method (GNMF) ( Lee and Seung, 2001 ).
• Constrained NMF method (CNMF) ( Liu et al., 2012 ). 
• Our proposed transfer graph regularized NMF method (TGNMF).
• Our proposed transfer constrained NMF method (TCNMF). 

In our experiments, the support vector machine (SVM) is cho-

en as the baseline algorithm since it is simple and very power-

ul on classification problems. It is also important to choose suit-

ble model parameters via cross validations. The test values for

he size of dictionary K are {16, 32, 64, 128, 256, 512}, and fi-

ally the optimal value of K is set to 128. Besides, the number of

earest neighbors p in GNMF approach is set to 5, by searching

 10 −3 
, 10 −2 

, 10 −1 , 1 , 10 , 10 2 , 10 3 } , the MMD trade-off parameter λ
nd the regularization parameter γ are optimized as 1 and 100,

espectively, and the number of iterations is set to 100. 

.3. Experimental results 

The experimental results of different approaches in case1 and

ase2 are depicted in Table 6 and Table 7 , in which the recogni-

ion rates of each emotion category and the overall average perfor-

ance are summarized. From the two tables, we have the follow-

ng observations. 

Firstly, in both cases, compared with the Baseline method car-

ied out on single corpus, the recognition rates of cross-corpus Au-

omatic scheme drop sharply. 

Secondly, it can be easily found that, the DR, TCA, TGNMF and

CNMF methods significantly improve the recognition rates. One
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Fig. 2. Recognition rates with different percentages of target data in case1 . 

Table 6 

The average recognition results using different methods in case1 (eNTERFACE 

database for training, Emo-DB database for testing). 

Methods Recognition rates (%) 

Anger Disgust Fear Happiness Sadness Average 

Baseline 72 .98 81 .09 68 .54 53 .01 79 .34 70 .99 

Automatic 31 .52 53 .05 16 .45 20 .01 47 .22 34 .65 

DR 34 .75 72 .13 17 .88 25 .32 69 .07 45 .83 

TCA 35 .43 72 .97 19 .01 25 .95 69 .75 49 .62 

NMF 33 .42 56 .12 17 .03 22 .31 50 .01 38 .19 

GNMF 33 .65 68 .20 17 .14 22 .42 50 .94 39 .05 

CNMF 33 .51 68 .59 17 .15 22 .41 50 .98 39 .12 

TGNMF 36 .14 74 .52 19 .22 26 .69 71 .54 51 .98 

TCNMF 36 .81 74 .81 19 .54 27 .06 71 .68 52 .10 

Table 7 

The average recognition results using different methods in case2 (Emo-DB 

database for training, eNTERFACE database for testing). 

Methods Recognition rates (%) 

Anger Disgust Fear Happiness Sadness Average 

Baseline 74 .42 55 .35 54 .01 59 .98 60 .99 61 .39 

Automatic 37 .25 19 .22 17 .96 27 .18 28 .43 28 .91 

DR 46 .99 25 .12 29 .08 44 .01 41 .13 37 .13 

TCA 50 .18 28 .90 34 .57 45 .34 44 .04 40 .92 

NMF 39 .15 21 .27 20 .08 26 .84 30 .15 28 .50 

GNMF 39 .31 21 .50 20 .43 27 .12 30 .58 28 .83 

CNMF 39 .40 21 .58 20 .41 27 .15 30 .62 28 .86 

TGNMF 52 .58 29 .53 37 .62 47 .01 44 .71 44 .02 

TCNMF 52 .71 29 .68 38 .25 47 .36 45 .16 44 .86 
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Table 8 

The average recognition results using different 

methods in case3 (Emo-DB database for training, 

FAU Aibo database for testing). 

Methods Recognition rates (%) 

Neutral Non-neutral Average 

Baseline 73 .17 55 .02 66 .39 

Automatic 42 .61 29 .22 34 .68 

DR 54 .25 45 .01 46 .08 

TCA 54 .71 46 .12 46 .62 

NMF 43 .52 29 .78 25 .05 

GNMF 44 .01 30 .48 25 .72 

CNMF 44 .08 31 .1 4 25 .83 

TGNMF 56 .08 46 .21 46 .97 

TCNMF 56 .24 47 .30 47 .25 

Table 9 

Comparisons between TCA and TNMF in case1 and case2 . 

Cases Methods Recognition rates (%) 

Anger Disgust Fear Happiness Sadness Average 

case1 TCA 35 .43 72 .97 19 .01 25 .95 69 .75 49 .62 

TNMF 35 .81 73 .05 19 .02 26 .18 70 .16 50 .63 

case2 TCA 50 .18 28 .90 34 .57 45 .34 44 .04 40 .92 

TNMF 50 .68 29 .01 34 .89 46 .12 45 .13 41 .57 
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ossible reason is that they are all transfer learning based algo-

ithms, which consider the difference between feature distribu-

ions of different corpora. 

Thirdly, compared to other algorithms except Baseline , our pro-

osed TGNMF and TCNMF methods always obtain higher recogni-

ion rates. This can be attributed to that these two approaches take

dvantages of both non-negative matrix factorization and transfer

earning, and optimize them together. Meanwhile, in both cases,

he recognition rates of TGNMF are slightly higher than those of

CNMF. The reason may be that TCNMF is a semi-supervised algo-

ithm while the TGNMF considers the geometrical information, and

he label information is more important than geometric structure

o our cross-corpus speech emotion recognition. 

Finally, it can be also found that the recognition rates of case2

re lower than those of case1 , which are consistent with the results

n conventional single corpus ( Jin et al., 2014; Zheng et al., 2014 ). 

In addition, the recognition performance with different num-

ers of target data is also investigated, and the results are given in
ig. 2 and Fig. 3 . It can be naturally thought that the recognition

ates will become higher with the increase of target training data,

nd from the two figures, it can be found that the best recognition

ates are achieved when 4/5 of unlabeled data are used. However,

t should be also observed that, in case 2, the recognition rates of

/5 are a little lower than that of 2/5. The reason may be that al-

hough more unlabeled data are used for training, some of them

ave adverse effects on our proposed methods. In the future, we

ill investigate how to select the useful unlabeled subsets. 

The recognition rates of different approaches in case3 are given

n Table 8 . From the table, it can be found that, to classification

f two emotion categories, the recognition results show the same

rends as those given in Table 6 and Table 7 . It can be also ob-

erved that our proposed transfer NMF approaches obtain the best

ecognition rates, which are consistent with those in case1 and

ase2 . 

As discussed above, our proposed TGNMF and TCNMF achieve

etter performance than TCA, which is a state-of-the-art transfer

earning algorithm for feature extraction. In order to better investi-

ate whether the improvements are obtained by NMF, the TCA al-

orithm is compared with the TNMF approach, which can be seen

s a special case of TGNMF with γ = 0 in Eq. 10 . From Table 9 and
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Fig. 3. Recognition rates with different percentages of target data in case2 . 

Table 10 

Comparisons between TCA and TNMF in case3 . 

Methods Recognition rates (%) 

Neutral Non-neutral Average 

TCA 54 .71 46 .12 46 .62 

TNMF 54 .82 46 .25 46 .69 
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Table 10 , it can be observed that TNMF performs better than TCA

in all cases. The reasons might be that, compared with the tradi-

tional dimensionality reduction algorithms used in TCA ( Pan et al.,

2011 ), the NMF algorithm can learn more robust feature represen-

tations. 

5. Conclusions 

In this paper, we have presented a novel cross-corpus speech

emotion recognition method, called transfer non-negative matrix

factorization, which makes use of both NMF and transfer learning

techniques. In this approach, the NMF approach is used to learn

robust representations of the acoustic emotional features. Mean-

while, the differences between feature distributions of two cor-

pora, described by MMD algorithm, are considered and used as

a regularization term of NMF. Moreover, two types of NMF ap-

proaches, i.e., graph regularized NMF (GNMF) and constrained NMF

(CNMF), are introduced, and two novel transfer NMF algorithms,

called transfer GNMF (TGNMF) and transfer CNMF (TCNMF) are

presented, respectively. The experimental results on three popu-

lar emotional databases demonstrate the effectiveness of our ap-

proach. Both TGNMF and TCNMF outperform the existing state-of-

the-art approaches. 
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