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a b s t r a c t

Unsupervised techniques typically rely on the probability density distribution of the data to detect
anomalies, where objects with low probability density are considered to be abnormal. However,
modeling the density distribution of high dimensional data is known to be hard, making the problem of
detecting anomalies from high-dimensional data challenging. The state-of-the-art methods solve this
problem by first applying dimension reduction techniques to the data and then detecting anomalies
in the low dimensional space. Unfortunately, the low dimensional space does not necessarily preserve
the density distribution of the original high dimensional data. This jeopardizes the effectiveness of
anomaly detection. In this work, we propose a novel high dimensional anomaly detection method
called LAKE. The key idea of LAKE is to unify the representation learning capacity of layer-constrained
variational autoencoder with the density estimation power of kernel density estimation (KDE). Then a
probability density distribution of the high dimensional data can be learned, which is able to effectively
separate the anomalies out. LAKE successfully consolidates the merits of the two worlds, namely
layer-constrained variational autoencoder and KDE by using a probability density-aware strategy in
the training process of the autoencoder. Extensive experiments on six public benchmark datasets
demonstrate that our method significantly outperforms the state-of-the-art methods in detecting
anomalies and achieves up to 37% improvement in F1 score.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Anomaly detection is a fundamental and hence well-studied
problem in many areas, including cyber-security [1], manufac-
turing [2], system management [3], and medicine [4]. The core
of anomaly detection is density estimation whether it is high-
dimensional data or multi-dimensional data. In general, normal
data is large and consistent with certain distribution, while ab-
normal data is small and discrete, therefore anomalies are resid-
ing in low density areas.

Although excellent progress have been achieved in anomaly
detection in the past decades, anomaly detection of complex and
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high-dimensional data remains to be a challenge. It is hard to
implement density estimation in original data space with the
increasing of dimensionality, because as the data dimension in-
creases, noise and extraneous features have a more negative
impact on density estimation. But unfortunately for a real-world
problem, the dimensionality of data could be very large, such
as video surveillance [5], medical anomaly detection [6], and
cyber-intrusion detection [7]. To address this issue, a two-step
approach [4] is usually applied and has proved to be successful.
It first reduces the dimensionality of data and then adopt den-
sity estimation in the latent low-dimensional space. Additionally,
spectral anomaly detection [8–10] and alternative dimensionality
reduction [11–13] techniques are implemented to find the lower
dimensional representation of the original high-dimensional data,
where anomalies and normal instances are expected to be sep-
arated from each other. However, the low dimensional space
does not necessarily preserve the density distribution of the
original data, and thus it is not able to effectively identify the
anomalies in high-dimensional data by estimating the density in
low-dimensional space.

Recently, deep learning has achieved great success in anomaly
detection [7]. Autoencoder [14] and a range of variants have been

https://doi.org/10.1016/j.knosys.2020.105753
0950-7051/© 2020 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.knosys.2020.105753
http://www.elsevier.com/locate/knosys
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2020.105753&domain=pdf
https://doi.org/10.1016/j.knosys.2020.105753
https://doi.org/10.1016/j.knosys.2020.105753
mailto:lvpeng4869@outlook.com
mailto:yuyanwei@ouc.edu.cn
mailto:yfan.mse@gmail.com
mailto:xianfeng@ist.psu.edu
mailto:txr@ytu.edu.cn
https://doi.org/10.1016/j.knosys.2020.105753


2 P. Lv, Y. Yu, Y. Fan et al. / Knowledge-Based Systems 196 (2020) 105753

Fig. 1. An example of low-dimensional representation for samples from KDDCUP
dataset: (1) purple/yellow points are normal/anomalous points; (2) use layer-
constrained variational autoencoder to reduce the dimension and display them
with t-SNE. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

widely used for unsupervised anomaly detection, such as deep
autoencoder, variational autoencoder (VAE) [15], and adversarial
autoencoder (AAE) [16]. The core idea of these methods is to
encode input data into a low dimensional representation, and
then decode the low dimensional representation into the orig-
inal data space by minimizing the reconstruction error. In this
process, the essential features of the original data are extracted
in latent data space through training autoencoder, without noise
and unnecessary features. Several recent studies have applied this
structure into practical problems, but yet there remains largely
unexplored. For example, the feature descriptor is to use an
autoencoder to learn robust features for human appearance in
the study of re-identification [17–19]. In the study of anomaly
detection, AnoGan [6] uses adversarial autoencoder to detect
anomaly in image data. But it only takes advantage of the recon-
struction error and does not make full use of the low-dimensional
representation. ALAD [20] considers both data distribution and
reconstruction error based on bi-directional GANs, which derives
adversarially learned features for the anomaly detection task.
Nevertheless, ALAD still only uses reconstruction errors based on
the adversarially learned features to determine if a data sam-
ple is anomalous. DAGMM [21] combines deep autoencoder and
Gaussian mixture model (GMM) in anomaly detection. However,
the real-world data may not only have high dimensions, but also
is lacking of a clear predefined distribution. Manual parameter
adjustment is also required in GMM when modeling the den-
sity distribution of input data, which has a serious impact on
detection performance.

Furthermore, as the example shown in Fig. 1, although the
anomalous points are separated from the normal points in the
low-dimensional representation space using autoencoder model,
the distribution of normal data may be arbitrary, rather than one
kind of prior distribution (e.g., GMM). On the other hand, some
anomaly data may show the distribution of dense clusters. This is
an intractable problem both for neighbor-based and energy-based
anomaly detection methods. Additionally, there are always some
normal points discretely distributed near normal dense clusters
in space. These factors also pose severe challenges for anomaly
detecting from large-scale high-dimensional data.

In this paper, we propose a novel Layer-constrained vari-
ational Autoencoding Kernel density Estimation model (LAKE),
a deep learning framework that addresses the aforementioned
challenges in anomaly detection from high-dimensional datasets.

LAKE is a probability density-aware model, which unifies the pre-
sentation learning capacity of layer-constrained variational au-
toencoder with the density estimation power of KDE to provide
a probability density estimation of high-dimensional data for
effectively identifying anomalies.

On the one hand, we propose a layer-constrained variational
autoencoder to obtain a low-dimensional representation of the
input data which contains the nature of input data. Different
from the standard VAE, layer-constrained variational autoencoder
considers the reconstruction errors on all corresponding layers
of the encoder and decoder and keeps KL divergence unchanged.
Since layer-constrained variational autoencoder takes account of
both reconstruction error and the distribution of data in the latent
data space, the density distribution of high dimensional data is
preserved in low dimensional representation. On the other hand,
LAKE uses KDE to estimate the probability density distribution of
training data. Unlike DAGMM, which needs to manually specify
the number of mixed Gaussian models, LAKE can model arbitrary
distributed data sophisticatedly. We even flexibly choose kernel
function in the KDE model to appropriately simulate the probabil-
ity density distribution of data. As layer-constrained VAE encodes
input data into low-dimensional representations while preserving
the key features of input data, the one with a high density value is
more likely to be a normal object, while the low one is considered
to be an abnormal object.

However, as shown in Fig. 1, some abnormal objects may form
a dense cluster due to their common anomalous characteristics.
Such abnormal objects may not be detected by simply applying
density estimation based on global data, because there are always
some normal objects fall in the distribution margin discretely. But
fortunately, for each individual abnormal object, it can be easily
distinguished from the density distribution of sampled training
data separately by estimating its density value in the trained
KDE model. Therefore, we propose a probability density estimation
strategy in the training and testing process. Specifically, we use
sampled training data to learn a probability density distribu-
tion in LAKE. In terms of testing, we estimate the density value
for each data object separately based on the trained probability
density distribution.

Extensive experiments on six public benchmark datasets
demonstrate that LAKE has superior performance compared to
the state-of-the-art models, with up to 37% improvement in stan-
dard F1 score for anomaly detection. It is worth noting that LAKE
achieves better results with fewer training samples compared to
existing methods based on deep learning.

To summarize, we make the following contributions:

• We propose a layer-constrained variational autoencoding
kernel density estimation model for anomaly detection from
high-dimensional datasets.
• We propose a probability density-aware strategy that learns

a probability density distribution of the high-dimensional
data in the training process that is able to effectively detect
abnormal objects in the testing.
• We conduct extensive evaluations on six benchmark

datasets. Experimental results demonstrate that our method
significantly outperforms the state-of-the-art methods.

2. Related work

Varieties of research focus on anomaly detection in data min-
ing and machine learning [22]. Distance-based anomaly detec-
tion [23] uses global density criterion to detect anomalies.
Density-based methods [24,25] aim to detect local outliers, and
thus they use local relative density as anomaly criterion. Several
studies [26–28] apply KDE into density-based local outlier detec-
tion to improve the detection accuracy. However, such methods
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rely on an appropriate distance metric, which is only feasible for
handling low-dimensional data, but not for anomaly detection
of high dimensional data. One-class classification approaches
trained by normal data, such as one-class SVMs [11,29], are
also widely used for anomaly detection. These methods use
kernel methods to learn a decision boundary around the normal
data. Another line of studies use fidelity of reconstruction to
determine whether a sample is anomalous, such as conventional
Principal Component Analysis (PCA), kernel PAC, and Robust PCA
(RPCA) [12,30]. Several recent researches [31,32] apply model
fitting to estimate model hypotheses for multistructure data with
high outlier rates.

In recent years, varieties of anomaly detection methods based
on deep neural networks are proposed to detect anomalies [7].
Autoencoder and its series of variants have been widely used in
unsupervised anomaly detection, especially for high-dimensional
data anomaly detection. Inspired by RPCA [12], Zhou et al. [14]
design a Robust Deep Autoencoder (RDA), and use the recon-
struction error to detect anomalies for high-dimensional data. The
variational autoencoder is used directly for anomaly detection by
using reconstruction error in [15]. With the rise of adversarial
networks, more models have added adversarial networks to au-
toencoders. AnoGAN [33] uses a Generative Adversarial Network
(GAN) [34] to detect anomalies in the context of medical images
by reconstruction error. In a follow-up work, f-AnoGAN [35]
introduces Wasserstein GAN (WGAN) [36] to improve AnoGAN
to be adaptable to real-time anomaly detection applications. The
above methods can be classified as reconstruction based anomaly
detection method. However, the performance of reconstruction
based methods is limited by the fact that they only consider
reconstruction error as anomaly criterion.

Deep structured energy based model (DSEBM) [37] addresses
the anomaly detection problem by directly modeling the data
distribution with deep architectures. DSEBM integrates Energy-
Based Models (EBMs) with different types of data such as static
data, sequential data, and spatial data, and apply appropriate
model architectures to adapt to the data structure. DSEBM has
two decision criteria for performing anomaly detection: the en-
ergy score (DSEBM-e) and the reconstruction error (DSEBM-r).
Deep Autoencoding Gaussian Mixture Model (DAGMM) [21] uti-
lizes a deep autoencoder to generate a low-dimensional represen-
tation and reconstruction error for each input data point, which
is further fed into a Gaussian Mixture Model. These methods use
autoencoder to model the distribution of data, and then derive
the criteria for determining anomalies through an energy model
or a Gaussian mixture model. As GANs are able to model the com-
plex high-dimensional distributions of real-world data, so that
Adversarially Learned Anomaly Detection (ALAD) [20] derives
adversarially learned features based on bi-directional GANs, and
then uses reconstruction errors based on these learned features
for the anomaly detection task.

Our proposed model is most related to DAGMM. However,
unlike DAGMM, LAKE uses a layer-constrained variational au-
toencoder to extract useful features while preserving the data
distribution of the original data for anomaly detection. And LAKE
leverages KDE to model the arbitrary density distribution of train-
ing samples in the latent data space without parameter depen-
dence, rather than a predefined GMM distribution. Most impor-
tantly, LAKE estimates the probability density value for each test
sample based on the trained KDE model individually, and show a
powerful ability of anomaly detection with few training samples.

3. The proposed LAKE model

3.1. Overview

Fig. 2 shows the architecture of the proposed layer-constrained
variational autoencoding kernel density estimation model. LAKE

is mainly composed of two parts: compression network and
probability density estimation model. First, in the compression
network, LAKE compresses the input data to obtain their low-
dimensional representations in latent data space by a proposed
layer-constrained variational autoencoder, and together with re-
construction errors they are fed to the probability density esti-
mation model. Second, the estimation model takes the feeds and
learns a probability density distribution using a Gaussian kernel
density estimation.

3.2. Compression network

The compression network in LAKE is a layer-constrained vari-
ational autoencoder (LVAE). The low-dimensional representation
of the original data in latent data space is derived from the
layer-constrained variational autoencoder.

Variational autoencoder is a probabilistic graphical model that
combines variational interference with deep learning [38,39],
which includes an encoder and a decoder. For a given input
data x, the variational autoencoder calculates its low-dimensional
representation z as follows:

z = q(x, θ ), (1)

x̂ = p(z, φ), (2)

where qθ (z|x) denotes the encoder, pφ(x|z) denotes the decoder,
θ and φ are the network parameters of the encoder and decoder,
and x̂ is the reconstruction of original data.

The loss function of variational autoencoder is the negative
log-likelihood with a regularizer. Since there are no global repre-
sentations that are shared by all data points, we can decompose
the loss function into only terms that depend on a single data
point li. The total loss is then

∑N
i=1 li for N total data points. The

loss function li for data point xi is:

li(θ, φ) = −Ez∼qθ (z|xi)
[
log pφ (xi|z)

]
+ KL (qθ (z|xi) ∥ p(z)) , (3)

where the first term is the reconstruction loss, or expected neg-
ative log-likelihood of the ith data point. The second term is the
Kullback–Leibler (KL) divergence between the distribution qθ (z|x)
and p(z). This divergence measures how much information is lost
(in units of nats) when using q to represent p. It is one measure
of how close q is to p.

To enhance the representation learning capacity of compres-
sion network, we propose a layer-constrained variational autoen-
coder (LVAE). Unlike the standard VAE that only reconstructs loss
at the input and output layers, LVAE considers reconstruction
losses on all corresponding layers of the encoder and decoder
and keeps KL divergence unchanged. The advantages of our LVAE
model are twofold: First, layer constraints enhance the recon-
struction ability of compression network by minimizing the infor-
mation losses of input data between each pair of corresponding
layers, which retains the essential features of original data in the
low-dimensional representation as much as possible. Second, our
layer constrained model would make the reconstruction error of
the training samples smaller, which makes it easier to distinguish
anomalies with the reconstruction error in the testing process.

Let k denote the number of corresponding layers in the en-
coder and decoder, then our loss function is:

li(θ, φ) = −
k∑

j=1

E
z∼qθ

(
z|xji

) [
log pφ

(
xji|z

)]
+ KL (qθ (z|xi) ∥ p(z)) ,

(4)

where xji is the representation of data point xi in jth layer.
Although we use a LVAE as our compression network, we

do not directly use the low-dimensional representation of LVAE.



4 P. Lv, Y. Yu, Y. Fan et al. / Knowledge-Based Systems 196 (2020) 105753

Fig. 2. An overview on layer-constrained variational autoencoding kernel density estimation model.

We further split the encoder qθ (z|x) in LVAE into three steps. As
shown in Eqs. (5)–(7), Eq. (5) first generates a low-dimensional
representation w. Then Eq. (6) generates µ and σ , which describe
the mean and variance of the potential state distribution. Eq. (7)
samples from this distribution to obtain the potential representa-
tion z to reconstruct the original data. The above three formulas
together constitute the encoder in LVAE, thus the parameters θ

are shared.

w = fe(x, θ ), (5)

µ, σ = fr (w, θ ), (6)

z = fre(µ, σ , θ ). (7)

The general model uses z from Eq. (7) as the low-dimensional
representation, but we use w from Eq. (5) as the low-dimensional
representation. Since z is randomly sampled from the distribution
obtained by Eq. (6), which is effective to enhance the general-
ization ability of LVAE model, but is not conducive to our next
density estimation. w is the unique direct projection for the input
data, which is more suited to being used for density estimation
in the latent data space.

In addition to the low-dimensional representation of input
data, we also consider the reconstruction error of LVAE for next
anomaly detection. Therefore, the output of compression network
is as follows:

c = [w, r], (8)

r = [rec_euclidean, rec_cosine], (9)

where r represents reconstruction error features, which can be
multi-dimensional, considering multiple distance metrics such as
Euclidean distance and cosine similarity. LAKE uses relative Eu-
clidean distance and cosine similarity together as reconstruction
features r .

3.3. Probability density estimation model

In probability density estimation model, we use the learned
low-representation to model a probability density distribution of
input data. We denote the low-dimensional representations ob-
tained by Eq. (8) for the input data by c1, c2, . . . , cn. We next cal-
culate their probability density distribution through KDE model.

Following the kernel density estimation model, for the feeds
from compression network, the probability density distribution
function of data is as follows:

fh(s) =
1
n

n∑
i=1

Kh (s− ci) =
1
nh

n∑
i=1

K
(
s− ci
h

)
, (10)

where s is the variable, and K is the kernel (a non-negative
function) and h (h > 0) is a smoothing parameter called the
bandwidth. In this paper, we adopt Gaussian kernel function in
the KDE model.

3.4. Training process

This section mainly introduces the training process of pro-
posed LAKE. Algorithm 1 shows the training process for our
compression network and probability density estimation model.
The training samples are denoted by xi(i = 0, 1, 2, . . . , n).
Algorithm 1 LAKE training process

Input: Training dataset xi (x1, x2, ..., xn).
Output: LAKE model
1: θ , φ ← Encoder and decoder parameters
2: for e from 1 to epochs do ▷ Compression network training
3: for i from 1 to n do
4: wi = fe(xi, θ )
5: µi, σi = fr (wi, θ )
6: zi = fre(µi, σi, θ )
7: x̂i = p(zi, φ)
8: KLD = 1

2

∑n
i=1

(
1+ log

(
(σi)

2)
− (µi)

2
− (σi)

2)
9: BCE =

∑n
i=1(

∑k
j=1 binary_cross_entropy(x̂

j
i, x

j
i))

10: loss function = KLD + BCE
11: θ , φ ← update parameters using gradients of SGD
12: θ , φ fixed
13: for i from 1 to n do ▷ Probability density estimation training
14: wi = fe(xi, θ )
15: rec_euclideani = relative_euclidean_distance(xi, x̂i)
16: rec_cosinei = cosine_similarity(xi, x̂i)
17: ri = [rec_euclideani, rec_cosinei]
18: ci = [wi, ri]
19: fh(s) = 1

n

∑n
i=1 Kh (s− ci) = 1

nh

∑n
i=1 K

( s−ci
h

)
First, we initialize the parameters θ and φ of the encoder and

decoder. We denote the number of training rounds as epochs.
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Specifically, in each epoch, for each input point, line 4 gets the
low-dimensional representation from encoder; line 5 gets the
mean and variance of the data distribution; line 6 gets the low-
dimensional representation z; line 7 gets the decoder’s recon-
struction. KLD is the Kullback–Leibler divergence. Specifically, we
use a binary_cross_entropy loss function as the reconstruction
error for each pair of corresponding layers, and the sum of recon-
struction errors of all layer pairs in LVAE constitutes the Binary
Cross Entropy (BCE) loss (line 9). KLD and BCE together form the
loss function, and we use the Stochastic Gradient Descent (SGD)
to update the parameters θ and φ.

Our probability density estimation model is based on KDE
model. We first use a trained LVAE to get a low dimensional
representation ci of the training data xi (lines 13–18). Among
them, we calculate the relative Euclidean distance between the
input data x and the reconstruction x̂ in line 15 and the cosine
similarity between the input data x and the reconstruction x̂ in
line 16. Then, we get a probability density distribution function
fh(s) for simulating the distribution of training data in the latent
space, as shown in line 19.

Our model can capture the arbitrary density distribution of
training data through KDE model without tuning parameter.

3.5. Testing strategy

This section introduces the testing strategy for the proposed
LAKE model. As showed in Fig. 1, even though abnormal objects
are separated from normal data in low dimensional representa-
tion, some anomalies may form dense clusters due to their com-
mon anomalous characteristics preserved in the low-dimensional
representation. On the other hand, there are always some normal
objects that discretely distributed at the edges of the normal data
dense regions. These edge normal objects may have a relative
low density compared to the dense anomalies. Therefore, such
abnormal objects and edge normal objects cannot be effectively
detected and differentiated by the density estimation based on
global data. But fortunately, we learn a probability density distri-
bution of sampled training data in training LAKE model. For each
individual abnormal object, it can be easily distinguished from the
probability density distribution of training samples by estimating
its density value in this probability density distribution. This
is because: (1) The training set is used not only to train the
parameters of LVAE, but also to generate a probability density
distribution fh(s); (2) The density of each test sample is not
calculated based on the entire test data distribution, but based on
the trained probability density distribution; (3) The vast majority
of the training samples are normal samples, that is, the trained
probability density distribution of training samples approximates
the distribution of normal samples; (4) This probability density
distribution takes into account not only the latent representation
but also the reconstruction error features. The anomalous ob-
jects usually have a relatively large reconstruction error [6,21,37].
Therefore, when each test sample is independently mapped on
this probability density distribution, the edge normal objects are
closer to the distribution than the dense abnormal objects, that is,
the edge normal samples can instead obtain higher density values
in our probability density estimation model.

Algorithm 2 shows the pseudo-code of our testing strategy.
First, we extract the low-dimensional representation of test data
using the compression network (lines 1–6), and estimate the
KDE value for each low-dimensional representation cj using the
trained probability density distribution fh(s) of training samples
(lines 7–8). Next, a threshold thr is calculated based on the abnor-
mal ratio α and the sorted list of fh(c) values in ascending order
(lines 9). Here function sortthr () represents sorting all density
values and determines the density threshold thr according to the

abnormal ratio α. The test data points whose KDE values are
higher than the threshold are normal data, otherwise they are
abnormal data (lines 10–14).

Algorithm 2 LAKE testing process

Input: Testing dataset yj( j=1, 2, 3, ...,m), abnormal ratio α.
Output: Anomalies
1: for j from 1 to m do
2: wj = fe(yj, θ )
3: rec_euclideanj = relative_euclidean_distance(yj, ŷj)
4: rec_cosinej = cosine_similarity(yj, ŷj)
5: rj = [rec_euclideanj, rec_cosinej]
6: cj = [wj, rj]
7: for j from 1 to m do
8: f (cj) = fh(cj)
9: thr = sortthr (f (c), α)

10: for j from 1 to m do
11: if f (cj) < thr then
12: yj is an anomaly
13: else
14: yj is not an anomaly

4. Experiments

In this section, we use six public benchmark datasets to eval-
uate the effectiveness and robustness of our proposed model in
anomaly detection. The code of the baseline methods is available
at GitHub1 released by ALAD. The source code of our proposed
method is available at GitHub.2

4.1. Datasets

We use six well-known public benchmark datasets in the field
of anomaly detection: KDDCUP, Thyroid, Arrhythmia, KDDCUP-
Rev, SpamBase, and Cardiotocography, which are also used in [20,
21,37].

• KDDCUP: The KDDCUP 10% dataset from UCI Machine Learn-
ing Repository3 is a network intrusion dataset. We use
one-hot representation to encode them, and eventually ob-
tain a 118-dimensional dataset. As 20% of them are marked
as ‘‘normal’’ and meanwhile others are marked as ‘‘attack’’,
and ‘‘normal’’ samples constitute a small portion, therefore,
we treat ‘‘normal’’ samples as anomalies in our experiment.
• Thyroid: Thyroid is from the UCI Machine Learning Repos-

itory thyroid disease classification dataset, which contains
samples of 36 dimensions. There are 3 classes in origi-
nal dataset. As hyperfunction is a minority class, we treat
hyperfunction as anomaly class in our experiment.
• Arrhythmia: Arrhythmia dataset is also obtained from the

UCI Machine Learning Repository, which contains 274 at-
tributes. The smallest classes, including 3, 4, 5, 7, 8, 9, 14
and 15, are combined to form the anomaly class, and the
rest of the classes are combined to form the normal class.
• KDDCUP-Rev: This dataset is an abbreviated version ex-

tracted from KDDCUP. We retain all ‘‘normal’’ data in this
dataset, and randomly draw ‘‘attack’’ samples to keep the
anomaly ratio as 0.2. As ‘‘attack’’ data is in minority part,
we treat ‘‘attack’’ data as anomalies.

1 https://github.com/houssamzenati/Adversarially-Learned-Anomaly-
Detection.
2 https://github.com/1246170471/LAKE.
3 https://archive.ics.uci.edu/ml/.

https://github.com/houssamzenati/Adversarially-Learned-Anomaly-Detection
https://github.com/houssamzenati/Adversarially-Learned-Anomaly-Detection
https://github.com/1246170471/LAKE
https://archive.ics.uci.edu/ml/
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Table 1
Statistics of the public benchmark datasets.
Dataset #Dimensions #Instances Anomaly ratio (α)

KDDCUP 118 494,021 0.2
Thyroid 36 3772 0.025
Arrhythmia 274 432 0.15
KDDCUP-Rev 118 121,597 0.2
SpamBase 58 3485 0.2
Cardiotocography 22 2068 0.2

• SpamBase: SpamBase from UCI Machine Learning Reposi-
tory includes 3485 emails classified as spam or non-spam.
This dataset has 58 attributes. We treat spam as outliers. The
anomaly ratio is 0.2.
• Cardiotocography: Cardiotocography data is also from UCI

Machine Learning Repository and is related to heart dis-
eases. This dataset contains 22 attributes. It describes 3
classes: normal, suspect, and pathological. Normal patients
are treated as inliers and the remaining as outliers. The
anomaly ratio as 0.2.

The details of the datasets are shown in Table 1.

4.2. Baseline methods

We compare our method with the following traditional and
the state-of-the-art deep learning methods:

• OC-SVM [29]: One Class Support Vector Machines(OC-SVM)
is a classic kernel method for novelty detection that only
uses normal data to learn a decision boundary. We adopt
the widely used radial basis function (RBF) kernel. In our
experiments, we assume that the abnormal proportion is
known. We set the parameter ν to the anomaly proportion,
and set γ to 1/m, where m is the number of input features.
• DSEBM [37]: Deep Structured Energy Based Models (DSEBM)

is a deep learning method for anomaly detection, which
contains two decision criteria for performing anomaly de-
tection: the energy score (DSEBM-e) and the reconstruction
error (DSEBM-r).
• DAGMM [21]: Deep Autoencoding Gaussian Mixture Model

(DAGMM) is a state-of-the-art method for anomaly detec-
tion, which consists of two major components: a compres-
sion network and an estimation network. The compres-
sion network obtains low-dimensional representations, and
feeds the representations to the subsequent estimation net-
work to predicts their likelihood/energy in the framework
of GMM.
• AnoGAN [6]: AnoGAN is a GAN-based method for anomaly

detection. AnoGAN is trained with normal data, and uses
both reconstruction error and discrimination components
as the anomaly criterion. There are two approaches for the
anomaly score in the original paper and we choose the best
variant in our tasks.
• ALAD [20]: Adversarially Learned Anomaly Detection (ALAD)

is also a state-of-the-art method based on bi-directional
GANs, which derives adversarially learned features for the
anomaly detection task. ALAD uses reconstruction errors
based on the adversarially learned features to determine if
a data sample is anomalous.

In addition to the above baseline methods, we also perform
three variations of our model to demonstrate the advantages of
LAKE as the compression network.

• DAE-KDE: In this variation, we use a deep autoencoder
as compression network, and the KDE estimation model is
unchanged.

• AAE-KDE: This variation uses a multi-layer adversarial au-
toencoder as our compression network, and the KDE model
remains the same.
• VAE-KDE: VAE-KDE uses a standard variational autoencoder

as our compression network, and the KDE estimation model
is unchanged.

4.3. Experiment configuration

The network structure of LAKE used on each dataset is sum-
marized in Tables A.8–A.12 in the Appendix. And LAKE uses
relative Euclidean distance and cosine similarity together as re-
construction features r . The configurations of baselines used in
experiments follows their original configurations.

We follow the setting in [21,37] with completely clean training
data:

in each run, we take τ% of data by uniformly random sampling
for training with the rest (1-τ%) reserved for testing, and only
data samples from the normal data are used for training models.
Each experiment is conducted repeatedly 20 runs using indepen-
dent training data sampling, and the average results are reported.
Specifically, for our LAKE method and three variations, we set
τ = 10 in KDDCUP, τ = 80 in Thyroid, τ = 80 in Arrhythmia,
and τ = 10 in KDDCUP-Rev.

4.4. Evaluation metrics

We use average precision, recall, and F1 score to quantify the
results. The precision and recall are defined as follows: Precision =
|G|∩|R|
|R| and Recall = |G|∩|R|

|G| , where G denotes the set of ground

truth anomalies in the dataset, and R denotes the set of anomalies
reported by the methods. F1 score is defined as follows: F1 =
2∗Precision∗Recall
Precision+Recall . Based on the anomaly ratio α in Table 1, the
threshold can be determined to identify anomalous objects.

4.5. Effectiveness evaluation

First, we valuate the overall effectiveness of our proposed
model compared with all baseline methods on six benchmark
datasets. Table 2 shows the average precision, recall, and F1 score
with their standard deviations for LAKE and all baselines in differ-
ent datasets. For baselines, we follow the setting in [20] (i.e., 80%
of the whole official dataset for training) and [21] (i.e., 50% of
whole normal dataset for training).

We can see that LAKE significantly outperforms all baseline
methods in terms of average precision, recall, and F1 score on six
datasets. LAKE achieves 4.5% improvement in standard F1 score
compared to the state-of-the-art ALAD on the classical KDDCUP
dataset, reaching over 99% in all terms of precision, recall and
F1 score. In addition, LAKE significantly performs better than
the state-of-the-art DSEBM, DAGMM and ALAD methods by over
35.4% and 37.3% improvement in standard F1 score on Thyroid
and Arrhythmia, respectively. On SpamBase and Cardiotocogra-
phy, LAKE still surpass the second best DAGMM and OC-SVM
by 15.5% and 3.9% improvement in standard F1, respectively.
Moreover, it can also be seen from the standard deviations that
our proposed LAKE is also more stable than other methods. OC-
SVM does not achieve good results for the anomaly detection in
high-dimensional data. This is because the core idea of OC-SVM
is to find a boundary in high-dimensional space by using normal
data, but when there are too many attributes of data, irrelevant
redundant attributes may have a great influence on the result
of OC-SVM. Although DSEBM considers reconstruction error and
energy error, it ignores the latent representation, which may be
the main reason why our proposed model and DAGMM perform
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Table 2
Average precision, recall and F1 from LAKE and all baselines. For each metric, the best result is shown in bold.
Method KDDCUP Thyroid

Precision ± Std Recall ± Std F1 ± Std Precision ± Std Recall ± Std F1 ± Std

OC-SVM 0.7457 ± 0.0157 0.8523 ± 0.0177 0.7954 ± 0.0166 0.3639 ± 0.0131 0.4239 ± 0.0156 0.3887 ± 0.0142
DSEBM-r 0.8744 ± 0.0607 0.8414 ± 0.0428 0.8575 ± 0.0516 0.0400 ± 0.0049 0.0403 ± 0.0043 0.0403 ± 0.0047
DSEBM-e 0.2151 ± 0.0757 0.2180 ± 0.0756 0.2170 ± 0.0755 0.1319 ± 0.0037 0.1319 ± 0.0059 0.1319 ± 0.0048
DAGMM 0.9297 ± 0.0103 0.9442 ± 0.0112 0.9369 ± 0.0107 0.4766 ± 0.0171 0.4834 ± 0.0101 0.4782 ± 0.0133
AnoGAN 0.8786 ± 0.0370 0.8297 ± 0.0160 0.8865 ± 0.0115 0.0412 ± 0.0119 0.0430 ± 0.0128 0.0421 ± 0.0123
ALAD 0.9427 ± 0.0060 0.9577 ± 0.0062 0.9501 ± 0.0061 0.3196 ± 0.0063 0.3333 ± 0.0094 0.3263 ± 0.0055

DAE-KDE 0.9840 ± 0.0033 0.9655 ± 0.0108 0.9710 ± 0.0086 0.7934 ± 0.0027 0.7849 ± 0.0095 0.7891 ± 0.0068
AAE-KDE 0.9842 ± 0.0045 0.9697 ± 0.0098 0.9754 ± 0.0065 0.7501 ± 0.0026 0.7419 ± 0.0010 0.7459 ± 0.0010
VAE-KDE 0.9913 ± 0.0010 0.9912 ± 0.0085 0.9912 ± 0.0106 0.7548 ± 0.0110 0.7548 ± 0.0007 0.7548 ± 0.0090
LAKE 0.9985 ± 0.0002 0.9912 ± 0.0035 0.9948 ± 0.0010 0.8369 ± 0.0026 0.8279 ± 0.0010 0.8324 ± 0.0019

Method Arrhythmia KDDCUP-Rev

Precision ± Std Recall ± Std F1 ± Std Precision ± Std Recall ± Std F1 ± Std

OC-SVM 0.5397 ± 0.0058 0.4082 ± 0.0419 0.4581 ± 0.0040 0.7148 ± 0.0096 0.9940 ± 0.0126 0.8316 ± 0.0109
DSEBM-r 0.4286 ± 0.0263 0.5000 ± 0.0300 0.4615 ± 0.0278 0.2036 ± 0.0110 0.2036 ± 0.0109 0.2036 ± 0.0110
DSEBM-e 0.4643 ± 0.0149 0.4645 ± 0.0379 0.4643 ± 0.0211 0.2212 ± 0.0219 0.2213 ± 0.0226 0.2213 ± 0.0211
DAGMM 0.4909 ± 0.0475 0.5078 ± 0.0349 0.4983 ± 0.0520 0.9370 ± 0.0079 0.9390 ± 0.0089 0.9380 ± 0.0084
AnoGAN 0.4118 ± 0.0293 0.4375 ± 0.0121 0.4242 ± 0.0206 0.8422 ± 0.0182 0.8305 ± 0.0004 0.8363 ± 0.0250
ALAD 0.5000 ± 0.0181 0.5313 ± 0.0096 0.5152 ± 0.0276 0.9547 ± 0.0074 0.9678 ± 0.0075 0.9612 ± 0.0075

DAE-KDE 0.8461 ± 0.0059 0.8333 ± 0.0083 0.8396 ± 0.0067 0.9890 ± 0.0021 0.9889 ± 0.0072 0.9890 ± 0.0065
AAE-KDE 0.8553 ± 0.0034 0.8424 ± 0.0030 0.8488 ± 0.0002 0.9907 ± 0.0029 0.9906 ± 0.0101 0.9906 ± 0.0072
VAE-KDE 0.8461 ± 0.0060 0.8333 ± 0.0123 0.8396 ± 0.0091 0.9936 ± 0.0054 0.9812 ± 0.0006 0.9874 ± 0.0030
LAKE 0.8953 ± 0.0026 0.8818 ± 0.0078 0.8885 ± 0.0089 0.9914 ± 0.0023 0.9915 ± 0.0013 0.9914 ± 0.0005
Method SpamBase Cardiotocography

Precision ± Std Recall ± Std F1 ± Std Precision ± Std Recall ± Std F1 ± Std

OC-SVM 0.7440 ± 0.0395 0.7972 ± 0.0159 0.7694 ± 0.0288 0.7366 ± 0.0148 0.6848 ± 0.0278 0.7051 ± 0.0146
DSEBM-r 0.4296 ± 0.0247 0.3085 ± 0.0209 0.3574 ± 0.0215 0.5584 ± 0.0202 0.5467 ± 0.0217 0.5365 ± 0.0250
DSEBM-e 0.4356 ± 0.0112 0.3185 ± 0.0169 0.3679 ± 0.0124 0.5564 ± 0.0218 0.5367 ± 0.0282 0.5515 ± 0.0221
DAGMM 0.9435 ± 0.0344 0.7233 ± 0.0221 0.7970 ± 0.0291 0.5024 ± 0.0250 0.4905 ± 0.0245 0.4964 ± 0.0248
AnoGAN 0.4963 ± 0.0368 0.5313 ± 0.0344 0.5132 ± 0.0178 0.4446 ± 0.0334 0.4360 ± 0.0337 0.4412 ± 0.0431
ALAD 0.5344 ± 0.0250 0.5206 ± 0.0293 0.5274 ± 0.0240 0.5983 ± 0.0138 0.5841 ± 0.0135 0.5911 ± 0.0137

DAE-KDE 0.9311 ± 0.0058 0.9282 ± 0.0011 0.9230 ± 0.0011 0.7170 ± 0.0358 0.3185 ± 0.1256 0.4296 ± 0.1146
AAE-KDE 0.9376 ± 0.0074 0.9282 ± 0.0073 0.9329 ± 0.0074 0.6502 ± 0.1081 0.4247 ± 0.1066 0.5011 ± 0.0969
VAE-KDE 0.9437 ± 0.0087 0.9335 ± 0.0092 0.9384 ± 0.0093 0.6914 ± 0.0805 0.5582 ± 0.1429 0.6117 ± 0.1127
LAKE 0.9576 ± 0.0037 0.9480 ± 0.0036 0.9528 ± 0.0036 0.7483 ± 0.0110 0.7410 ± 0.0109 0.7446 ± 0.0109

better than DSEBM. The reasons why LAKE is better than DAGMM
may be attributed as: (1) LVAE is better than autoencoder in
learning low-dimensional representation preserving the distribu-
tion of original data due to the existence of a variational structure
and layer constraint; (2) LAKE adopts kernel density estimation
to model the probability density distribution of data instead of
Gaussian mixture model. KDE is superior to Gaussian mixture
model, because GMM is a parameter estimation that refers to the
process of using sample data to estimate the parameters of the
selected distribution, while KDE is a nonparametric estimation
that allows the functional form of a fit to data to be obtained
in the absence of any guidance or constraints from theory. Addi-
tionally, GMM also needs to manually select the number of mixed
Gaussian models, which is very tricky in the absence of domain
knowledge. For AnoGAN, it adopts adversarial autoencoder to
recover a latent representation for each input data, and uses
both reconstruction error and discrimination components as the
anomaly criterion, but AnoGAN does not make full use of the
low-dimensional representation. Although ALAD can simulate the
distribution of data well when the experimental data is large
enough, it also ignores the consideration of latent representation.
Another potential reason why our method is better than all base-
lines is that we adopt a novel probability density-aware strategy
that only estimates density value of each input data with respect
to the learned probability density distribution of normal training
samples. This strategy helps our method to effectively separate
densely distributed anomalies out in latent data space.

From Table 2, we also observe that LAKE outperforms its vari-
ations (i.e., DAE-KDE, AAE-KDE and VAE-KDE) on six datasets. In

particular, LAKE significantly performs better than the three vari-
ations on four small datasets (i.e., Thyroid, Arrhythmia, SpamBase
and Cardiotocography). This is because LVAE better preserves the
key information during data dimension reduction. So that LVAE
learns the distribution of data better in latent data space when
using very few training data compared to DAE, AAE and VAE. But
still, our variations are significantly better than all competitive
baselines in terms of precision, recall and F1 score.

4.6. Hypothesis testing

To further verify the superiority of our proposed method, we
use Welch’s t-test to statistically assess the proposed method
compared with baselines over 6 datasets. More specifically, we
use the code4 from SciPy.org for statistical testing.

To compare our proposed method with each baseline (one
vs. one), we evaluate the following null hypothesis H0 and the
alternative hypothesis H1 for each pair of methods:

H0 : A ≈ B,

H1 : A < B,

where B stands for the result of LAKE on a specific dataset, and
A denotes the result of a specific baseline on the corresponding
dataset. We calculate p-value for each test, and the hypothesis is
checked at p = 0.05 significance level. The statistical assessment

4 https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest_ind.
html.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest_ind.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest_ind.html
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Table 3
p-values of Welch’s t-test for precision.
Dataset OC-SVM DSEBM-r DSEBM-e DAGMM AnoGAN ALAD

KDDCUP 3.229e−12 2.816e−06 5.762e−16 4.766e−08 4.197e−06 9.073e−06
Thyroid 1.430e−12 7.901e−29 1.340e−22 9.334e−21 8.667e−25 8.399e−27
Arrhythmia 3.995e−16 8.030e−14 1.156e−12 2.526e−13 2.702e−17 1.132e−15
KDDCUP-Rev 8.913e−11 5.011e−14 3.435e−17 2.393e−10 4.773e−09 5.328e−08
SpamBase 7.251e−08 9.450e−17 5.318e−16 1.411e−02 1.812e−11 4.121e−15
Cardiotocography 2.806e−03 1.120e−14 9.638e−16 4.774e−14 5.367e−12 1.885e−14

Table 4
p-values of Welch’s t-test for recall.
Dataset OC-SVM DSEBM-r DSEBM-e DAGMM AnoGAN ALAD

KDDCUP 1.033e−10 1.295e−05 3.359e−16 2.330e−07 6.057e−10 2.151e−07
Thyroid 1.767e−12 6.015e−30 1.104e−25 1.753e−20 8.839e−25 3.376e−28
Arrhythmia 8.821e−18 5.183e−12 1.149e−14 2.973e−13 1.730e−16 3.739e−14
KDDCUP-Rev 5.301e−02 2.373e−14 5.596e−17 5.005e−10 6.475e−10 5.976e−07
SpamBase 1.405e−10 7.174e−21 2.719e−20 3.802e−09 3.707e−11 2.065e−14
Cardiotocography 2.537e−07 9.638e−12 1.896e−17 6.077e−14 3.830e−12 3.165e−14

results of precision, recall and F1 are shown in Tables 3, 4, and 5
respectively.

As shown in Tables 3, 4 and 5, Except for the recall of OC-
SVM on KDDCUP-Rev, all Welch’s t-test results of precision and
recall are significant at p = 0.05. More importantly, Welch’s t-test
results on the more comprehensive F1 score are all significant at
p = 0.05. Thus we can reject the null hypothesis H0 and accept
alternative Hypothesis H1. That is, our proposed LAKE performs
significantly better than all baselines.

In summary, this experiment confirms that the improvement
of our proposed method over the state-of-the-art methods in
detecting anomalies is statistically significant.

4.7. Performance w.r.t. training set

In this experiment, we mainly study the performance of our
method and baselines with respective to the number of training
set. We use τ% of the normal dataset as the training set for all
methods. Tables 6 and 7 show the average precision, recall, and
F1 score of LAKE and the competitive baselines on Arrhythmia and
KDDCUP datasets, respectively.

As we can see, with only 30% and 10% training data, LAKE
has already shown better performance than all baselines with
the best performance in terms of precision, recall and F1 score
on Arrhythmia and KDDCUP respectively. As the training data
increases, the performance of LAKE increases on both datasets,
especially on Arrhythmia LAKE achieves a significant improve-
ment. ALAD and AnoGAN basically keep stable in term of F1
score when performing on KDDCUP, and have slight fluctuations
when performing on Arrhythmia. This may be because ALAD
and AnoGAN mainly use reconstruction error as the anomaly
criterion, and as a consequence the results are influenced by the
degree to which the models fit to the training samples. From
Table 7, DSEBM-e that uses energy score as detection criterion
is not suitable for KDDCUP, as the data distribution in KDDCUP is
more complex than energy based models. The results of DSEBM-
r are similar to those of ALAD and AnoGAN, because it also
use reconstruction error as the criterion for anomaly detection.
Although DAGMM has increased performance as the number of
training set increases, LAKE is far superior to it, even using less
training data.

In summary, this experiment confirms that the proposed LAKE
can achieve better results with fewer training samples compared
to the state-of-the-art methods.

4.8. Robustness evaluation

In this experiment, we evaluate the robustness of LAKE com-
pared to the baselines on KDDCUP dataset. For LAKE, 10% of the
normal data is selected as the training set, and meanwhile we
mix c% of samples from the anomalous data into the training set.
In terms of ALAD, DSEBM and DAGMM, 50% of the normal data
is selected as the training set, while mixing c% of samples from
anomaly data into their training set.

Our LAKE uses a Gaussian kernel function in KDE model to
learn the probability density distribution, thus the bandwidth h
determines how many nearest neighbors in the trained KDE are
selected to estimate its density value for each test point. That is,
adjusting the bandwidth can effectively enhance the stability of
our method with respect to noise. This is because the larger the
bandwidth, the more neighbors each test point needs to estimate
its density in the trained KDE model. Even if the training set is
doped with a small amount of noise, each test sample requires
more nearest training objects to estimate its density value, and
thus the abnormal data is also easily detected.

Fig. 3 shows the experimental results of LAKE and the base-
line methods with different contaminated training data. From
the results, we can see that LAKE is also affected by the data
contamination when bandwidth h = 0.01. But we can increase
the robustness of our model by adjusting the bandwidth. It can be
seen that as the bandwidth increases, the robustness of our LAKE
model is getting better, with limited damaging of the perfor-
mance. LAKE is almost not affected by contaminated data when
bandwidth h ≥ 0.05. When the contamination ratio c% increases
from 1% to 5%, the performance of DAGMM declines, but the
impact on DSEBM-r and ALAD is not very significant. This may
be because the GMM model in DAGMM is more sensitive to noise
compared to the reconstruction error used in DSEBM-r and ALAD.
However, LAKE with a large bandwidth is still significantly better
than all baseline methods.

5. Conclusion

In this paper, we propose a layer-constrained variational au-
toencoding kernel density estimation model (LAKE) for anomaly
detection from high-dimensional data. LAKE mainly consists of
two parts: the compression network and the KDE model. The
compression network obtains a low-dimensional representation
while retaining the key features using a layer-constrained vari-
ational autoencoder. The KDE model takes the low-dimensional
representation and reconstruction error features as feeds, and
learns a probability density distribution of training samples. For
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Table 5
p-values of Welch’s t-test for F1 .
Dataset OC-SVM DSEBM-r DSEBM-e DAGMM AnoGAN ALAD

KDDCUP 1.042e−13 1.090e−05 1.764e−16 1.411e−07 3.060e−06 1.856e−07
Thyroid 7.901e−13 1.001e−30 5.814e−25 1.120e−21 1.212e−25 6.076e−28
Arrhythmia 1.547e−18 5.157e−12 2.383e−14 2.051e−11 5.168e−17 2.754e−14
KDDCUP-Rev 3.235e−12 1.247e−14 1.014e−17 6.296e−07 5.722e−10 1.046e−06
SpamBase 4.476e−08 2.009e−19 5.752e−16 4.900e−06 2.956e−11 9.938e−15
Cardiotocography 2.375e−04 2.318e−17 2.280e−17 2.399e−14 1.897e−12 1.644e−14

Table 6
Performance comparison w.r.t. training ratio on Arrhythmia.
Ratio τ% LAKE ALAD DAGMM

Precision Recall F1 Precision Recall F1 Precision Recall F1
30% 0.6046 0.5863 0.5953 0.4641 0.5250 0.4474 0.3750 0.4500 0.4091
40% 0.6651 0.6651 0.6651 0.4634 0.5278 0.4935 0.3902 0.4444 0.4156
50% 0.7138 0.7030 0.7083 0.5000 0.5312 0.5152 0.3824 0.4062 0.3939
60% 0.7890 0.7651 0.7769 0.4643 0.4643 0.4643 0.4643 0.4643 0.4643
70% 0.8484 0.8484 0.8484 0.3810 0.4000 0.3902 0.4286 0.4500 0.4390
80% 0.8953 0.8818 0.8885 0.3571 0.4167 0.3846 0.3571 0.4167 0.3846

Ratio τ% DSEBM-e DSEBM-r AnoGAN

Precision Recall F1 Precision Recall F1 Precision Recall F1
30% 0.4583 0.5500 0.5000 0.3542 0.4250 0.3864 0.2917 0.3500 0.3182
40% 0.4634 0.5278 0.4935 0.3902 0.4444 0.4156 0.3415 0.3889 0.3636
50% 0.5000 0.5312 0.5152 0.4118 0.4375 0.4242 0.3529 0.3750 0.3636
60% 0.4643 0.4643 0.4643 0.4286 0.4286 0.4286 0.4286 0.4286 0.4286
70% 0.4286 0.4500 0.4390 0.3810 0.4000 0.3902 0.4286 0.4500 0.4390
80% 0.4286 0.5000 0.4615 0.4286 0.5000 0.4615 0.3571 0.4167 0.3846

Table 7
Performance comparison w.r.t. training ratio on KDDCUP.
Ratio τ% LAKE ALAD DAGMM

Precision Recall F1 Precision Recall F1 Precision Recall F1
10% 0.9942 0.9873 0.9907 0.9576 0.9727 0.9651 0.9234 0.9382 0.9308
20% 0.9985 0.9913 0.9949 0.9554 0.9691 0.9622 0.9041 0.9171 0.9106
30% 0.9973 0.9932 0.9952 0.9513 0.9513 0.9513 0.9290 0.9437 0.9363
40% 0.9965 0.9945 0.9955 0.9466 0.9625 0.9545 0.9469 0.9628 0.9548
50% 0.9961 0.9952 0.9957 0.9513 0.9664 0.9588 0.9315 0.9464 0.9389
60% 0.9964 0.9956 0.9960 0.9502 0.9624 0.9563 0.9448 0.9570 0.9509

Ratio τ% DSEBM-e DSEBM-r AnoGAN

Precision Recall F1 Precision Recall F1 Precision Recall F1
10% 0.1121 0.1142 0.1131 0.8535 0.8233 0.8381 0.9166 0.8362 0.8667
20% 0.1322 0.1333 0.1332 0.8472 0.8166 0.8316 0.8590 0.8590 0.8590
30% 0.0830 0.0840 0.0830 0.8732 0.8403 0.8564 0.8344 0.8476 0.8409
40% 0.1311 0.1332 0.1321 0.8745 0.8422 0.8576 0.8343 0.8344 0.8344
50% 0.2151 0.2180 0.2170 0.8744 0.8414 0.8575 0.9472 0.8163 0.8630
60% 0.0401 0.0411 0.0410 0.8756 0.8399 0.8573 0.8496 0.8605 0.8550

Fig. 3. Anomaly detection results on contaminated training data on KDDCUP.

each test data, its density value is estimated by the trained
KDE model of training samples, and the objects with the lowest
KDE values are reported as anomalies. Our experimental results

on public benchmark datasets show that the proposed LAKE is
significantly better than the state-of-the-art methods by up to
37% improvement on the standard F1 score.
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Table A.8
LAKE architecture and hyperparameters on KDDCUP and KDDCUP-Rev.
Operation Units Activation function

Encoder
Dense (118,90) Tanh
Dense (90,60) Tanh
Dense (60,25) Tanh

mu (25,20) None
var (25,20) None

Decoder
Dense (20,25) Tanh
Dense (25,60) Tanh
Dense (60,90) Tanh
Dense (90,118) Sigmoid

Optimizer Adam(learning_rate = 0.00001)
Batch size 1000
Epochs 1000
Bandwidth 0.001

Table A.9
LAKE architecture and hyperparameters on Arrhythmia.
Operation Units Activation function

Encoder
Dense (274,130) Tanh
Dense (130,60) Tanh
Dense (60,25) Tanh
Dense (25,20) Tanh

mu (20,10) None
var (20,10) None

Decoder
Dense (10,20) Tanh
Dense (20,25) Tanh
Dense (25,60) Tanh
Dense (60,130) Tanh
Dense (130,274) Sigmoid

Optimizer Adam(learning_rate = 0.00001)
Batch size 200
Epochs 1000
Bandwidth 0.001

In future work, we plan to investigate the effective semi-
supervised anomaly detection method based on deep autoen-
coder variations in high-dimensional data. We also plan to ex-
plore the generalized autoencoder-based model for unsupervised
anomaly detection in some domains.
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Appendix. LAKE Experimental Details

See Tables A.8–A.12.

Table A.10
LAKE architecture and hyperparameters on Thyroid.
Operation Units Activation function

Encoder
Dense (36,20) Tanh
Dense (20,11) Tanh

mu (11,10) None
var (11,10) None

Decoder
Dense (10,11) Tanh
Dense (11,20) Tanh
Dense (20,36) Sigmoid

Optimizer Adam(learning_rate = 0.00001)
Batch size 200
Epochs 1000
Bandwidth 0.001

Table A.11
LAKE Architecture and hyperparameters on SpamBase.
Operation Units Activation function

Encoder
Dense (58,45) Tanh
Dense (45,35) Tanh

mu (35,30) None
var (35,30) None

Decoder
Dense (30,35) Tanh
Dense (35,45) Tanh
Dense (45,58) Sigmoid

Optimizer Adam(learning_rate = 0.00001)
Batch size 200
Epochs 1000
Bandwidth 0.001

Table A.12
LAKE architecture and hyperparameters on Cardiotocography.
Operation Units Activation function

Encoder
Dense (22,20) Tanh
Dense (20,15) Tanh

mu (15,15) None
var (15,15) None

Decoder
Dense (15,15) Tanh
Dense (15,20) Tanh
Dense (20,22) Sigmoid

Optimizer Adam(learning_rate = 0.00001)
Batch size 200
Epochs 1000
Bandwidth 0.001
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