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Abstract—Speech emotion recognition has recently attracted
much interest due to the widespread of multimedia data. It
generally involves two basic problems: feature extraction and
emotion classification. Most previous algorithms just focus on
solving one of these two problems. In this paper, we aim to
deal with these two problems in a joint learning framework, and
present a novel regression algorithm, namely, robust discrimina-
tive sparse regression (RDSR). In RDSR, we propose a sparse
regression algorithm to make our model robust to outliers and
noises, and introduce a feature selection regularization constraint
simultaneously to select the most discriminative and relevant
features. In addition, to well predict the labels, we exploit the local
and global consistency over labels, and incorporate it into the
proposed framework. To solve the objective function of RDSR,
we design an efficient alternative optimization algorithm. Finally,
experimental results on several public emotion datasets verify the
effectiveness and the superiority of our proposed method.

Index Terms—Regression analysis, semi-supervised learning,
feature selection, graph Laplacian, speech emotion recognition.

I. INTRODUCTION

AUTOMATIC emotion recognition is an important re-
search field in the area of speech signal processing.

It aims at automatically recognizing human emotions from
speech signals, and has a wide range of practical applications,
e.g., human-computer interaction (HCI), depression and sui-
cide risk assessment, customer satisfaction assessment in call
center services [1], [2], [3].

Speech emotion recognition can be formulated as a classic
pattern recognition task, which involves two basic problems:
feature extraction versus emotion classification. Feature ex-
tration aims to extract useful features from speech signals.
During the past decades, different types of speech features,
have been presented and proven useful for emotion recognition
[1], [4], [5]. Overall, the acoustic features can be roughly
categorized into two types, i.e., low-level features versus high-
level features. The first category refers to the features extracted
using time/frequency analysis algorithms, e.g., F0, spectral
features, log energy, voice quality, Teager energy operator
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(TEO), spectral frequency bands of speech formants [4]. The
latter one refers to the high-level feature representations which
are learned from low-level data using deep learning techniques
[6]. One of current research directions focuses on utilizing the
combination of different features to obtain a high-dimensional
feature set [7], [8]. However, it usually is not good for emotion
classification due to the curse of dimensionality and feature
redundancy [9], [10]. High dimensionality may also increase
the complexity of time and space for subsequent analyzing
task. A common strategy to solve this issue is dimensionality
reduction. Feature selection, which is designed to select a
feature subset from the original high-dimensional feature set, is
an efficient technique for dimensionality reduction. Different
from other dimensionality reduction algorithms, e.g., princi-
pal component analysis (PCA), linear discriminant analysis
(LDA), locality preserving projection (LPP) [11], [9], feature
selection just selects a discriminative or representative subset
of the original feature set, and does not alter its original repre-
sentation [10], [12]. In speech emotion recognition, different
types of features contribute differently [13]. Thus, feature
selection can offer better understanding of the contributions
of these different features to speech emotion recognition.

Emotion classification is also a critical step for speech
emotion recognition. During the last decades, a variety of
emotion classification methods, e.g., support vector machine
(SVM) [14], Gaussian mixture model (GMM) [15], hidden
Markov model (HMM) [16], artificial neural network (ANN)
[17], extreme learning machine (ELM) [18], [19], decision
tree [19], cooperative learning [20], multiview learning [21],
sparse representation [22], and some combinations of these
algorithms [1], have been successfully presented. Recently,
deep learning techniques have shown extraordinary advantages
in speech recognition and many visual classification tasks [23],
[24], and also have been applied to speech emotion recognition
[25], [26], [6], [27]. However, in reality, they are carried out on
the basis of a large number of labeled data, and are not fully
applicable for practical environments of small-scale and small
samples [28]. Therefore, the study of emotion classification
based on traditional machine learning methods, e.g., regression
based algorithms, still occupies an important position.

Linear regression based classification has been widely used
in supervised learning tasks, e.g., pattern classification and
recognition, and has also shown its advantage in process-
ing data with high dimensionality, such as object and face
recognition [29], [30]. In [31], [32], Ye and Nie et al. have
discussed this property, respectively, and have found that when
the dimensionality of data is high and the size of samples
is small, the true label matrix is constantly embedded into a
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lower representation of data. The last few years have witnessed
the emergence of regression based approaches, which have
been proven very efficient for speech emotion recognition [33],
[34], [35], [36]. In addition, when high dimensional features
are directly used for the classification tasks, the unimpor-
tant features are typically included, resulting in performance
degradation as well as computational complexity. Therefore, it
is necessary to eliminate these unimportant features. Feature
selection has been proven to be an efficient tool to address this
problem. By using feature selection, the discriminating power
of the selected features often outperforms that of the extracted
features using conventional subspace learning algorithms, e.g.
PCA, LDA and LPP [37].

Motivated by recent progress in regression analysis based
classification, feature selection and manifold learning [29],
[38], [10], [39], in this work, we present a novel method,
called robust discriminative sparse regression (RDSR), which
explicitly considers robust regression, feature selection, and
structural consistency over labels simultaneously. To make
our algorithm robust to noises and outliers, we utilize both
labeled and unlabeled data, and introduce a `2,1−norm on
the regression loss function. To select discriminative and
relevant features, we perform feature selection by imposing
a sparse constraint on the regression matrix. To preserve more
discriminative information, we further exploit the structure
consistency over labels together.

Finally, we summarize the key contributions of this work in
three-folds as follows:
• First, we propose to model the relationship between

emotion features and corresponding labels via RDSR.
we devise a robust regression algorithm by elegantly
performing robust regression and feature selection simul-
taneously, which is robust to noise and outlier by using
the `2,1−norm. To the best of our best knowledge, RDSR
is the first regression framework which explores feature
selection and label consistency simultaneously to achieve
the desirable learning goal.

• Second, we consider the local and global consistency over
labels. By preserving these structural consistencies, our
model can preserve more discriminating power.

• Finally, we conduct speech emotion recognition experi-
ments on three widely used speech emotion datasets in-
cluding EMO-DB, eNTERFACE, and BAUM−1s, where
the results clearly demonstrate the effectiveness of our
method.

The rest of this paper is organized as follows: In Section
II, we briefly review the related work and highlight the dif-
ferences. Section III is dedicated to introducing our proposed
robust discriminative sparse regression (RDSR) algorithm for
speech emotion recognition. Section IV presents experimental
results and comparisons using three real-world datasets. Fi-
nally, we provide some concluding remarks and suggestions
for future work in Section V.

II. RELATED WORK

In this section, we briefly discuss the previous works, i.e.,
regression methods and feature selection, and also highlight
the differences between our work and the existing ones.

A. Regression methods

Regression analysis is a widely used statistical analysis
technique [40], and has become a popular tool for many
research areas [41], including machine learning [42], [43],
[44], computer vision [29], emotion recognition [45], [33],
speaker recognition [46].

In [29], Nassem et al. present a linear regression based
classification algorithm for face recognition, in which the least-
squares regression algorithm is used to the regression coeffi-
cients, and then the decision is made by using the minimum
distance between the projected vector and the original vector.
In [45], Yang et al. apply the linear regression algorithm to
detect music emotion variations, and find it exhibits promising
prediction accuracy. In [43], Wen et al. present a novel
discriminative least square regression algorithm for multi-class
problem. By introducing the inter-class sparsity, it can greatly
enlarge the inter-class margin and simultaneously reduce the
intra-class margin, and thus obtains a better performance. To
achieve the goal of semi-supervised classification, Xiang et
al. [44] present a local spline regression algorithm, in which
the splines developed in Sobolev space is used to map the
data points to the class labels. In [33], Zheng et al. propose a
incomplete sparse least squares regression (ISLSR) model, for
speech emotion recognition, where both labeled and unlabeled
data are utilized to enhance the compatibility of the model.

The main limitation of most previous regression algorithms
is that they neglect the structural information of labels or do
not simultaneously consider feature selection. In reality, it is
important to take into account these complementary properties
together. Different from the previous regression algorithms,
We propose a novel regression algorithm, referred to as RDSR,
which considers feature selection and structural consistency
over labels together, to achieves more effective and robust
regression.

B. Feature selection

Feature selection is one of the most important dimension-
ality reduction methods. It aims at removing the redundant
features, and selecting a subset of features from the high-
dimensional feature set [10], [47]. According to design strate-
gies, feature selection methods can be roughly categorized
into three groups, i.e, filter methods, wrapper methods and
embedded methods [48].

The filter methods first analyze the general characteristics
of data, and then evaluate and select the features without
involving any learning algorithms. For example, variance and
Fisher score might be the two of the most widely used
criterias for filter methods due to their good performance
[49]. In reality, the filter methods can overcome the overfitting
problems to some extent, but may fail to select the most
relevant features [50].

The wrapper methods score the features using the predefined
learning algorithms [51]. For example, in [52], Maldonado
et al. present to select the relevant features according to the
performance of SVM classifier. In principal, the wrapper meth-
ods can find the most useful features, and often outperform

Authorized licensed use limited to: Ocean University of China. Downloaded on August 20,2020 at 11:01:19 UTC from IEEE Xplore.  Restrictions apply. 



2379-8920 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2020.2990928, IEEE
Transactions on Cognitive and Developmental Systems

SUBMITTED TO IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS 3

the filter methods. However, they are prone to the overfitting
problem, and have high computation cost.

The embedded methods combine feature selection and the
learning algorithms together [53]. Recently, the embedded
methods have caught an increasing attention. For example,
Wang et al. [54] embed feature selection into a clustering
algorithm. In [55], Weston et al. formulate feature selection
and pattern classification objectives in a single optimization
function. The embedded methods are similar to the wrapper
methods, but have less computational cost and are less prone
to overfitting.

In practical situations, it is hard to say that after performing
feature selection, the selected feature subset is the most
suitable one for speech emotion recognition. In light of this,
it will benefit from devising a model for incorporating fea-
ture selection and emotion classification in a unified fashion.
Therefore, in this paper, we present the RDSR method, which
is a unified framework of regression analysis, feature selection
and label consistency.

III. THE PROPOSED RDSR FRAMEWORK

In this section, we present the details of the proposed robust
discriminative sparse regression (RDSR) method. First, the
sparse linear regression function is developed to predict the
mappings between the feature space and the label space. Sec-
ond, the local and global consistency over labels are learned
to make the model be more discriminative to predict the
labels. Finally, the overall function of RDSR and optimization
algorithm are given.

A. Preliminary
We begin with a brief introduction of some notations used

here. Throughout this paper, we use the lowercase characters
to denote the vectors, and uppercase characters to denote the
matrices. For matrix A ∈ Rn×m, its i−th row, j−th column
are denoted as ai and aj , respectively. The Frobenius norm of
A is denoted as

‖A‖F =
√

Σni=1‖ai‖22 = Tr(ATA), (1)

where Tr(·) demonstrates the trace operation, the superscript
T denotes the transposition of a matrix.

And the `2,1−norm of A is defined as

‖A‖2,1 = Σni=1‖ai‖2 = Tr(ATDA), (2)

where D = [Dii] ∈ Rn×n is a diagonal matrix with Dii =
1

2‖ai‖2 . Note that in practical situations, ‖ai‖2 can be zero in
theory. According to [56], here we define Dii = 1

2
√
‖ai‖22+ε

,

where ε is a smoothing term with a small value.

B. Problem formulation
Let Xl = [x1, x2, . . . , xm] ∈ RN×m denote a speech

feature matrix, in which xi ∈ RN is the feature vector of
the i−th sample, and Yl = [y1, y2, . . . , ym]T ∈ Rm×c is the
corresponding label matrix. Each column of Yl indicates a
labeling configuration as follows:

yij =

{
1 if xi belongs to the j−th class;
0 otherwise. (3)

In addition, we introduce a predicted label matrix Fl =
[f1, f2, . . . , fm]T ∈ Rm×c, whose labels are unknown. Each
column of Fl is the predicted label vector of xi. We assume
that there exists a linear mapping between the feature space
and label space, i.e.,

pj(xi) = wTj xi. (4)

Denoting W = [w1, w2, . . . , wc], we can obtain

p(Xl) = WTXl. (5)

As is known to all, least squares regression is one of the most
popular methods for classification. However, it is very sensitive
to outliers and noises [57]. To solve this problem, first, we
introduce the `2,1−norm on the loss function, which is robust
to outliers and noises [57], [58]. Second, we consider both
labeled and unlabeled data together to train the model. There-
fore, suppose that Xa ∈ RN×n is the unlabeled feature matrix,
and Fa ∈ Rn×c is the predicted label matrix accordingly. The
objective function is written as

min
W,F
‖F −XTW ||2,1, (6)

where F =
[
Fl

Fa

]
and X = [Xl, Xa].

In real-world applications, the emotion features are usually
high dimensional and contain redundant features for regression
analysis. Thus, it is necessary to select the discriminating
and informative features so that the negative influence of the
redundant features can be effectively eliminated. To overcome
this problem, we introduce the `2,1−norm based feature selec-
tion meanwhile due to its efficacy in recent works [56], [57],
where the `2,1−norm is imposed on the regression matrix W .
Therefore, we can obtain the following objective function:

min
W,F
‖F −XTW ||2,1 + λ‖W‖2,1, (7)

where λ ≥ 0 is a regularization parameter.
To better predict the emotion labels, we take into account

the structural consistency of labels, i.e., local and global
consistency over labels [59], [60]. That is, on one hand, the
labels should be locally consistent, which means the labels
should not change too much between nearby points. On the
other hand, the labels are supposed to be globally consistent,
which means the predicted labels should not change too much
from the groundtruth labels. The two types of label consistency
are defined as follows:

1) The local label consistency:
Recent studies in spectral theory [61] and manifold
learning theory [62] demonstrate that the nearby data
share the similar geometric structure. In this paper, first,
we construct a k−nearest neighbor graph G = [Gij ]
to encode the geometric information in the labels [39],
where each vertex corresponds to a label vector. There
are many choices to define the weight matrix G. For
simplification and efficiency, as in [39], [63], we use
the commonly used 0 − 1 weighting strategy, which is
defined as follows:

Gij =

{
1 if fj ∈ Np(fi) or fi ∈ Np(fj)
0 otherwise (8)
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where Np(fi) denotes the p nearest neighbors of fi.
Then we use the following term to measure the local
consistency:

min
F

Tr(FTLF ), (9)

where L = B −G is known as graph Laplacian matrix
[61], B = [Bjj ] is a diagonal matrix whose entries are
the column sums of G as Bjj =

∑
iGij .

2) The global label consistency:
To ensure the well prediction of labels, it is reasonable
to assume that the predicted labels are consistent with
the groundtruth labels. Here we use the following term
to measure this global consistency:

min
F

Tr
(
(F − Y )TU(F − Y )

)
, (10)

where U is a diagonal matrix, whose element Uii is a
large constant if xi is labeled and Uii = 0 otherwise.

By incorporating the regularization terms (9) and (10)
into (7), the proposed robust discriminative sparse regression
(RDSR) is formulated, and the objective function can finally
be written as:

min
W,F
‖F −XTW ||2,1 + λ‖W‖2,1 + αTr(FTLF )

+βTr
(
(F − Y )TU(F − Y )

)
,

s.t. F � 0.

(11)

where α and β are two trade-off parameters controlling the
relative contribution of the corresponding terms, and F � 0
denotes all entries of F are non-negative.

In (11), the first regression term ‖F −XTW‖2,1 is robust
to noises and outliers, the second regularization term ‖W‖2,1
guarantees W is sparse in rows, which can select the most
relevant features to predict the labels, and the third and the
final terms are the label consistency regularizer for preserving
the local and global consistency over labels, which can make
the model have more discriminative power.

C. Optimization algorithm

The objective function in Eq. (11) involves the `2,1−norm,
which is non-smooth and cannnot have a closed-form solution
[57]. Hence, it is hard to directly optimize. Consequently, we
put forward an iterative optimization algorithm. To facilitate
the optimization, we rewrite Eq. (11) as minimizing the
equation problem as follows:

O = ‖F −XTW‖2,1 + λ‖W‖2,1 + αTr(FTLF )

+βTr
(
(F − Y )TU(F − Y )

)
,

s.t. F � 0.

,

(12)
The whole alternate procedure of the proposed RDSR is

listed as follows:
Fix F Update W
Given fixed F , we solve the regression matrix W , and Eq.

(12) reduces to the following sub-problem:

O = ‖F −XTW‖2,1 + λ‖W‖2,1 (13)

According to [56], [64], solving (13) is equivalent to solving

O = Tr
(
(F −XTW )TP (F −XTW )

)
+ λTr(WTQW ),

(14)
where P = [Pii] ∈ R(m+n)×(m+n) is a diagonal matrix with

Pii =
1

2
√
‖vi‖22 + ε

(15)

in which vi is the i−th row of V , where V = F − XTW ,
and Q = [Qii] ∈ RN×N is also a diagonal matrix with

Qii =
1

2
√
‖wi‖22 + ε

(16)

in which wi is the i−th row of W .
Note that P and Q are unknown and depend on W . An

iterative algorithm is introduced to solve problem (14). With
fixed W , P and Q are obtained by Eqs. (15) and (16),
respectively. And with fixed P and Q, W is obtained using Eq.
(14). Taking the derivative O with respect to W , and setting
the derivative to zero, we have

XP (XTW − F ) + λQW = 0

⇒ (XPXT + λQ)W = XPF

⇒ W = S−1XPF,

(17)

where S = XPXT + λQ.
Fix W Update F
Given fixed W , we compute the label matrix F , and reduce

Eq. (12) to the following sub-problem:

O = ‖F −XTW‖2,1 + αTr(FTLF )

+βTr
(
(F − Y )TU(F − Y )

)
,

(18)

Then we substitute the expression for W in Eq. (17) into Eq.
(18), and can obtain

min
F

Tr
(
(F −XTW )TP (F −XTW )

)
+ αTr(FTLF )

+βTr
(
(F − Y )TU(F − Y )

)
s.t. F � 0,

(19)
Let φ = [φij ] is a Lagrange multiplier matrix, the Lagrange
function of Eq. (19) is

Tr
(
(F −XTW )TP (F −XTW )

)
+ αTr(FTLF )

+βTr
(
(F − Y )TU(F − Y )

)
+ Tr(φFT ),

(20)
where θ is a regularization parameter to control the orthog-
onal condition. By using the Karush−Kuhn−Tucker (KKT)
condition φijFij = 0 [9], we get the following equation for
Fij :

P (F −XTW ) + αLF + βU(F − Y ) + φ = 0 (21)

This equation will lead to the following updating rules:

Fij ←− Fij
(PXTW + βUY )ij

(PF + αLF + βUF )ij
(22)
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Algorithm 1 RDSR: Robust discriminative sparse regression
algorithm
Input:

The feature matrix Xl, Xa and label matrix Yl;
The parameters λ, α and β.

Output:
The regression matrix W .

a). Construct the p nearest neighbor graph G;
b). Initialize the weight matrix U ;
repeat

1. W − step: Fix F and update W using Eq. (17);
2. F − step: Fix W and update F using Eq. (22);

until Converges.

Since the problem in Eq. (11) can be divided into two
sub-problems, and each sub-problem is convex w.r.t. one
variable, we can solve the sub-problems alternately to obtain
a optimal solution, and finally the objective problem of our
proposed model can find a local minima [57], [65]. The
detailed algorithmic procedure of RDSR is summarized in
Algorithm 1. Note that the convergence criterion used in our
experiments is that the maximum number of iterations is 20
or |Ot−1 −Ot|/|Ot−1| ≤ 0.001, where Ot is the value of the
objective function in the t−th operation.

TABLE I: Statistics of the datasets.

Datasets EMO-DB eNTERFACE BAUM−1s

Language German English Turkish

Size 494 1170 1222

Classes Seven Six Eight

Modal Audio Audio-visual Audio-visual

IV. EXPERIMENTS

In this section, we evaluate the RDSR method for speech
emotion recognition on three real-world datasets. The follow-
ings describe the detail of experiments and results.

A. Data preparation

We conduct experiments on three public emotion datasets,
i.e., EMO-DB1, eNTERFACE2 and BAUM−1s3. The impor-
tant statistics of these datasets are summarized in Table I.
• The first dataset is EMO-DB [66], which is an open action

speech emotion dataset. It contains seven emotion cate-
gories: anger, boredom, disgust, fear, happiness, neutral
and sadness. Ten professional actors (five mal and five
female) are asked to speak ten daily spoken sentences in
German. Finally, 494 speech utterances are collected.

• The second dataset is eNTERFACE [67], which is a pub-
lic audio-visual emotion dataset. It consists of six basic
emotions, i.e., anger, disgust, fear, happiness, sadness

1http://emodb.bilderbar.info/docu
2http://enterface.net/enterface05/main.php?frame=emotion
3http://baum1.bahcesehir.edu.tr

and surprise. 42 subjects from 14 different nationalities
are asked to act these emotions with the pre-defined
content in English. Overall, the eNTERFACE contains
1170 recordings.

• The third dataset is BAUM−1s [68], which is another
popular audio-visual emotion dataset. It covers eight emo-
tions: anger, boredom, contempt, disgust, fear, happiness,
sadness and surprise. 31 Turkish subjects (17 female and
14 male) are employed to simulate these emotions, and
each emotional utterance is labeled by five annotators
using a majority voting strategy. Finally, 1222 videos are
recorded.

It should be noted that, as done in [69], [6], in this work,
we aim to recognize six basic emotions, i.e., anger, disgust,
fear, happiness, sadness and surprise. Thus, we use total 337
utterances in EMO-DB, 1170 utterances in eNTERFACE and
512 utterances in BAUM−1s for experiments.

B. Experimental setting

For acoustic features, we use the open source openSMILE
toolkit [70] as the feature extractor. We use the standard feature
set in the Computational Paralinguistics ChallengE (ComParE)
of INTERSPEECH 2013 to 2018 [8]. This feature set consists
of 65 low level descriptors (LLDs), e.g., MFCC, F0, energy,
loudness. 54 statistical functions are applied to 59 LLDs, while
46 statistical functionals are applied to the detla of these 59
LLDs. 39 statistical functionals are employed to apply to the
other six LLDs and the corresponding delta values. Moreover,
five global temporal statistics are also included into the feature
set. Thus, the total feature vector per utterance contains 6373
attributes. In our experiments, we use all these attributes. We
concatenate these attributes into a 6373-dimensional feature
vector and then normalize these feature vectors.

C. Baseline methods

We compare our proposed RDSR with state-of-the-art meth-
ods for speech emotion recognition as shown below:
• Support vector machine (SVM) [71] + feature selection

(FS)
• 1-nearest neighbors (NN) [9] + FS
• Sparse representation classifier (SRC) [72] + FS
• Incomplete sparse least square regression (ISLSR) [33]
• Our proposed RDSR without considering label consis-

tency (DSR)
• Deep convolutional neural networks (DCNN) [73]
• Deep convolutional neural networks with a discriminant

temporal pyramid matching strategy (DCNN-DTPM) [6]
Specifically, all SVM, NN and SRC algorithms are performed
with a generalized Fisher score [49] based feature selection
together, and a linear kernel SVM is adopted due to the
benefit of less parameters and fast computations [71]. DCNN
and DCNN-DTPM are two popular deep learning methods
for speech emotion recognition, in which three channels of
log Mel-spectrograms are used as the input [6]. In particular,
ISLSR is the most closely related method to RDSR, while
RDSR differs from ISLSR by introducing the `2,1−norm
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TABLE II: The recognition performance on EMO-DB.

Methods
Recognition rates (%)

Anger Disgust Fear Happiness Sadness Average

NN+FS 67.18 70.34 71.33 69.54 71.99 73.55

SVM+FS 73.55 80.17 81.31 79.95 80.20 80.69

SRC+FS 70.62 78.83 80.22 78.96 78.13 79.82

ISLSR 82.06 84.89 85.76 87.24 87.03 84.85

DSR 82.31 85.01 85.69 87.44 87.23 84.98

DCNN 82.19 83.85 85.31 87.00 87.21 84.33

DCNN-DTPM 83.15 86.01 87.62 87.32 87.59 86.17

RDSR 83.26 85.12 87.60 87.55 87.96 86.19

TABLE III: The recognition performance on eNTERFACE.

Methods
Recognition rates (%)

Anger Disgust Fear Happiness Sadness Surprise Average

NN+FS 72.53 48.12 46.86 42.35 67.15 43.11 53.06

SVM+FS 81.13 58.52 56.98 62.78 64.38 57.64 63.49

SRC+FS 76.01 61.32 57.86 53.13 66.90 50.68 61.23

ISLSR 89.99 59.68 61.02 71.22 68.11 65.72 69.36

DSR 90.06 59.73 60.87 71.96 67.84 65.97 69.65

DCNN 89.93 59.79 85.31 60.92 67.65 65.78 69.94

DCNN-DTPM 90.35 60.10 61.06 72.18 68.96 66.24 71.35

RDSR 91.28 59.78 61.33 72.03 68.92 66.43 71.28

TABLE IV: The recognition performance on BAUM-1s.

Methods
Recognition rates (%)

Anger Disgust Fear Happiness Sadness Surprise Average

NN+FS 23.35 22.10 10.32 39.57 29.86 17.59 31.66

SVM+FS 27.14 24.98 13.21 44.63 33.98 19.31 37.12

SRC+FS 25.92 24.23 11.39 42.88 33.75 18.96 35.96

ISLSR 31.16 29.90 13.96 48.93 38.69 22.98 42.17

DSR 31.22 29.86 14.01 48.56 39.28 23.51 42.24

DCNN 31.95 30.76 14.99 49.13 41.02 23.26 43.09

DCNN-DTPM 32.10 30.86 15.33 49.15 41.16 23.81 43.28

RDSR 31.98 30.87 14.32 49.15 41.08 23.92 43.15
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Fig. 1: Confusion matrices of our proposed method under different datasets: (a). the confusion matrix of EMO-DB; (b). the
confusion matrix of eNTERFACE; (c). the confusion matrix of BAUM-1s.

sparsity on the loss function and taking into account the label
consistency. It should also be noted that DSR is a special case
of RDSR with α = β = 0.

D. Experimental results

In our experiments, we randomly select 50 percent of
samples as the training set, 25 percent of samples as the testing
set, and the rest as the development set. It should be noted that
the training set is labeled, and the testing and development sets
are unlabeled. When comparing with the baseline methods, we
set the following parameters λ = 1, α = 100 and β = 100, by
searching λ, α, β ∈ {0.001, 0.01, 0.1, 1, 10, 100, 1000}. The
parameter p is set to 5 in the experiment. The recognition
accuracies of RDSR and the seven baseline methods are
illustrated in Tables II, III and IV. From these tables, we can
make the following observations.

RDSR achieves much better results than the five traditional
baseline algorithms with statistical significance. The average
recognition rates of RDSR are 86.19%, 71.28% and 43.15%,
respectively. Since these results are obtained from different
types of public emotion datasets. It can convincingly verify
that RDSR is efficient for speech emotion recognition.

Secondly, we notice that DSR performs better than ISLSR,
which is a state-of-the-art regression based method for speech
emotion recognition. A major limitation of ISLSR is that it
uses a `2−norm minimization the on loss function, which is
sensitive to the outliers and noises [57], and DSR avoids this
limitation and obtains better recognition results.

Thirdly, we see that all methods perform well on EMO-DB
and eNTERFACE datasets, but poorly on BAUM-1s dataset.
Note that in BAUM-1s the expressions are spontaneous while
in the other two datasets the expressions are acted. This

demonstrates that the spontaneous emotions are more difficult
to be recognized compared to the acted emotions.

Fourthly, RDSR significantly outperforms DSR, which does
not consider the local and global consistency over labels.
This validates that the label structural information is very
important for emotion label prediction. In addition, we can
find that the fear expression in EMO-DB dataset obtains the
highest performance gain. This might be attributed to that, the
fear expression in EMO-DB dataset is more sensitive to the
label structural information compared with other expressions
to some extent.

Lastly, note that in our experiments, we have also compared
our proposed RDSR with two state-of-the-art deep learning
algorithms, i.e., DCNN and DCNN-DTPM. From the tables,
we observe that, RDSR outperforms DCNN in all cases,
and can obtain similar performance to DCNN-DTPM. These
results demonstrate the effectiveness of RDSR.

To further investigate the recognition performance of RDSR,
we present the confusion matrices corresponding to Tables
II-IV. Figs. 1 (a), (b) and (c) show the confusion matrices
of experiments on EMO-DB, eNTERFACE and BAUM-1s,
respectively, from which we can find that the mostly confused
expressions are disgust and fear. From these figures, we can
also observe that the emotions in BAUM-1s are more likely to
be confused with each other, which coincides with the findings
in [6], where the authors point out that the confusion is due
to spontaneous emotions.

E. Effectiveness verification

In this section, we further verify the effectiveness of RDSR
by inspecting the feature selection and label consistency. Here
we consider three cases of RDSR as follows:
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• RDSR1: It can be viewed as a special case of RDSR
without considering feature selection, with λ = 0 in Eq.
(11).

• RDSR2: It can be viewed as a special case of RDSR
without considering the local structural consistency over
labels, with α = 0 in Eq. (11).

• RDSR3: It can be viewed as a special case of RDSR
without considering the global structural consistency over
labels, with β = 0 in Eq. (11).

Fig. 2: Effectiveness verification: recognition accuracies (%)
of our proposed RDSR under different settings.

We run RDSR1, RDSR2, RDSR3 and RDSR on all datasets
using the optimal parameters. Fig. 2 shows the recognition
accuracies for each method. We can have the following obser-
vations: First, without feature selection, the RDSR1 performs
the worst. This indicates that feature selection can help much
for RDSR model. Second, RDSR2 can obtain better perfor-
mance than RDSR3 in all cases. The reason might be that
the global label consistency is more important than the local
label consistency for our model. Finally, RDSR2 and RDSR3

perform worse than RDSR. This proves that only considering
the local or global consistency over labels is not enough for
effective recognition.

F. Parameter sensitivity analysis

We conduct empirical parameter sensitivity analysis using
all datasets, which validates that RDSR can obtain optimal
recognition performance under a wide range of parameter
values.

Feature selection regularization λ: We run RDSR with
varying values of λ. Theoretically, λ controls of the degree of
feature selection. When λ → 0, feature selection will not be
performed. When λ → ∞, the optimization problem will be
ill defined. We plot the recognition accuracies w.r.t. different
values of λ in Fig. 3 (a), and choose λ as 1.

Label consistency regularization α and β: We run RDSR
with varying values of α and β. Theoretically, α and β
control the weight of label consistency regularization, and
the larger values of α and β make the structural consistency
over labels more important in RDSR. We plot the recognition

accuracies w.r.t. different values of α and β in Fig.3 (b) and
(c), respectively, and choose α and β as 100.

Number of nearest neighbors p: We also run RDSR with
varying values of p. Initially, the larger value of p will result
in a dense-neighbor graph. Thus, p should not be neither too
large or too small to ensure a optimal performance. We plot
the recognition accuracies w.r.t. different values of p in Fig.3
(d), and we choose p as 5 for our experiments.

G. Convergence analysis

Since the optimization of RDSR is an iterative algorithm, we
need to check the convergence property by conducting the cor-
responding experiments on the EMO-DB, eNTERFACE and
BAUM-1s datasets. Fig. 4 shows the convergence performance
of the values of the objective function. From these figures, we
can find that the values of objective function monotonically
decrease when the iteration round increases for these three
datasets, demonstrating that our proposed method is efficient
and can converge quickly. Here, we also give the time cost
of Algorithm 1 on these three datasets. By using a computer
which has an Intel Core E5-2660 of 2.20GHz and 48GB RAM,
the execution time on EMO-DB, eNTERFACE and BAUM-1s
datasets is around 8.23s, 14.25s and 13.86s, respectively.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a novel algorithm, called
robust discriminative sparse regression (RDSR), for speech
emotion recognition. In details, by utilizing both labeled and
unlabeled data, we develop a joint learning framework by
taking into account regression and feature selection together,
and thus our algorithm can empirically have classification
power. Moreover, the label consistency is considered, in which
the local and global structural consistency over labels are
incorporated into our model to make it be more discrimi-
native. Experimental results on several emotion benchmarks
demonstrate that RDSR is efficient for speech emotion recog-
nition problem, and can significantly outperform state-of-the-
art methods.

In our future work, we plan to develop a transferred version
of RDSR, such that our model can be suitable for practical
cross-corpus generalizability of speech emotion recognition.
In addition, we would like to involve subspace learning
algorithms into RDSR model to improve the recognition per-
formance. Moreover, deep learning architectures, e.g., CNN,
LSTM, have been successfully employed for feature learning
in speech emotion recognition [6], [26]. Thus, it is worth trying
to integrate the deep features into our model to further boost
the recognition performance.
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Fig. 3: Parameter sensitivity study for RDSR: (a) feature selection λ; (b) local label consistency regularization α; (c) global
label consistency regularization β; (d) number of nearest neighbors p.

(a) EM0-DB (b) eNTERFACE

(c) Baum-1s

Fig. 4: Convergence curve of the relative errors of objective
function values of RDSR under different settings.
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