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ABSTRACT
Heterogeneous graph convolutional networks have gained great
popularity in tackling various network analytical tasks on het-
erogeneous network data, ranging from link prediction to node
classification. However, most existing works ignore the relation
heterogeneity with multiplex network between multi-typed nodes
and different importance of relations in meta-paths for node em-
bedding, which can hardly capture the heterogeneous structure
signals across different relations. To tackle this challenge, this
work proposes aMultiplex Heterogeneous Graph Convolutional
Network (MHGCN) for heterogeneous network embedding. Our
MHGCN can automatically learn the useful heterogeneous meta-
path interactions of different lengths in multiplex heterogeneous
networks through multi-layer convolution aggregation. Addition-
ally, we effectively integrate both multi-relation structural signals
and attribute semantics into the learned node embeddings with
both unsupervised and semi-supervised learning paradigms. Ex-
tensive experiments on five real-world datasets with various net-
work analytical tasks demonstrate the significant superiority of
MHGCN against state-of-the-art embedding baselines in terms of
all evaluation metrics. The source code of our method is available
at: https://github.com/NSSSJSS/MHGCN.
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1 INTRODUCTION
Network representation learning has emerged as a new learning
paradigm to embed complex network into a low-dimensional vector
space while preserving the proximities of nodes in both network
topological structures and intrinsic properties. Effective network
representation advances various network analytical tasks, rang-
ing from link prediction [3, 17, 22], node classification [6, 18, 32],
to recommendation [12, 13, 25]. In recent years, Graph Convolu-
tional Networks (GCNs) [15], a class of neural networks designed to
learn graph representation for complex networks with rich feature
information, have been applied to many online services, such as
E-commerce [35], social media platforms [33] and advertising [8].

While many efforts have been made to study the representation
learning over homogeneous graphs [6, 15, 23, 26], the exploration
of preserving network heterogeneous properties in graph represen-
tation paradigms has attracted much attention in recent studies,
e.g., metapath2vec [4] and HERec [25]. Inspired by the strength of
Graph Neural Networks (GNNs) in aggregating contextual signals
from neighboring nodes, various graph neural models have been
introduced to tackle the challenge of heterogeneous graph learning,
such as HAN [28], MAGNN [5] and HetGNN [39].

Albeit the effectiveness of existing heterogeneous network em-
bedding methods [4, 13, 20, 29], these works are generally designed
for heterogeneous networks with a single view. In real-world sce-
narios, however, many networks are much more complex, compris-
ing not only multi-typed nodes and diverse edges even between
the same pair-wise nodes but also a rich set of attributes [1]. For
example, in E-commerce networks, there are two types of nodes
(i.e., users and items), and multiple relations (e.g., click, purchase,
add-to-cart, or add-to-preference) between the same pairs of users
and items [34]. The connections between multiple types of nodes
in such networks are often heterogeneous with relation diversity,
which yields networks with multiple different views. It is worth
noting that the multiplicity of the network is fundamentally dif-
ferent from the heterogeneity of the network. Two types of nodes,
users and items, in a E-commerce network reflect the heterogeneity
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of the network. At the same time, users may have several types
of interactions (e.g., click, purchse, review) with items [31], which
reflects the multiplex relationships of the network. Because dif-
ferent user-item interactions exhibit different views of user and
item, and thus should be treated differently. We term this kind of
networks with both multiplex network structures with multi-typed
nodes and node attribute information as attributed multiplex
heterogeneous networks (AMHENs).

Performing representation learning on the AMHENs is of great
importance to network mining tasks, yet it is very challenging due
to such complicated network structures and node attributes. While
some recent studies propose to solve the representation learning
problem on multiplex heterogeneous network [1, 18, 21, 36, 38],
several key limitations exist in those methods. i) The success of
current representation learning models largely relies on the accu-
rate design of meta-paths. How to design an automated learning
framework to explore the complex meta-path-based dependencies
over the multiplex heterogeneous graphs, remains a significant
challenge. ii) Unlike the homogeneous node aggregation scheme,
with the heterogeneous node types and multiplex node relation-
ships, each meta-path can be regarded as relational information
channel. An effective meta-path dependency encoder is a necessity
to inject both the relation heterogeneity and multiplexity into the
representations. iii) In real-world graph representation scenarios,
efficiency is an important factor to handle the graph data with large
number of heterogeneous nodes and multiplex edges. However,
most current methods are limited to serve the large-scale network
data, due to their high time complexity and memory consumption.

To address the aforementioned challenges, we propose a new
Multiplex Heterogeneous Graph Convolutional Network, named
MHGCN, for AMHEN embedding. Specifically, we first decouple
the multiplex network into multiple homogeneous and bipartite
sub-networks, and then re-aggregate the sub-networks with the ex-
ploration of their importance (i.e., weights) in node representation
learning. To automatically capture meta-path information across
multi-relations, we tactfully design a multilayer graph convolu-
tion module, which can effectively learn the useful heterogeneous
meta-path interactions of different lengths in AMHENs through
multilayer convolution aggregation in both unsupervised and semi-
supervised learning paradigms. To improve the model efficiency, we
endow our MHGCNwith a simplified graph convolution for feature
aggregation, in order to significantly reduce the model computa-
tional cost. Our evaluations are conducted on several real-world
graph datasets to evaluate the model performance in both link pre-
diction and node classification tasks. Experimental results show
that our MHGCN framework can obtain the substantial perfor-
mance improvement compared with state-of-the-art graph repre-
sentation techniques. With the designed graph convolution module,
our MHGCN achieves better model efficiency when competing with
state-of-the-art GNN baselines for AMHENs by up to two orders of
magnitudes (see efficiency analysis in the supplemental material). .

We summarize the contributions of this paper as follows:

• We propose an effective multiplex heterogeneous graph neu-
ral network, MHGCN, which can automatically capture the
useful relation-aware topological structural signals between

nodes for heterogeneous network embedding.

• MHGCN integrates both network structures and node at-
tribute features in node representations, and gains the ca-
pability to efficiently learn network representation with a
simplified convolution-based message passing mechanism.

• We conduct extensive experiments on five real-world datasets
to verify the superiority of our proposed model in both link
prediction and node classification when competing with
state-of-the-art baselines.

2 RELATEDWORK
Graph Neural Networks. The goal of a GNN is to learn a low-
dimensional vector representation for each node, which can be used
for many downstream network mining tasks. Kipf et al. [15] pro-
poses to perform convolutional operations over graph neighboring
node for information aggregation. GraphSAGE [7] is an inductive
GNN framework, which uses the general aggregating functions
for efficient generation of node embeddings. To differentiate the
influence of neighboring nodes, GAT [27] has been proposed as an
attentive message passing mechanism to learn the explicit weights
of neighbor node embeddings. R-GCN [24] considers the influence
of different edge types on nodes, and uses weight sharing and coef-
ficient constraints to apply to multi-graphs with large numbers of
relations. To simplify the design of graph convolutional network,
LightGCN [9] omits the embedding projection with non-linearity
during the message passing. Additionally, AM-GCN [30] is pro-
posed to adaptively learn deep correlation information between
topological structures and node features. However, all algorithms
mentioned above are developed for the homogeneous networks,
and thus cannot effectively preserve the heterogeneous and multi-
plex graph characteristics for the network representation task.

Heterogeneous Graph Representation. Modeling the hetero-
geneous context of graphs has already received some attention [4,
19, 25, 39]. For example, some studies leverage random walks to
construct meta-paths over the heterogeneous graph for node em-
beddings, including metapath2vec [4] and HERec [25]. As graph
neural networks (GNNs) have become a popular choice for encod-
ing graph structures, many heterogeneous graph neural network
models are designed to enhance the GNN architecture with the
capability of capturing the node and edge heterogeneous contex-
tual signals. For example, HetGNN [39] jointly encodes the graph
topology and context heterogeneity for representation learning.
HeGAN [10] incorporates generative adversarial networks (GAN)
for heterogeneous network embedding. NARS [37] first generates
relation subgraphs, learns node embeddings by 1D convolution on
the subgraphs and then aggregates the learned embeddings. Fu et
al. [5] performs both the intra- and inter-metapath aggregation so
as to distill the metapath-based relational context for learning node
representations. However, most of those approaches rely on select-
ing the useful metapaths to guide the process of heterogeneous
representation, which may need the external domain knowledge
for constructing relevant metapaths.

In addition, there exist some recent studies attempting to relax
the requirement of metapath construction for heterogeneous graph

 

2378



Multiplex Heterogeneous Graph Convolutional Network KDD ’22, August 14–18, 2022, Washington, DC, USA

Multilayer Graph Convolution Module

…

𝐇(𝒍) = 𝔸 $ 𝐇(𝒍$𝟏) $ 𝐖(𝒍)

…

𝐇(𝟐) = 𝔸 $ 𝐇(𝟏) $ 𝐖(𝟐)

𝐇(𝟏) = 𝔸 $ 𝐗 $ 𝐖(𝟏)

U

I

U
U
U
U

U
U
U

I
UI

I
I

I
I
I
I

U I

I

U I

U U I

…
𝑙

U I U…

…

𝐇𝐔𝟑

𝐇𝐔𝟏
𝐇𝐔𝟐

𝐇𝐈𝟏

𝐇𝐈𝟐
𝐇𝐈𝟑

𝐇𝐔𝟑

𝐇𝐔𝟏
𝐇𝐔𝟐

𝐇𝐈𝟏
𝐇𝐈𝟐
𝐇𝐈𝟑

𝐇𝐔𝟑

𝐇𝐔𝟏
𝐇𝐔𝟐

𝐇𝐈𝟏
𝐇𝐈𝟐
𝐇𝐈𝟑

𝐇(𝟏)

∑
𝐇(𝟐)

𝐇(𝒍)

𝐇𝐔𝟑

𝐇𝐔𝟏
𝐇𝐔𝟐

𝐇𝐈𝟏
𝐇𝐈𝟐
𝐇𝐈𝟑

ℒ

ℒ

Unsupervised

Semi-supervised

click

buy

cart

collect

User & Item Attributes
U3

U1
U2

I3

I1
I2

f1 f2 f4 f5f3 f6 f7 f9 f10f8

𝔸 ='
$%&

|ℛ|

𝛽$ A)

Multiplex Relation Aggregation

0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 1 1 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
1 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0

0 0 0 5 4 0
0 0 0 4 5 0
0 0 0 0 0 5
5 4 0 0 0 0
4 5 0 0 0 0
0 0 5 0 0 0

β1

β2

β3

β4

𝔸

A!

A"

A#

A$

U1

U2

U3

I1

I2

I3

U1

U2

U3

I1

I2

I3

U1

U2

U3

I1

I2

I3

U1

U2

U3

I1

I2

I3

U1

U2

I1

U3

I2

I3

click
buy

add-to-cart

add-to-collect

E-commerce 
Network

U

I

f1 f2 f3 f4 f5

f1 f2 f3 f4 f5

f1 f2 f3 f4 f5

f1 f2 f3 f4 f5

f1 f2 f3 f4 f5

f1 f2 f3 f4 f5

Figure 1: The overview of the proposed MHGCN.

representations. In particular, HGT [11] proposes to incorporate the
self-attention into the graph-based message passing mechanism for
modeling the dynamic dependencies among heterogeneous nodes.
HPN [13] eliminates semantic confusion by mapping nodes in meta-
path to semantic space, and then aggregates the embeddings of
nodes under different metapaths to obtain the final representation.
However, most of the above heterogeneous graph embedding mod-
els ignore the multiplex relational context of real-life graph data,
in which multi-typed relationships exist among nodes.
Multiplex Heterogeneous Network Embedding. Real-world
graphs are often inherently multiplex, which involves various re-
lations and interactions between two connected nodes. To tackle
this challenge, many multiplex network embedding techniques are
proposed to project diverse node edges into latent representations.
For example, MNE [40] introduces a global transformation matrix
for each layer of the network to align the embeddings with different
dimensions for each relation type. GATNE [1] splits the node repre-
sentation by learning base embedding, edge embedding as well as
attribute embedding. The self-attention is utilized to fuse neighbor-
hood information for generating edge representation. Motivated
by the mutual information maximization scheme, DMGI [21] is
proposed as an unsupervised learning approach which aims to min-
imize the difference among relation-aware node representations.
HGSL [42] first obtains the node representation based on meta-
paths, and then uses GNN to jointly train the heterogeneous graph,
node representation and node attributes to obtain the final embed-
ding. However, the generality of the above methods is limited by
their manual construction of meta-paths.

Recently, FAME [18] develops a spectral graph transformation
component to aggregate information from sub-networks by preserv-
ing relation-aware node dependencies. However, this model is built
on the random projection and sacrifices the adaptive parameter
learning in exchange for fast embedding projection. Furthermore,
to learn the node embeddings of multiplex bipartite graph, Dual-
HGCN [36] firstly generates two sets of homogeneous hypergraphs

and then perform the information propagation with the spectral
hypergraph convolutions. In HDI [14], Jing et al. explores the high-
order mutual information to construct the supervision signals for
enhancing the node representations.

3 PROBLEM DEFINITION
We define graph G = {V, E} with the set of nodesV and edges E.
Each edge in E represents the connections among nodes.

Definition 1 (Attributed Multiplex Heterogeneous Net-
work, or AMHEN). Given the defined graph G, we further associate
all nodes inV with the attribute feature vectors X ∈ R𝑛×𝑚 . Here, the
size of node setV and attribute vector is represented by 𝑛 and𝑚, re-
spectively. With the consideration of node and edge heterogeneity, we
define the node type and edge type mapping function as 𝜙 : V → O
and𝜓 : E → R. Here, the set of node types and edge types is set with
the size of O and R, respectively. Each node 𝑣 ∈ V and edge 𝑒 ∈ E
belong to a certain type in O and R, respectively. Additionally, with
the consideration of edge multiplexity (i.e., |O| + |R| > 2), the same
pair of nodes can be connected through multi-typed edges.

Definition 2 (Meta-path). A meta-path P is defined as a path
in the form of𝑂1

𝑟1−−→ 𝑂2
𝑟2−−→ · · · 𝑟𝑙−1−−−→ 𝑂𝑙 which describes a composite

relation 𝑅 = 𝑟1 ◦ 𝑟2 · · · 𝑟𝑙−1 between node types 𝑂1 and 𝑂𝑙 , where ◦
denotes the composition operator on relations.

For example, 𝑈1
𝑐𝑙𝑖𝑐𝑘−−−−→ 𝐼2

𝑏𝑢𝑦
−−−→ 𝑈2 is a meta-path sample of

meta-path 𝑈𝑠𝑒𝑟
𝑐𝑙𝑖𝑐𝑘−−−−→ 𝐼𝑡𝑒𝑚

𝑏𝑢𝑦
−−−→ 𝑈𝑠𝑒𝑟 . Based on the above defi-

nitions, we formally present the representation learning task over
the multiplex heterogeneous graph as follows:

Problem (Attributed Multiplex Heterogeneous Graph Rep-
resentation). The objective of our representation learning task over
the attributed multiplex heterogeneous graph G = {V, E,X} is to
learn low-dimensional latent embedding (with the hidden dimension-
ality of 𝑑 𝑑 ≪ |V|) for each node 𝑣 ∈ V , with the preservation of
node and edge heterogeneity and multiplexity.
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We summarize the key notations of our technical solution in
Table 4 presented in the supplementary material.

4 METHODOLOGY
This section describe our frameworkMHGCNwith the overall archi-
tecture shown in Figure 1. Particularly, our MHGCN contains two
key learning modules: (i)multiplex relation aggregation and (ii)mul-
tilayer graph convolutionmodule.Multiplex relation aggregation aims
to aggregate themulti-relations among heterogeneous nodes inmul-
tiplex heterogeneous networks by differentiating each relation with
importance. Multilayer graph convolution module can automatically
capture the heterogeneous meta-paths of different lengths across
multi-relations by aggregating neighboring nodes’ characteristics
to learn the low-dimensional representation of nodes.

4.1 Multiplex Relation Aggregation
As defined in Sec. 3, there exit different types of nodes and multiple
types of edges between these nodes in AMHENs, and each type
of edge has a different role and impact on node representation.
Therefore, following [18], we first generate multiple sub-graphs
by differentiating the types of edge connections between nodes in
the multiplex and heterogeneous graph. Afterwards, we aggregate
the relation-aware graph contextual information with different
importance weights.

We denote our generated sub-graph as {G𝑟 |𝑟 = 1, 2, . . . , |R |}
with the corresponding adjacent matrix {A𝑟 |𝑟 = 1, 2, . . . , |R |}. Con-
sidering the scenario of multiplex user-item relations in online re-
tailer (e.g., click, purchase, review), the decomposed sub-graph cor-
responds to individual type of relationship between user and item.
For instance, for the graph representation learning in E-commerce
platforms, different relationships (different edge types) between
user and item nodes exhibit various dependency semantics. For
example, the diverse behaviors of users (e.g., click, add-to-favorite,
purchase) reflect different preferences of users over items. Hence,
multiplex user-item interactions with various relation semantics
will have different impacts on the learning process of user represen-
tations. To capture such multi-typed node dependencies, our pro-
posed MHGCN learns the relation-aware weights 𝛽𝑟 to aggregate
edge-type-specific sub-graph adjacent matrix as: A =

∑ |R |
𝑟=1 𝛽𝑟A𝑟 .

Notice that the set of weights {𝛽𝑟 |𝑟 = 1, 2, . . . , |R |} should not be a
set of hyperparameter, but should be dynamically changed accord-
ing to different tasks, so we set them as trainable parameters to be
learned in model training.

4.2 Multilayer Graph Convolution Module
Different from homogeneous networks, heterogeneous networks
contain different types of nodes and edges. The specified types of
edges and nodes form a meta-path, which has an obvious effect on
the representation learning of heterogeneous networks. Previous
works require manually defined meta-paths and learn node rep-
resentations on the sampled heterogeneous meta-paths. However,
setting and sampling meta-paths artificially is a complex task. In
a large-scale network, the number of meta-paths is very large. It
takes a long time to sample such a large number of meta-paths.
At the same time, aggregating meta-paths into meta-path graph
also requires a lot of memory overhead. Additionally, the type of

meta-paths has an important impact on node representation, which
almost determines the performance of network embedding in var-
ious downstream tasks. The number of types of heterogeneous
meta-paths is also very large, involving different lengths and dif-
ferent relation interactions. Therefore, it is difficult to select the
appropriate meta-path types for heterogeneous network embedding
methods based on meta-path aggregation. Our MHGCN effectively
solves the above problems. We now present our multilayer graph
convolution module that automatically captures the the short and
long meta-paths across multi-relations in AMHENs.

It is worth noting that our model uses a multi-layer fusion GCN.
As shown in Figure 1, our graph convolution module consists of
multiple graph convolutional layers. Its purpose is to capture meta-
path information of different lengths. Next, we take a two-layer
GCN as an example to illustrate how our model capture meta-path
information. For a single layer GCN:

H(1) = A · X ·W(1) , (1)

where H(1) ∈ R𝑛×𝑑 is the output of first layer (i.e., hidden rep-
resentation of network), X ∈ R𝑛×𝑚 is the node attribute matrix,
andW(1) ∈ R𝑚×𝑑 is the learnable weight matrix. Notice that our
convolution adopts the idea of simplifying GCN [32], that is, no
non-linear activation function is used.

For the two-layer GCN, the message passing process can be
represented as below:

H(2) = A · H(1) ·W(2)

= A · (A · X ·W(1) ) ·W(2)

= A2 · X ·W(1) ·W(2) ,

(2)

whereW(2) ∈ R𝑑×𝑑 is the learnable weight matrix for second layer.
A toy example of E-commerce network is illustrated in Figure 2,

we only consider two relations (i.e., buy and click) between user and
item nodes in this case. As shown in Figure 2, aggregated matrix A
can be regarded as a meta-path graph matrix generated by the 1-
length meta-paths with importance (i.e., all linked node pairs across
all edge types with weights). For example, A(1,3) = 1.5 contains

two 1-length meta-path samples with weights, i.e.,𝑈1
1∗𝑏𝑢𝑦
−−−−−→ 𝐼1 : 1

and 𝑈1
0.5∗𝑐𝑙𝑖𝑐𝑘−−−−−−−→ 𝐼1 : 0.5. Therefore, the single-layer GCN can

effectively learn the node representation that contains 1-length
meta-path information. Similarly, the second power of A automat-
ically captures the 2-length meta-path information with impor-
tance weights for all node pairs, including original sub-network
high-order structures. For example, A2(1,1) = 2.5 implies five 2-
length meta-path samples across multi-relations with importance,

i.e., 𝑈1
1∗𝑏𝑢𝑦
−−−−−→ 𝐼1

1∗𝑏𝑢𝑦
−−−−−→ 𝑈1 : 1, 𝑈1

1∗𝑏𝑢𝑦
−−−−−→ 𝐼1

0.5∗𝑐𝑙𝑖𝑐𝑘−−−−−−−→ 𝑈1 : 0.5,

𝑈1
0.5∗𝑐𝑙𝑖𝑐𝑘−−−−−−−→ 𝐼1

0.5∗𝑐𝑙𝑖𝑐𝑘−−−−−−−→ 𝑈1 : 0.25,𝑈1
0.5∗𝑐𝑙𝑖𝑐𝑘−−−−−−−→ 𝐼1

1∗𝑏𝑢𝑦
−−−−−→ 𝑈1 : 0.5,

and𝑈1
0.5∗𝑐𝑙𝑖𝑐𝑘−−−−−−−→ 𝐼2

0.5∗𝑐𝑙𝑖𝑐𝑘−−−−−−−→ 𝑈1 : 0.25. The sum of the importance
of these five meta-path samples is 2.5.

At the same time, considering that the influence of meta-paths
with different lengths on embedding should also be different, the
learnable weight matricesW(𝑙) in our multilayer graph convolution
module can just play this role. Eventually, we fuse the outputs of
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Figure 2: Illustration of meta-paths with importance for a toy example

single-layer GCN and two-layer GCN:

H =
1
2
(H(1) + H(2) ) . (3)

The final embedding H ∈ R𝑛×𝑑 contains all 1-length and 2-length
meta-path information.

To capture the more length heterogeneous meta-paths, we can
extend it to 𝑙-layer:

H(𝑙) = A · H(𝑙−1) ·W(𝑙)

= A · (A · H(𝑙−2) ·W(𝑙−1) ) ·W(𝑙)

= A · · · (A︸   ︷︷   ︸
𝑙

·X ·W(1) ) · · ·W(𝑙)︸             ︷︷             ︸
𝑙

= A𝑙 · X ·W(1) · · ·W(𝑙)︸           ︷︷           ︸
𝑙

(4)

Therefore, our multilayer graph convolution module fuses out-
puts of all layers to capture all meta-path information of different
length across multi-relations:

H =
1
𝑙

𝑙∑︁
𝑖=1

H(𝑖)

=
1
𝑙

𝑙∑︁
𝑖=1
A · H(𝑖−1) ·W(𝑖) ,

(5)

where H(0) is the node attribute matrix X.

4.3 Model Learning
In this section, we present the objective function to train our model
to learn the final node representation. Depending on the require-
ments of different downstream tasks and the availability of node
labels, we can train MHGCN in two major learning paradigms, i.e.,
unsupervised learning and semi-supervised learning.

For unsupervised learning, we can optimize the model parame-
ters by minimizing the following binary cross-entropy loss function
through negative sampling:

L = −
∑︁
(𝑢,𝑣) ∈Ω

log𝜎 (< HT
𝑢 ,H𝑣 >) −

∑︁
(𝑢′,𝑣′) ∈Ω−

log𝜎 (− < HT
𝑢′,H𝑣′ >),

(6)

where H𝑣 is the representation of node 𝑣 , T denotes matrix transpo-
sition, 𝜎 (·) is the sigmoid function, <, > can be any vector similarity
measure function (e.g., inner product), Ω is the set of positive node
pairs, Ω− is the set of negative node pairs sampled from all unob-
served node pairs. That is, we use the loss function to increase the
similarities between the node representations in the positive sam-
ples and decrease the similarities between the node representations
in the negative samples simultaneously.

For semi-supervised learning, we can optimize the model pa-
rameters by minimizing the cross entropy via backpropagation
and gradient descent. The cross entropy loss over all labeled nodes
between the ground-truth and the prediction is formulated as:

L = −
∑︁

𝑖∈V𝑖𝑑𝑠

Y𝑖 ln(C · H𝑖 ), (7)

whereV𝑖𝑑𝑠 is the set of node indices that have labels, Y𝑖 is the label
of the 𝑖-th node, C is the node classifier parameter, and H𝑖 is the
representation of the 𝑖-th node. With the guide of a small fraction
of labeled nodes, we can optimize the proposed model and then
learn the embeddings of nodes for semi-supervised classification.

Notice that {W(𝑖) |𝑖 = 1, 2, . . . , 𝑙} and {𝛽𝑟 |𝑟 = 1, 2, . . . , |R |} in our
model can be learned during training phase. The pseudo-code of
our proposed MHGCN is shown in Algorithm 1 in the supplement.
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Table 1: Statistics of Datasets (n-type: node type, e-type: edge
type, feat.: features, and Mult.: Multiplex network)

Dataset #nodes #edges #n-type #e-type #feat. Mult.

Alibaba 21,318 41,676 2 4 19 ✓
Amazon 10,166 148,865 1 2 1,156 ✓
AMiner 58,068 118,939 3 3 4 ×
IMDB 12,772 18,644 3 2 1,256 ×
DBLP 26,128 119,783 4 3 4,635 ×

5 EXPERIMENT
5.1 Datasets
Five publicly available real-world datasets are used in experimental
evaluation, i.e., Alibaba1, Amazon2, AMiner3, IMDB4, and DBLP5.
Detailed dataset description can be found in the supplement. Since
some of the baselines cannot scale to the whole Alibaba network,
we evaluate all models on a sampled dataset from Alibaba. The
statistics of these five datasets are summarized in Table 1.

5.2 Baselines
We compare our MHGCN against the following eighteen graph
learning baselines, which are divided into three categories.

Homogeneous network embedding methods:
• node2vec [6] - node2vec is a network embedding method
which samples short biased random walks.
• RandNE [41] - RandNE is a network embedding approach
based on Gaussian random projection, which preserves the
high-order proximities between nodes.
• FastRP [2] - FastRP is an extension of RandNE by using
sparse random projection.
• SGC [32] - SGC is a simplified version of GCN, which only
uses the product of high-order adjacency matrices and at-
tribute matrix, without nonlinear transformation.
• AM-GCN [30] - AM-GNN is a state-of-the-art graph convo-
lutional network, which is an adaptive multi-channel graph
convolutional networks for semi-supervised classification.

Heterogeneous network embedding methods:
• R-GCN [24] - R-GCN further considers the influence of
different edge types on nodes, and uses weight sharing and
coefficient constraints to apply to heterogeneous networks.
• HAN [28] - HAN applies graph attention network on mul-
tiplex network considering the inter- and intra-network in-
teractions, which exploit manually selected meta-paths to
learn node embedding.
• NARS [37] NARS decouples heterogeneous networks ac-
cording to the type of edge, and then aggregates neighbor
features on the decoupled subgraph.
• MAGNN [5] - MAGNN is a metapath aggregated graph
neural network for heterogeneous graphs.

1https://tianchi.aliyun.com/competition/entrance/231719/information/
2http://jmcauley.ucsd.edu/data/amazon/
3https://github.com/librahu/
4https://github.com/seongjunyun/Graph_Transformer_Networks
5https://www.dropbox.com/s/yh4grpeks87ugr2/DBLP_processed.zip?dl=0

• HPN [13] - HPN designs a semantic propagation mecha-
nism to alleviate semantic confusion and a semantic fusion
mechanism to integrate rich semantics.

Multiplex Heterogeneous network embedding methods:
• PMNE [16] - PMNE contains three different models to merge
the multiplex network to generate one overall embedding
for each node, which are denoted as PMNE-n, PMNE-r, and
PMNE-c, respectively.
• MNE [40] - MNE obtains the final embedding by combin-
ing the high-dimensional common embedding and the low-
dimensional hierarchical embedding.
• GATNE [1] - GATNE includes two variants GATNE-T and
GATNE-I. We use GATNE-I as our baseline method in exper-
iments.
• GTN [38] - GTN transforms a heterogeneous graph into
multiple meta-path graphs and then learns node embeddings
via GCN on the meta-path graphs.
• DMGI [21] - DMGI integrates node embeddings from multi-
ple graphs by introducing a consensus regularization frame-
work and an universal discriminator.
• FAME [18] - FAME is a random projection-based network
embedding for AMHENs, which uses spectral graph trans-
formation to capture meta-paths, and significantly improves
efficiency through random projection.
• HGSL [42] - HGSL is a state-of-the-art heterogeneous GNN,
which jointly performs heterogeneous graph structure learn-
ing and GNN parameter learning for classification.
• DualHGNN [36] - DualHGCN uses dual hypergraph con-
volutional network to learn node embeddings for multiplex
bipartite networks.

The network types handled by the competitor methods are sum-
marized in Table 5 in the supplemental material.

5.3 Experimental Setting
Following [18], we set 𝑑 to 200 for all the methods. For baselines,
we use the source code released by their authors or OpenHGNN6,
and adopt the parameter settings recommended in their papers and
fine-tune them to be optimal. For our MHGCN, we set the number
of convolution layers 𝑙 to 2. For fair comparison, we uniformly
set the number of training rounds to 500 for link prediction and
the number of training rounds to 200 for node classification. More
detailed experimental settings can be found in the supplement.

5.4 Link Prediction
Wefirst evaluate themodel performance by comparing ourMHGCN
with fifteen baselines on link prediction task in an unsupervised
learning manner. The results are shown in Table 2, where the best
is shown in bold. The first seven baselines are homogeneous or
heterogeneous network embedding methods, and the last eight are
multiplex network embedding methods.

We can see that MHGCN significantly outperforms all base-
lines in terms of all evaluation metrics on five datasets. Specifically,
MHGCN achieves average gains of 5.68% F1 score in comparison
to the best performed GNN baselines across all datasets (i.e., FAME,

6https://github.com/BUPT-GAMMA/OpenHGNN
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Table 2: Link prediction performance comparison of different methods on five datasets

Method AMiner Alibaba IMDB Amazon DBLP
R-AUC PR-AUC F1 R-AUC PR-AUC F1 R-AUC PR-AUC F1 R-AUC PR-AUC F1 R-AUC PR-AUC F1

node2vec 0.594 0.663 0.602 0.614 0.580 0.593 0.479 0.568 0.474 0.946 0.944 0.880 0.449 0.452 0.478
RandNE 0.607 0.630 0.608 0.877 0.888 0.826 0.901 0.933 0.839 0.950 0.941 0.903 0.492 0.491 0.493
FastRP 0.620 0.634 0.600 0.927 0.900 0.926 0.869 0.893 0.811 0.954 0.945 0.893 0.515 0.528 0.506
SGC 0.589 0.585 0.567 0.686 0.708 0.623 0.826 0.889 0.769 0.791 0.802 0.760 0.601 0.606 0.587

R-GCN 0.599 0.601 0.610 0.674 0.710 0.629 0.826 0.878 0.790 0.811 0.820 0.783 0.589 0.592 0.566
MAGNN 0.663 0.681 0.666 0.961 0.963 0.948 0.912 0.923 0.887 0.958 0.949 0.915 0.690 0.699 0.684
HPN 0.658 0.664 0.660 0.958 0.961 0.950 0.900 0.903 0.892 0.949 0.949 0.904 0.692 0.710 0.687

PMNE-n 0.651 0.669 0.677 0.966 0.973 0.891 0.674 0.683 0.646 0.956 0.945 0.893 0.672 0.679 0.663
PMNE-r 0.615 0.653 0.662 0.859 0.915 0.824 0.646 0.646 0.613 0.884 0.890 0.796 0.637 0.640 0.629
PMNE-c 0.613 0.635 0.657 0.597 0.591 0.664 0.651 0.634 0.630 0.934 0.934 0.868 0.622 0.625 0.609
MNE 0.660 0.672 0.681 0.944 0.946 0.901 0.688 0.701 0.681 0.941 0.943 0.912 0.657 0.660 0.635

GATNE OOT OOT OOT 0.981 0.986 0.952 0.872 0.878 0.791 0.963 0.948 0.914 OOT OOT OOT
DMGI OOM OOM OOM 0.857 0.781 0.784 0.926 0.935 0.873 0.905 0.878 0.847 0.610 0.615 0.601
FAME 0.687 0.747 0.726 0.993 0.996 0.979 0.944 0.959 0.897 0.959 0.950 0.900 0.642 0.650 0.633

DualHGNN / / / 0.974 0.977 0.966 / / / / / / / / /
MHGCN 0.711 0.753 0.730 0.997 0.997 0.992 0.967 0.966 0.959 0.972 0.974 0.961 0.718 0.722 0.703

OOT: Out Of Time (36 hours). OOM: Out Of Memory; DMGI runs out of memory on the entire AMiner. R-AUC: ROC-AUC.

MAGNN and HPN). Our MHGCN realizes a high accuracy of more
than 96% on three datasets (Alibaba, Amazon, and IMDB), espe-
cially more than 99% prediction performance on Alibaba network.
This is because MHGCN automatically captures effective multi-
relational topological structures throughmultiplex relation aggrega-
tion and multilayer graph convolution on the generated meta-paths
across multiplex relations. Especially, compared with GATNE and
MAGNN, our model has achieved better results, showing the abil-
ity of our model in automatically capturing meta-paths compared
with manually setting meta-paths. FAME that use spectral graph
transformation achieving the second best performance on most
datasets also verifies the ability of multiplex relation aggregation to
automatically capture useful heterogeneous meta-paths. However,
MHGCN obtains better performance than FAME on all networks as
MHGCN learns meaning node representations for AMHENs using
multilayer graph convolution in a learning manner. Additionally,
MHGCN also shows significant performance advantages on gen-
eral heterogeneous networks (e.g., IMDB and DBLP). This may be
because our MHGCN uses a weighted approach to differentiate the
effects of different types of relations on node representation, which
cannot be achieved by traditional meta-path sampling.
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Figure 3: Experimental results of ablation study

5.5 Node Classification
We next evaluate the effectiveness of our model on the node classi-
fication task compared with state-of-the-art methods. The results
are shown in Table 3, where the best is shown in bold. The first
eight baselines are unsupervised embedding methods, and the rest
are semi-supervised embedding methods.

As we see, MHGCN also achieves state-of-the-art performance
on all tested networks. Specifically, our MHGCN achieves average
11.22% and 14.49% improvement over state-of-the-art GNN model
HGSL across all datasets in terms of Macro-F1 and Micro-F1, respec-
tively. Considering that the performance gain in node classification
task reported in some recent works [5, 42] is usually around 2-4%,
this performance improvement achieved by our MHGCN is signifi-
cant. Furthermore, we also observe that MHGCN performs much
better than competitor methods on general heterogeneous network
with multi-typed nodes (e.g., IMDB and AMiner), achieving 23.23%
and 22.19% improvement in Macro-F1 and Micro-F1 on IMDB net-
work. The possible reason is that our MHGCN effectively learns
node representations for classification by exploring all meta-path
interactions across multiple relations with different importance (i.e.,
weights), which is ignored by the heterogeneous network embed-
ding approaches based on manually setting meta-path sampling.

5.6 Ablation Study
To validate the effectiveness of each component of our model, we
further conduct experiments on different MHGCN variations. Here
MHGCN-R does not consider the importance of different relations,
that is, we set the weights 𝛽𝑟 to 1; MHGCN-L uses only a two-
layer GCN to obtain the embedding, so it can only capture the
2-length meta-paths. We report the results of ablation study on four
datasets for node classification in Figure 3, where the performance
on Alibaba refers to the right-ordinate axis.
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Table 3: Node classification performance comparison of different methods on four datasets

Method AMiner Alibaba IMDB DBLP
Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1

node2vec 0.522 (0.0032) 0.532 (0.0051) 0.238 (0.0125) 0.347 (0.0093) 0.363 (0.0237) 0.382 (0.0703) 0.352 (0.0103) 0.351 (0.0112)
RandNE 0.641 (0.0074) 0.672 (0.0064) 0.319 (0.0170) 0.358 (0.0093) 0.373 (0.0143) 0.392 (0.0185) 0.351 (0.0153) 0.372 (0.0150)
FastRP 0.650 (0.0086) 0.690 (0.0074) 0.301 (0.0180) 0.392 (0.0119) 0.363 (0.0236) 0.381 (0.0140) 0.343 (0.0201) 0.375 (0.0199)
MNE 0.643 (0.0069) 0.686 (0.0045) 0.289 (0.0155) 0.390 (0.0021) 0.374 (0.0153) 0.382 (0.0680) 0.366 (0.0117) 0.384 (0.0109)

GATNE OOT OOT 0.291 (0.0086) 0.390 (0.0014) 0.369 (0.0132) 0.333 (0.0005) OOT OOT
DMGI 0.473 (0.0155) 0.626 (0.0093) 0.220 (0.0214) 0.392 (0.0026) 0.548 (0.0190) 0.544 (0.0189) 0.781 (0.0303) 0.787 (0.0235)
FAME 0.722 (0.0114) 0.727 (0.0091) 0.323 (0.0154) 0.393 (0.0060) 0.593 (0.0135) 0.594 (0.0143) 0.842 (0.0183) 0.868 (0.0127)

DualHGNN / / 0.347 (0.0114) 0.402 (0.0127) / / / /

SGC 0.516 (0.0047) 0.587 (0.0157) 0.286 (0.0231) 0.361 (0.0175) 0.489 (0.0106) 0.563 (0.0133) 0.622 (0.0009) 0.623 (0.0009)
AM-GCN 0.702 (0.0175) 0.713 (0.0223) 0.307 (0.0232) 0.399 (0.0156) 0.610 (0.0021) 0.640 (0.0013) 0.867 (0.0105) 0.878 (0.0112)
R-GCN 0.690 (0.0078) 0.692 (0.0106) 0.265 (0.0326) 0.381 (0.0125) 0.544 (0.0172) 0.572 (0.0145) 0.862 (0.0053) 0.870 (0.0070)
HAN 0.690 (0.0149) 0.726 (0.0086) 0.275 (0.0327) 0.392 (0.0081) 0.552 (0.0112) 0.568 (0.0078) 0.806 (0.0078) 0.813 (0.0100)
NARS 0.722 (0.0103) 0.721 (0.0097) 0.297 (0.0201) 0.392 (0.0195) 0.565 (0.0037) 0.574 (0.0048) 0.794 (0.0255) 0.804 (0.0320)

MAGNN 0.755 (0.0105) 0.757 (0.0133) 0.348 (0.0488) 0.398 (0.0405) 0.614 (0.0073) 0.615 (0.0089) 0.881 (0.0284) 0.895 (0.0396)
HPN 0.710 (0.0612) 0.732 (0.0490) 0.263 (0.0346) 0.392 (0.0405) 0.578 (0.0023) 0.584 (0.0021) 0.822 (0.0201) 0.830 (0.0201)
GTN OOM OOM 0.255 (0.0420) 0.392 (0.0071) 0.615 (0.0108) 0.616 (0.0093) 0.852 (0.0137) 0.868 (0.0125)
HGSL 0.754 (0.0100) 0.758 (0.0103) 0.338 (0.0121) 0.398 (0.0238) 0.620 (0.0048) 0.638 (0.0030) 0.893 (0.0284) 0.902 (0.0396)

MHGCN 0.868 (0.0160) 0.875 (0.0200) 0.351 (0.0204) 0.458 (0.0160) 0.764 (0.0145) 0.782 (0.0138) 0.945 (0.0221) 0.952 (0.0203)

OOT: Out Of Time (36 hours), OOM: Out Of Memory. The standard deviations are reported in the parentheses.
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Figure 4: Parameter sensitivity of proposed method w.r.t. #layers, dimension 𝑑 , and #rounds.

It can be seen from the results that the two key components
both contribute to performance improvement of our MHGCN. The
comparison between MHGCN-R and MHGCN highlights the effec-
tiveness of the importance of different relations. We can observe
that MHGCN-R performs worse than MHGCN on all datasets in
terms of both Macro-F1 and Micro-F1 metrics, reducing 9.68% per-
formance in Macro-F1 score on Alibaba, which demonstrates the
crucial role of our designed multiplex relation aggregation module
in capturing the importance of different relations for node represen-
tation learning. The comparison between MHGCN-L and MHGCN
reflects the importance of our multilayer graph convolution module.
Compared with MHGCN-L, MHGCN improves 2.97%, 18.98%, 4.09%
and 1.51% overMHGCN-L in terms of Macro-F1 on AMiner, Alibaba,
IMDB, and DBLP, respectively. This indicates that our proposed
multilayer graph convolution module effectively captures useful
meta-paths of different lengths across multiplex relations.

5.7 Parameter Sensitivity
We finally investigate the sensitivity of MHGCN with respect to the
important parameters, including the number of layers 𝑙 , embedding
dimension 𝑑 , and the number of training rounds. We report Macro-
F1 score on node classification taskwith different parameter settings
on four datasets in Figure 4. Notice that the performance on Alibaba
refers to the ordinate on the right.

As shown in Figure 4(a), at first, the performance of MHGCN
increases as 𝑙 increases, and then the performance begins to decline
when 𝑙 ≥ 2. This is mainly because 1-length and 2-length meta-path
interactions already effectively capture the topological structures of
network for node classification, while longer meta-paths would not
lead to performance improvement. With the growth of GCN layers,
the representation of nodes would be flattened after multiple con-
volutions, resulting in performance degradation. From the results
in Figure 4(b), we can see that the performance of MHGCN gradu-
ally rises and then decreases slightly as dimension 𝑑 increases, and
achieves the best performance when embedding dimension 𝑑 = 128.
This is because the features of all nodes are compressed into a small
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embedding space when dimension 𝑑 is small, thus it is difficult to
retain the characteristics proximities of all node pairs. Conversely,
a larger dimension would also flatten the distance between all node
embeddings. Figure 4(c) illustrates the performance of our MHGCN
with respect to the number of training rounds in learning model
weights. We can find that our MHGCN can converge quickly and
efficiently achieve stable performance within 80 rounds on all tested
datasets.

6 CONCLUSION
In this paper, we propose an embedding model MHGCN for at-
tributed multiplex heterogeneous networks. Our model mainly
includes two key components: multiplex relation aggregation and
multilayer graph convolution module. Through multiplex relation
aggregation, MHGCN can distinguish the importance of the rela-
tions between different nodes in multiplex heterogeneous networks.
Through multilayer graph convolution module, MHGCN can auto-
matically capture the short and long meta-path interactions across
multi-relations, and learn meaning node embeddings with model
parameter learning during training phase. Experiments results on
five real-world heterogeneous networks show the superiority of the
proposed MHGCN in both link prediction and node classification.
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A SUPPLEMENT
A.1 Notations
Key notations used in the paper and their definitions are summa-
rized in Table 4.

Table 4: Main notations and their definitions.

Notation Definition
G the input network
V, E the node/edge set of G
O,R the node/edge type set of G
X the node attribute matrix of G
G𝑟 the sub-network w.r.t. edge type 𝑟
A𝑟 the adjacency matrix of G𝑟
A the aggregated adjacency matrix
H the node embeddings

H(𝑙) the hidden representation for the 𝑙-th layer
𝑑 the dimension of embeddings

𝑛,𝑚 the number of nodes/attributes
𝛽𝑟 the learnable weight for edge type 𝑟

W(𝑙) the learnable weight matrix for the 𝑙-th layer

A.2 Algorithm Pseudo-Code
Algorithm 1 shows the pseudo-code of our proposedMHGCN frame-
work guided by the above objective functions (i.e., Eq. (6) or Eq. (7)).

Algorithm 1 The Learning Process of MHGCN
Input: Input AMHEN G, node feature matrix X, embedding di-

mension 𝑑 , the number of convolution layers 𝑙
Output: Embedding results H
1: Decouple the attributed multiplex heterogeneous network into

homogeneous networks and bipartite networks to obtain the
adjacency matrices {A𝑟 |𝑟 = 1, 2, . . . , |R |}

2: Calculate A =
∑ |R |
𝑟=1 𝛽𝑟A𝑟

3: for 𝑖 = 1 to 𝑙 do
4: Calculate H(𝑖) ← A · H(𝑖−1) ·W(𝑖)
5: end for
6: H = 1

𝑙
(H(1) + · · · + H(𝑙) )

7: Calculate L using Eq. (6) or Eq. (7);
8: Back propagation and update parameters in MHGCN
9: Return H

A.3 Detailed Dataset Description
Alibaba dataset includes four types of edges between user and
item nodes. We use the category of item as the class label in node
classification. Amazon dataset includes one node type of products
in Electronics category, and co-viewing and co-purchasing links
between products. The product attributes contain the price, sales-
rank, brand, category, etc. AMiner dataset is a citation network,
which contains three types of nodes: author, paper and conference.
The domain of papers is considered as the class label. IMDB dataset

contains three types of nodes, i.e., movie, actor and director, and
labels are genres of movies. Node features are given as bag-of-words
representations of plots. DBLP dataset contains four types of nodes,
i.e., author, paper, term and venue. We use the authors’ research
field as a label for classification.

A.4 Detailed Experimental Settings
For link prediction task, we treat the connected nodes in network
as positive node pairs, and consider all unlinked nodes as negative
node pairs. For each edge type, we divide the positive node pairs
into training set, verification set and test set according to the pro-
portion of 85%, 5% and 10%. At the same time, we randomly select
the same number of negative node pairs to add into training set,
validation set and test set. Notice that we predict each type of edge
using all types of edges in datasets, and finally take the average of
all edges as the final result. For node classification task, we first
learn the representation of each node and then perform accuracy
evaluation. More specifically, we take 80% of the node embeddings
as the training set, 10% as the validation set, and 10% as the test
set. In experiments, we train a logistic regression classifier for node
classification. Notice that we repeat each experiment 10 times to
report average results.

For fair comparison, we uniformly set the number of training
rounds to 500 for link prediction and the number of training rounds
to 200 for node classification. We set 𝑝 = 2 and 𝑞 = 0.5 for node2vec
and set 𝛼𝑟 and 𝛽𝑟 to 1 for every edge type 𝑟 on GATNE. For the
PMNE model, we use the hyperparameters given by the original
paper. For the MNE, we set the dimension of additional vectors
to 10, set the length of walk as 10, set the number of walks as 20.
For all deep learning methods (e.g., GATNE, HAN, GTN), we tune
learning rate in {0.01, 0.05, 0.001, 0.005, 0.0001, 0.0005}. We set the
regularization parameter to 0.001, the number of attention head
is set as 8, and the dropout ratio of attention is 0.6. For GTN, we
use the sparse version of their released source code and set GT
layers to 3 for all datasets. For DMGI, we set the self-connection
weight𝑤 = 3 and tune 𝛼, 𝛽,𝛾 in {0.0001, 0.001, 0.01, 0.1}. For FAME,
we perform optuna7 to tune the weights 𝛼1, . . . , 𝛼𝐾 , 𝛽1, . . . , 𝛽 |R | as
described in the original paper. For AM-GCN, we tune loss aggre-
gation parameters 𝛽,𝛾 in {0.0001, 0.001, 0.01, 0.1}. For MAGNN, we
set the number of independent attention mechanisms 𝑘 = 4. For
HPN, we set iterations in semantic propagation 𝑘 = 3 and value of
restart probability 𝛼 = 0.1. For HGSL, we set the number of GNN
layers to 2 and the hidden layer output dimension to 64. For R-GCN,
we set the batch size to 126, the number of GNN layers to 2, and the
hidden layer dimension to 64. For NARS, we set the number of hops
to 2, and the number of feed-forward layers to 2. For DualHGNN,
we use the asymmetric operator and set _ as 0.5.

For our MHGCN, we set the number of convolution layers 𝑙 to 2,
learning rate to 0.05, dropout to 0.5, and weight-decay to 0.0005.

We evaluate the efficiency evaluation for all methods on a ma-
chine with Intel Xeon E5-2660 (2.2GHz) CPU, 80GB memory, and 2
× GeForce RTX 2080 (8G).

The source code of our model is available at https://github.com/
NSSSJSS/MHGCN.
7https://github.com/pfnet/optuna
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Table 5: The network types handled by different methods
(Heter.: Heterogeneity, Multi.: Multiplex edge type, Attr.: At-
tribute, Unsup.: Unsupervised, Auto.: Automatic meta-path).

Method Heter. Multi. Attr. Unsup. Auto.Node Edge

node2vec × × × × ✓ ×
RandNE × × × × ✓ ×
FastRP × × × × ✓ ×
SGC × × × ✓ ✓/× ×

AM-GCN × × × ✓ × ×
R-GCN ✓ ✓ × ✓ ✓/× ×
HAN ✓ ✓ × ✓ × ×
NARS ✓ ✓ × ✓ × ×

MAGNN ✓ ✓ × ✓ ✓/× ×
HPN ✓ ✓ × ✓ ✓/× ×
PMNE × ✓ ✓ × ✓ ×
MNE × ✓ ✓ × ✓ ×

GATNE ✓ ✓ ✓ ✓ ✓ ×
GTN ✓ ✓ ✓ ✓ × ✓
DMGI ✓ ✓ ✓ ✓ ✓ ×
FAME ✓ ✓ ✓ ✓ ✓ ✓
HGSL ✓ ✓ ✓ ✓ × ×

DualHGNN ✓ × ✓ ✓ ✓ ×
MHGCN ✓ ✓ ✓ ✓ ✓/× ✓

A.5 Baselines
The publicly source codes of baselines can be available at the fol-
lowing URLs:
• node2vec – https://github.com/aditya-grover/node2vec
• RandNE – https://github.com/ZW-ZHANG/RandNE
• FastRP – https://github.com/GTmac/FastRP
• SGC – https://github.com/Tiiiger/SGC
• AM-GCN – https://github.com/zhumeiqiBUPT/AM-GCN
• R-GCN – https://github.com/BUPT-GAMMA/OpenHGNN
• HAN – https://github.com/Jhy1993/HAN
• NARS – https://github.com/BUPT-GAMMA/OpenHGNN
• MAGNN – https://github.com/cynricfu/MAGNN
• HPN – https://github.com/BUPT-GAMMA/OpenHGNN
• PMNE – The source code of PMNE used in this work is re-
leased by the authors of MNE at https://github.com/HKUST-
KnowComp/MNE
• MNE – https://github.com/HKUST-KnowComp/MNE
• GATNE – https://github.com/THUDM/GATNE
• GTN – https://github.com/seongjunyun/Graph_Transformer_
Networks
• DMGI – https://github.com/pcy1302/DMGI
• FAME – https://github.com/ZhijunLiu95/FAME
• HGSL – https://github.com/Andy-Border/HGSL
• DualHGNN – https://github.com/xuehansheng/DualHGCN

For homogeneous network embedding methods and heteroge-
neous network embedding methods to deal with multiplex net-
works, we feed separate graphs with a single-layer view into them

to obtain different node embeddings, then perform mean pooling
to generate final node embedding. Since DualHGNN is designed
only for multiplex bipartite networks, it can only work on Alibaba
network.

The network types handled by the baseline methods are summa-
rized in Table 5.

A.6 Additional Experimental Results
A.6.1 Model Efficiency Analysis. We also compare the efficiency of
our MHGCN with other GNN baselines for semi-supervised node
classification. We report the experimental results on four datasets
in Table 6.

As can be seen from Table 6, our MHGCN achieves the fourth-
best performance after three heterogeneous network embedding
methods (i.e., R-GCN, NARS and HPN). However, from the above
experimental results (Tables 2 and 3), MHGCN is significantly better
than these three methods in both link prediction and node classi-
fication. MHGCN is significantly faster than the best performed
GNN baseline in node classification task (i.e., HGSL) on all datasets
under the same number of training rounds. More specifically, our
MHGCN achieves up to 135× speedup over state-of-the-art embed-
ding method HAN. MHGCN is faster than state-of-the-art AMHEN
embedding method GTN by 21.25 times on multiplex Alibaba net-
work. MHGCN is even 2.33 times and 16.58 times faster than state-
of-the-art heterogeneous GNN model MAGNN on Alibaba and
AMiner, respectively. The main reason is because our MHGCN
adopts the idea of simplifying graph convolutional networks, that
is, omitting non-linear activation function. Therefore, the training
efficiency of MHGCN can be significantly improved. In fact, accord-
ing to the above experimental results in Figure 4(c), our model can
converge quickly within 80 rounds for node classification on four
tested datasets, that is, our model does not need to be trained for
200 rounds set in our experimental evaluation and thus can achieve
faster efficiency.

Table 6: Runtime comparison of GNN methods (Second)

Method AMiner Alibaba IMDB DBLP

AM-GCN 8703.71 2519.82 24280.12 2786.73
R-GCN 153.04 301.25 155.40 192.85
HAN 87105.55 4226.95 70510 22315.36
NARS 172.21 211.54 75.81 108.54

MAGNN 10361.20 2320.62 731.03 2125.33
HPN 172.82 249.47 176.64 109.49
GTN OOM 21166.83 4287.20 18233.64
HGSL 1684.03 2120.93 1758.21 2037.10

DualHGN / 11295.92 / /
MHGCN 645.20 996.52 677.23 970.29
Speedup* 135.05× 4.37× 104.15× 23.01×
Speedup** / 21.25× 6.33× 18.80×
* Speedup of MHGCN over HAN.
** Speedup of MHGCN over GTN.
OOM: Out Of Memory.
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