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Abstract—The increasing pervasiveness of object tracking
technologies leads to huge volumes of spatio-temporal data
collected in the form of trajectory streams. The discovery of
useful group patterns from moving objects’ movement behaviors
in trajectory streams is critical for real time applications ranging
from transportation management to military surveillance. In this
work we propose a novel type of group pattern, called evolving
group, which models the unusual group events of moving objects
that travel together within density connected clusters in evolving
streaming trajectories. Our theoretical analysis and empirical
study on the Beijing Taxi data demonstrate its effectiveness in
capturing development, evolution and trend of group events of
moving objects in streaming context. Furthermore, we propose
a discovery framework that efficiently supports online detection
of evolving groups over massive-scale trajectory streams using
sliding window. It contains three phases along with a set of novel
optimization techniques designed to minimize the computation
costs. Our comprehensive empirical study demonstrates that our
discovery framework is effective and efficient on real-world high
volume trajectory streams.
Index Terms—Moving Objects, pattern mining, evolving group

pattern, trajectory streams

I. INTRODUCTION

In recent years, location tracking technologies have been

broadly utilized in a variety of applications ranging from traffic

management to mobile social networks that have generated

huge volumes of trajectory data from moving objects including

people, vehicles and animals, etc. Such trajectory data can

be utilized for different purposes, for instance travel-route

prediction, friend recommendation, anomaly detection, and

traffic control [1]. In this work, we focus on effectively

detecting a particular type of movement pattern called evolving
group from massive-scale moving object trajectory streams.

Evolving group pattern is a special type of group pattern

that models the behavior of the moving objects that travel

together. Techniques have been proposed in the literature to

detect group patterns such as flock [8], convoy [9], swarm
[10] and gathering [15] [16]. Among these techniques, the

gathering pattern is the closest to our evolving group pattern.

Gathering models the group event in the streaming trajectory

data that involves congregation of moving objects. A gathering

is defined as a sequence of density-based clusters in a period of

at least kc consecutive time points in which adjacent clusters
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are within a given distance range d. Moreover, each cluster

is required to contain at least mp dedicated moving objects

(so-called participators) which are involved in at least kp
clusters, although not necessarily to be consecutive. However,

the gathering pattern requires at least kc consecutive time

points. This might result in the loss of interesting sequence

of moving object clusters.
Fig. 1 illustrates an example of gathering patterns. Let mc =

3 (minimal # of objects for a cluster), kc = 3 (minimal duration

of a gathering), kp = 2 (minimal # of participated clusters

for a participator) and mp = 3 (minimal # of participators).

Suppose cluster c3 is far away from c2 and c4 is far away from

c1, namely, distance(c2, c3) > d and distance(c1, c4) > d.
In this example, the two sequences of clusters 〈c1, c3, c5〉
and 〈c2, c4, c5〉 form two gathering candidates from t1 to

t3. In this case, only 〈c1, c3, c5〉 is a gathering pattern with

participator set {o1, o2, o3, o4}, because it contains at least

three participators at all the time points, whereas 〈c2, c4, c5〉
(participator set {o3, o4, o5, o6}) only contains two participator

{o3, o4} in c5. Similarly, from t5 to t7, there are two gath-

ering candidates 〈c6, c7, c9〉 and 〈c6, c8, c9〉. However, only

〈c6, c7, c9〉 forms a gathering since each cluster includes at

least three participators.

t1 t2 t3 t4 t5 t6

o1
o2
o3

o4
o5
o6

t7

c1

c2 c4

c3
c5

c6

c7

c8
c9

Figure 1: Comparison of gathering and evolving group

Using gathering pattern, we can get two independent gath-

erings from this example, because gathering requires the

participators of a group to move together in consecutive

clusters during its lifetime. However, understanding the trend

and evolution of group pattern in streaming environments is

considered to be more useful and helpful than simply extract-

ing the group patterns. For example, the causal interactions

of discovered groups along time can reveal the inherent rela-

tionships of groups of moving objects. In the above example

we find that there are four participators {o1, o2, o3, o4} in the
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gathering 〈c1, c3, c5〉 and five participators {o1, o2, o3, o4, o6}
in 〈c6, c7, c9〉. It is obvious that 〈c6, c7, c9〉 is developed from

〈c1, c3, c5〉 and grows larger. However, the gathering pattern is

not suitable for modeling the variational groups in which mem-

berships evolve gradually in streaming environment because of

the strict consecutive moving together requirement. Although

an incremental solution is proposed in [16] to support online

discovery of gatherings pattern form the most recent arrived

data in the trajectory stream, it does not take the evolving

behavior of trajectories into account.

To overcome the above shortcomings of gathering pattern,

we define an evolving group as a dense group of objects

that share common behaviors in most of the time and change

gradually over time. Unlike gathering pattern, our evolving

pattern does not require the participators to strictly moving as

a group lifelong. This successfully models the scenarios that

gathering cannot discover. For example, the crowding might

become “eased somewhat” at some time points in a traffic jam.

Hence no enough dense cluster is formed occasionally. But

they might again fall into a congestion soon at next crossroad.

This type of group behavior can be recognized by our evolving

pattern.

Another characteristic of evolving group is that it does

not require coherent membership over streams. Namely, the

members could change gradually over time. Gathering pattern

allows members to join and leave group at any time and

captures the gradual change of participator (core members)
in streams, i.e., the evolution of participators. Furthermore,

our definition of evolving group is suitable for capturing the

group patterns from high-volume evolving streaming data.

More specially, our evolving group captures the evolving

behavior of core group members at aggregation level over

trajectory streams by introducing the notions of “crowd” and

“gathering” in sliding window. The “gathering” is a special

“crowd” that contains at least mp participators in each cluster.

Then we define the “group” as the set of participators in

the “gathering” of a window to model the core members.
We further define the evolving group to refer to a sequence

of evolved “groups” that share most members (e.g. mg) in

two adjacent time windows to capture the evolution of core
members.

In Fig. 1, let window size be 4, mg = 3. Other parameters

are the same with gathering pattern. There is a “gathering”

〈c1, c3, c5〉 along with a “group” g1={o1, o2, o3, o4} in window
W t4

t1 . Suppose distance(c5, c6) < d, 〈c3, c5, c6〉 also forms a

“gathering” in W t5
t2 and evolves from 〈c1, c3, c5〉 with same

“group” g2={o1, o2, o3, o4}. After the time t6 arrives, the win-

dow slides from W t5
t2 to W t6

t3 . Two “crowds” 〈c5, c6, c7〉 and

〈c5, c6, c8〉 are discovered, whereas only 〈c5, c6, c7〉 is a “gath-
ering” that corresponds to the “group” g3={o1, o2, o3, o4, o6},
which evolves from g2 and grows larger. In new window W t7

t4 ,

there is also only one “gathering” 〈c6, c7, c9〉 that satisfies

mp participators at each cluster. The corresponding “group”

g4={o1, o2, o3, o4, o6} evolves and keeps from last window.

Therefore, an evolving group 〈g1, g2, g3, g4〉 reveals the evo-

lution and trend of the group behavior shown in the example.

The second problem we must deal with is the design of
a solution that can efficiently discover evolving groups from
large-scale streaming trajectories. Many applications require

the real time monitoring and tracking of moving objects to

discover the groups as soon as possible for supporting online

decision-making. Hence the algorithm should simultaneously

report the results while receiving and processing the massive-

scale trajectory streams. Apparently we can not simply apply

or extend existing mining algorithms of group patterns to

support the discovery of our new proposed evolving group

patterns. In this paper, we propose an online discovery frame-

work of the evolving group, which contains three phases: 1)

discover all closed “crowds” in the current window, 2) detect

all closed “gatherings” with their corresponding “groups” from

the discovered crowds, and 3) update the evolving groups.

The main contributions of the paper are as follow:

• 1) We propose the new concept of evolving group pattern

that captures the interesting group patterns over streaming

trajectories that cannot be captured by the current group

pattern detection techniques.

• 2) We propose an efficient evolving group discovery

framework that efficiently discovers the evolving groups

from large scale trajectory streams with real time respon-

siveness.

• 3) Extensive empirical study is conducted on the real

traffic data (Taxi dataset) to evaluate the effectiveness

and efficiency of the proposed framework. Our results

offer insight into the effectiveness of the proposed frame-

work in capturing evolving group events over trajectory

streams.

II. RELATED WORK

Most of the related work on group pattern mining has been

discussed in Section 1. In this section, we briefly review some

other representative works that are also related to our problem.

Trajectory clustering. Gaffney et al. [2] first propose

the fundamental principles of clustering trajectories based

on probabilistic modelling. They consider the trajectory as a

whole and represent a set of trajectories using a mixture of

regression models. Lee et al. [3] propose a partition and group

framework to discover common sub-trajectory clusters in static

trajectory databases. Jensen et al. [4] present a scheme that is

capable of incrementally clustering moving objects by employ-

ing object dissimilarity and clustering features to improve the

clustering effectiveness. More recently, Li et al. [5] further

propose an incremental trajectory clustering framework that

contains online micro-cluster maintenance and offline macro-

cluster creation for incremental trajectory databases.

Co-movement pattern discovery in static databases. One
of the earliest works on co-movement discovery is intro-

duced by Laube and Imfeld [6] and further flock [8] [11],

convoy [9], swarm [10] and gathering [15] are studied

by others. Kalnis et al. [7] propose one similar notion of

moving cluster, which is a set of objects when they can

be clustered at consecutive time points, and the portion of

common objects in any two consecutive clusters is not below
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a predefined threshold. Another similar notion, moving group
pattern [12], relies on disk-based clustering to mine a set of

objects that are within a distance threshold from one another

for a minimum duration. Similar with swarm, moving group
pattern also permits members of pattern to travel together

for a number of nonconsecutive timestamps by a weight

threshold. A recent study by Li et al. [13] proposes the

notion of group that uses density connectedness for clustering

trajectories without relying on sampling points. Namely, the

group pattern simultaneously satisfies sampling independence,

density connectedness, trajectory approximation and online

processing.

Group pattern discovery in trajectory streams. Tang et

al [14] recently propose the problem of discovering travelling

companions in the context of streaming trajectories. The notion

of travelling companion is as essential as convoy [9]. However,

they work on incremental algorithm of pattern discovery when

the trajectories of users arrive in form of data streams. Vieira

et al. [11] present the online flock discovery solution in

polynomial time by identifying a discrete number of locations

to place the center of the flock disk inside the spatial universe.

Aung and Tan [17] propose the notion of evolving convoys

to better understand the states of convoys. Specifically, an

evolving convoy contains both dynamic members and persisted

members. Zheng et al. propose the online gathering pattern
[15] discovery over trajectories in an incremental manner in

[16], which can capture congregations of moving individuals

incrementally from durable and stable area with high density

in trajectories. However, our goal is totally different from these

work. These studies try to find object clusters for consecutive

duration of time points over trajectories, while our work

attempts to discover evolving groups of dynamic core objects

in most recent trajectory streams.

III. PROBLEM DEFINITION

In this section, we introduce the definitions of all concepts

used throughout the paper, and formally state the focal prob-

lem to be solved. The list of major symbols and notations in

this paper is summarized in Table I.

We adopt the notion of density-based clustering [18] to

define the snapshot cluster. Cti={c1ti , c2ti , . . . , cmti } is the col-

lection of snapshot clusters at timestamp ti.
In this work, we use the periodic sliding window semantics

to define the sub-stream of an infinite trajectory data stream.

Each window W has a starting time W.s and an ending time

W.e = W.s+w−1, where w is a predefined window size. The

window whose W.e equals to the current timebin is called the

current window, denoted as Wc. We also use W
tj
ti to denote

the window whoseW.s=ti andW.e=tj . Now we first introduce

our “crowd” concept in sliding window as following Def. 1.

Definition 1: (Crowd) Given a trajectory stream in the

sliding window W , a support threshold mc, a distance thresh-

old d, and a timestamp threshold kc, a crowd Cr is a

sequence of clusters at non-consecutive timestamps, i.e., Cr
=〈cta , ctb , . . . , ctk〉 (W.s ≤ ta < tb < · · · < tk ≤ W.e), which
satisfies the following requirements:

Table I: Table of notations
Notation Definition
oi a moving object

ODB the set of all moving objects

ti timestamp at the ith time point

cti a cluster at timestamp ti
Cr a crowd in a window

kc the timestamp threshold of a crowd

mc the support threshold of a crowd

d the distance threshold in crowd

kp the cluster support threshold of a participator

mp the participator count threshold of a gathering

mg The support threshold for evolving group

W , w a sliding window and its window size

Ws,We The starting and ending time of a window W
Ga a gathering in a window

Gr a group in a window

CanSet the set of closed crowd candidate in a window

cti .st the status flag of ending cluster cti
oi.cnt the # of clusters where o appears in a crowd

(1) The number of clusters in Cr, i.e the number of times-

tamps, is not less than kc.
(2) There should be at least mc objects in each cluster of Cr.
(3) The distance between any adjacent pair of clusters in Cr
is not greater than d∗Δt, where Δt is time difference between

the pair of clusters.

Intuitively, a crowd is bounded in a sliding window, so

kc should be less than w. If kc is equal to w, our “crowd”

degenerates to the crowd in [15]. We also use the Hausdorff

distance [19] to measure the distance between two clusters.

Moreover, a crowd Cr is said to be closed iff there is

no superset of Cr which is a crowd in the current window.

Our goal is to find the closed crowds to avoid discovering

redundant crowds. Essentially the concept of crowd in sliding

window can capture dense group of object clusters in most

recent time. Unlike crowd in [15], we don’t require that

clusters in a crowd are consecutive, i.e., our “crowd” has

a relaxed time restriction. Furthermore, the adjacent clusters

(here adjacent does not mean adjacent in time) should satisfy

the condition that their distance should be less than d ∗ Δt,
namely, we enlarge the distance threshold by being propor-

tional to time difference to connect the clusters at the non-

consecutive timestamps reasonably. Hausdorff distance obeys

metric properties [19], namely, Hausdorff distance has the

properties of identity, symmetry, and triangle inequality. This

guarantees the subset of Cr is also a crowd if the length is not

less than kc, meaning that crowd also satisfies the downward

closure property. Before defining the evolve group, we redefine

the notions of participator and gathering in sliding window

first.

Definition 2: (Participator) Given a crowd Cr in the

current window W , a cluster support threshold kp, an object

o is called a participator of Cr iff it appears in at least kp
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clusters of Cr.
Definition 3: (Gathering) Given a crowd Cr in the current

window W , participator count threshold mp, Cr is called

a gathering iff each cluster of Cr includes at least mp

participators.

By Def. 2, a participator needn’t stay in each cluster of

the crowd. As long as an object occurs in the crowd for

long enough timestamps, it is regarded as a participator. A

gathering also needn’t require a participator to occur at each

time point in the window. Even if some clusters of a crowd

Cr do not include enough participators, its sub-crowd may still

be a gathering if the sub-crowd satisfies the constraint of mp

participators in each cluster. If a crowd Cr is a gathering in the
current windowWc and there is no super-crowd Cr′ ⊃ Cr that
is a gathering, then Cr is a closed gathering in Wc. Therefore,

in each window we still need to detect the closed gatherings

by exploring sub-crowds space although we aim to find the

closed crowds to reduce redundant crowds.

Definition 4: (Group) Given a gathering Cr in the current

window W , the set of all participators in Cr is called a group

that corresponds to Cr in W .

We can also refer the concept of group to the core members
of the gathering in current window. Next we will introduce the

concept of evolving group that is exactly the problem which

this paper studies.

Definition 5: (Evolving Group) Given a group Gr1 in Wi,

a group Gr2 in Wi+1, a fraction support threshold mg , Gr2
is evolved from Gr1 in streaming environments iff |Gr1 ∩
Gr2| ≥ mg ∗ Min(|Gr1|, |Gr2|), denoted as 〈Gr1, Gr2〉.
Given a lifetime support threshold kg , an evolving group is

a chain of groups during at least kg consecutive windows, i.e.

〈Grta , Grta+1 , . . . , Grtb〉, where Grti+1 is evolved from Grti
(i = a, a+ 1, . . . , b− 1) and |b− a+ 1| ≥ kg .

IV. DISCOVERING EVOLVING GROUPS

In this section, we now present our framework for discover-

ing all evolving groups over trajectories in streaming window

environment. Basically, our framework includes three phases:

online crowd discovery, online group detection, and evolving

group updating.

A. Online Crowd Discovery in Sliding Window

We first introduce the incremental algorithm, named Incre,
which discovers the closed crowds in sliding window envi-

ronment. It first utilizes the obtained clusters (by DBSCAN)

to combine the sequences of clusters at new timestamp. Then

the sequences of clusters are used as candidates to validate if

they are closed. By leveraging overlap of adjacent windows in

sliding window, our incremental algorithm successfully avoids

the redundant crowd searching at previously timestamp. Using

an example-driven approach, we now describe how the Incre

algorithm detects the closed crowds.

Example 1: We use the example in Table II to illustrate

the discovery of closed crowds in sliding window. To keep

its simplicity, we assume the two clusters in the same row

Table II: Example 1. snapshot clusters in sliding window

t1 t2 t3 t4 t5
c12 c25

c13
c11 c14 c15
c21

or adjacent rows are close to each other, i.e., their Hausdorff

distance is not greater than d ∗Δt.

Table III: Illustration of closed crowd discovery

time CanSet endclu status CloCr
t1 〈c11〉;〈c21〉 c11;c

2
1

t2 〈c12〉;〈c11〉;〈c21〉 c12;c
1
1;

c21

c11.st=unmth
c21.st=unmth

t3

〈c12, c13〉;
〈c11, c13〉;

〈c12〉; 〈c11〉; 〈c21〉
c13;c

1
2;

c11;c
2
1

c12.st=match
c11.st=match
c21.st=unmth

t4

〈c12, c13, c14〉;
〈c11, c13, c14〉;
〈c21, c14〉;
〈c12, c13〉;
〈c11, c13〉;

〈c12〉; 〈c11〉; 〈c21〉

c14;c
1
3;

c12;c
1
1;

c21

c13.st=match
c12.st=match
c11.st=match
c21.st=match

〈c12, c13, c14〉;
〈c11, c13, c14〉

t1

〈c12, c13, c14〉;
〈c13, c14〉;
〈c14〉;

〈c12, c13〉; 〈c13〉;
〈c12〉

c14;c
1
3;

c12

t5
〈c12, c13, c14, c15〉;
〈c12, c13, c25〉;
〈c12, c13, c14〉;
〈c12, c13〉;
〈c12〉

c15;c
2
5;

c14;c
1
3;

c12

c14.st=match
c13.st=match
c12.st=match

〈c12, c13, c14, c15〉;
〈c12, c13, c25〉

c14.st=unmth
c13.st=match
c12.st=match

We now first introduce the data structures used in our

algorithm. We use CanSet to store all closed crowd candi-

dates in the current window Wc. To support closure check,

each candidate Cr maintains a flag Cr.endclu to indicate the

ending cluster of Cr in Wc. For each ending cluster, we need

to validate whether there exists a new cluster which can be

appended to Cr in next window. Therefore, a status flag of

endclu, denoted as endclu.st, is maintained for each ending

cluster, which is set to uncheck initially at the beginning of

each new window. If there exists a new cluster cnew that be ap-

pended to the ending cluster endclu, then endclu.st=match,
otherwise endclu.st is labelled to unmatch (abbr. unmth).
We use CloCr to denote the closed crowds at each window.

In particular, it is easy to observe that a closed crowd in the

current window can be directly checked in the next window

according to the following lemma.

Lemma 1: Given a closed crowd Cr = 〈cti+a , . . . , ctj−b
〉

(a ≥ 0, b ≥ 0) in window W
tj
ti , if ∃ctj+1 in window W

tj+1

ti
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such that Crnew = 〈cti+a
, . . . , ctj−b

, ctj+1
〉 is a new crowd,

then Crnew is a closed crowd in W
tj+1

ti .

By Lemma 1, we can discover the closed crowds in the

first window by incrementally validating the clusters at each

new timestamp. The intermediate status of crowds at each

timestamp is shown in Table III. Suppose w = 4, kc = 3.
There are two clusters c11 and c21 at time t1. Hence two

candidates 〈c11〉 and 〈c21〉 are stored in CanSet, and the ending

clusters are inserted into endclu. After t2 arrives, we get a

cluster c12, however, c12 is very far away from the clusters

at t1. Therefore, no crowd candidate is updated, and the

statuses of c11 and c21 are labelled to unmth. At t3, there

is a cluster c13 being close to c12 and c11, thus 〈c12, c13〉 and

〈c11, c13〉 are inserted into CanSet. c12.st and c11.st are set to

match, while c21.st is set to unmth. However, the candidates

of last timestamp are still stored in CanSet for validating

potential crowd candidates in next timestamp. After t4 arrives,

we find that c14 is close with c
1
3, thus 〈c12, c13, c14〉 and 〈c11, c13, c14〉

are generated as closed crowd candidates in window W t4
t1 .

Hence c13.st=match. Moreover, we also observe that 〈c11, c14〉
is already included in 〈c11, c13, c14〉 although c11 is also close to

c14 w.r.t. d ∗ Δt. 〈c12, c14〉 is also included in 〈c12, c13, c14〉 even

assuming that c12 was close to c
1
4. Namely, any other candidates

in CanSet ending with c12 or c
1
1 must not form a closed crowd

in the current window. Therefore, we set c12.st and c11.st to

match directly instead of validating the candidates with c14
again. We can further deduce the following corollary.

Corollary 1: Given a crowd candidate Cr =
〈cti+a

, . . . , ctj−b
〉 (a ≥ 0, b ≥ 1) in window W

tj
ti , if

ctj−b
is already included in a closed crowd candidate in

W
tj+1

ti , then Cr + 〈ctj+1〉 must not form a closed crowd in

W
tj+1

ti .

Then we can quickly detect all closed crowds in W t4
t1 .

Namely, the candidates that end with clusters at t4 or clusters

whose status are unmth, and have number of clusters not

less than kc(3). So 〈c12, c13, c14〉 and 〈c11, c13, c14〉 are reported as

closed crowds in final.

After t5 arrives, the window slides from W t4
t1 to W t5

t2 .

Since time t1 has expired, all clusters of t1 are removed

from CanSet and endclu, as shown in Table III. But we

can see that some sub-crowds incur due to the remove of

t1. Which sub-crowds should be removed? And which sub-
crowds should be reserved? We observe that the sub-crowd

that shares the ending clusters with its super-crowd should be

removed from CanSet because it must be included in a close

crowd candidate in next window. On the other hand, the sub-

crowd that does not include the ending cluster of its super-

crowd should be reserved since it may form a close crowd

candidate with new cluster in next window. Therefore, 〈c12, c13〉
is reserved, while other sub-crowd candidates are removed

from CanSet. At t5, there are two clusters c15 and c25. For
validating these two clusters, we need to store two copes

of CanSet, endclus and their status. For c15 detection, we

generate a new crowd candidate 〈c12, c13, c14, c15〉 since c15 is near
c14, and the statuses of c14, c

1
3 and c12 are labelled to match.

For c25 detection, since c25 is far from c14 but is close to c13,
we generate a new crowd candidate 〈c12, c13, c25〉 to insert into

CanSet, and set c14.st to unmth, c13.st and c12.st to match.
Again, we can output the closed crowds from CanSet,

〈c12, c13, c14, c15〉 and 〈c12, c13, c25〉, namely, candidates ending with

clusters at t5 or clusters whose st is unmth at all copies.
1) Optimization strategies.: Next, we present two optimiza-

tion strategies to minimize computation cost. It is easy to see

that the number of CanSet has a great impact on cost of

our algorithm. We first propose the Lemma 2 to reduce the

unnecessary maintained candidates.

Lemma 2: Given a crowd candidate Cr = 〈cti+a
, . . . , ctj−b

〉
(a ≥ 0, b ≥ 0) in window W

tj
ti , and support threshold kc, if

b > j − i+1− kc, then Cr is not a crowd or part of a crowd

from W
tj
ti till to expiration of Cr.

Lemma 2 is intuitive. We omit the proof due to the space

limitations. Using the Lemma 2, the optimized CanSet in

window W t5
t2 is shown as last row in Table III.

Furthermore, we also observe that the order of candidates

in CanSet and corresponding ending clusters can improve

the efficiency of our algorithm by pruning the unnecessary

verification for new clusters in the new window.

Lemma 3: Given a candidate Cr = 〈cti+a
, . . . , ctj−b

〉
(a ≥ 0, b ≥ 0) in window W

tj
ti , and a cluster ctj+1

, if

dH(ctj−b
, ctj+1

) ≤ d ∗ (b + 1), then no need to validate the

candidates that end with any c in Cr-〈ctj−b
〉 with ctj+1

again.

Lemma 3 can be easily proved by Corollary 1. Based on

the observation, we sort CanSet in the last time first order by

ending clusters, and also store corresponding ending clusters

in last time first order in endclu copy at each new timestamp.

For validating a new cluster cnew, we traverse the candidates

with the latest time ending cluster, if cnew is appended into a

candidate Cr, all clusters in Cr are labelled to match if they

are in endclu copy, i.e. we will skip the candidates that end

with the clusters in next traversal on CanSet for cnew.
2) Cluster pruning strategy.: Indexing clusters with R-tree

or grid can improve the efficiency of discovery algorithm.

However the index methods suffer from two major drawbacks.

First, indexing does not work very well in dynamic streaming

environments in which the index has to be continuously rebuilt

when streaming data evolves. Second, it is also very expensive

for mapping the clusters that include lots of objects into index.

Here, we propose a pruning cluster strategy to reduce the

number of Hausdorff distance computation.

To start, we use the mean center of clustermi and maximum

radius ri to represent the cluster ci. ri is the distance from

the center mi to the farthest point in ci. Intuitively, we get

following two pruning rules.

Rule 1: (Long-distance Pruning) Consider two clusters ci
and cj , their mean centers mi and mj , radius ri and rj , and
time difference Δt, if the distance between mi and mj is

greater than ri+rj+d∗Δt, then the Hausdorff distance between

ci and cj must be greater than d ∗ Δt.
Rule 2: (Short-distance Pruning) Consider two clusters ci

and cj , their mean centers mi and mj , radius ri and rj , and
time difference Δt, if the distance between mi and mj is not
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greater than d ∗Δt-Max(r1, r2), then the Hausdorff distance

between ci and cj must not be greater than d ∗Δt.

We omit the proof of these rules due to the space limi-

tations. As shown in Fig. 2(a), the smallest minimum dis-

tance from points in c1 to c2 must be larger than dist,
similarly, the smallest minimum distance from points in c2
to c1 also must be larger than dist. Thus dH(c1, c2) > dist.
Therefore, if |m1 − m2| > r1 + r2 + d ∗ Δt, namely,

dist > d ∗ Δt, then dH(c1, cc) > dist > d ∗ Δt.
In Fig. 2(b), the maximum minimum distance from points

in c2 to c1 must be less than r2+dist(m1,m2), similarly,

the maximum minimum distance from points in c1 to c2
must be less than r1+dist(m1,m2). Hence, dH(c1, c2) <
Max(r1, r2) + dist(m1,m2). If dist(m1,m2) < d ∗ Δt-
Max(r1, r2), namely, Max(r1, r2)+ dist(m1,m2) < d ∗Δt,
then dH(c1, c2) < d ∗Δt. By the pruning rules, we only first

calculate the distance between the mean centers to determine

whether to continue to compute the Hausdorff distance for

validating the final results.

r2
r1

c2
c1 dist

(a) Long-distance pruning

r2

r1
c2 c1

(b) Short-distance pruning

Figure 2: Examples of pruning cluster

3) Incre algorithm.: Alg. 1 shows the Incre algorithm

for discovering closed crowd in sliding windows. Incre first

removes the information of ti−1 from CanSet of last window.
In particular, we also use Lemma 2 to remove the unnecessary

maintained candidates (lines 4-5). Cr.endclu.t denotes the

timestamp of ending cluster of candidate Cr. For a new cluster

ctj , we maintain a copy of CanSet, denoted as ctj .CanSet.
Each candidate whose ending cluster is unchecked would be

validated with ctj , as shown in lines 9-16. If ctj is close to

Cr.endclu, a new candidate is generated and inserted into

CanSet, and all ending clusters in Cr are labelled to match
(lines 11-14). Cr.allendclu stands for all ending clusters in

Cr. Finally, all length enough (≥ kc) candidates that end with

clusters at tj or with numth status in all copies are reported

as closed crowds (lines 17-19). Cr.endclu.allst = unmth
denotes the statuses of Cr.endclu are unmath in CanSet
copies of all new clusters.

B. Online Group Extraction in sliding window

Next, we will discuss the algorithm to detect closed gather-

ing and corresponding group on each obtained closed crowd

in sliding window. We also first use an example to elaborate

our process method. Then we will present the details of our

algorithm on basis of the proposed principles.

Example 2: Consider a closed crowd shown in Table IV,

and let w = 8, kc = 6, kp = 5 and mp = 3. There is

a closed crowd Cr1 = 〈ct1 , ct2 , ct3 , ct4 , ct5 , ct7 , ct8〉 with 6

Algorithm 1 Incre algorithm for Crowd Discovery

Input: the current window W
tj
ti , Ctj , kc, mc, d

Output: Closed crowds CloCr
1: CloCr ← ∅; CanSet ← W

tj−1

ti−1
.CanSet;

2: for each Cr ∈ CanSet do
3: Remove cti−1

from Cr; //delete clusters at time ti−1

4: if (|tj−1 − Cr.endclu.t| > j-i+1-kc) then
5: Remove Cr from CanSet;

6: CanSetCopy ← CanSet;
7: for each ctj ∈ Ctj do
8: ctj .CanSet ← CanSetCopy; // a copy of CanSet
9: for each Cr ∈ ctj .CanSet do
10: if (Cr.endclu.st == uncheck) then
11: if (dH(ctj , Cr.endclu) ≤ d ∗Δt) then
12: Insert Cr + 〈ctj 〉 into CanSet;
13: Cr.endclu.st ← match;
14: Cr.allendclu.st ← match;
15: else
16: Cr.endclu.st ← unmth;

17: for each Cr ∈ CanSet do
18: if ((Cr.endclu.t == tj |Cr.endclu.allst == unmth)

&Cr.len ≥ kc) then
19: CloCr ← CloCr ∪ Cr;

Table IV: Example 2. a closed crowd in W t8
t1

and W t9
t2

ct1 ct2 ct3 ct4 ct5 t6 ct7 ct8 ct9
o1 o1 o1 o1 o1 o1
o2 o2 o2 o2 o2 o2 o2
o3 o3 o3 o3 o3 o3 o3

o4 o4
o5 o5 o5 o5 o5 o5

o6 o6 o6 o6 o6

objects in window W t8
t1 that also evolves to a closed crowd

Cr2 = 〈ct2 , ct3 , ct4 , ct5 , ct7 , ct8 , ct9〉 in W t9
t2 .

We first verify if the crowd is a gathering in current window

W t8
t1 . It is easy to see that the objects {o1, o2, o3, o5, o6}

are participators w.r.t. threshold kp(5). But not every cluster

contains mp(3) participators, e.g. ct3 is considered as an in-

valid cluster since it only contains two participators. However,

〈ct1 , ct2 , ct4 , ct5 , ct7 , ct8〉 still is a crowd in this window by

removing the invalid cluster, meaning that it still may be

a gathering. Therefore, we need to further check the sub-

crowd if it is a closed gathering. Again we get participators

{o1, o2, o3, o5} from the sub-crowd. Obviously, the set of

participators is a subset of that of Cr1. Now we introduce

the following lemma by the observation.

Lemma 4: Given a crowd Cr and its corresponding partic-

ipator set O in window W
tj
ti , for any crowd Cr′ ⊂ Cr, the

corresponding participator set O′ of Cr′ is a subset of O.

Lemma 4 is intuitive. We omit the proof due to the space

limitations.

In particular, we use o.cnt to denote the number of clusters

in which o appears in a crowd. For example, we get {o1.cnt =
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6, o2.cnt = 6, o3.cnt = 6, o4.cnt = 2, o5.cnt = 5, o6.cnt =
5} in Cr1, where the object with an overline denotes a non-

participator because its cnt is less than kp(5). When re-

checking the participators in Cr1 − 〈ct3〉, we only verify if

the participators appear in ct3 . If yes, o.cnt is reduced by 1,

otherwise, o.cnt stays the same. Therefore, we can fast find

out new participator set {o1.cnt = 5, o2.cnt = 6, o3.cnt =
6, o5.cnt = 5, o6.cnt = 4}. Then we detect a closed gathering

〈ct1 , ct2 , ct4 , ct5 , ct7 , ct8〉 along with its group {o1, o2, o3, o5},
since each cluster contains at least mp(3) participators.

After t9 arrives, W t8
t1 slides to W t9

t2 . A new closed crowd

Cr2 in W t9
t2 is generated based on Cr1 in last step. First, we

need to delete the information of t1 from Cr1. Similarly, we

can directly use the above method to fast update participator

set by removing invalid cluster ct1 from Cr1. Next, we

consider that how to update new cluster ct9 to obtained result

using minimal computation. We here add the new cluster into

Cr1 − 〈ct1〉, namely, verify Cr2 in basis of the obtained

participator set. Therefore, we only need to check whether

the objects appear in new cluster ct9 . Thus, the participator

set is updated to {o1.cnt = 5, o2.cnt = 6, o3.cnt =
6, o4.cnt = 2, o5.cnt = 6, o6.cnt = 4}.

Similarly, we next continue to verify the candidate using

above removing method. Finally, 〈ct2 , ct4 , ct5 , ct7 , ct8 , ct9〉 is

reported as a closed gathering with corresponding group

{o2, o3, o5} in W t9
t2 .

Moreover, if ct9 was an invalid cluster, we can see that the

detection falls back to obtained result in last window, i.e. W t8
t2 .

Namely, we only need to directly verify the obtained result in

W t8
t1 by removing t1.
By the illustration of Example 2, we propose our Verify
with Removing and Adding (VRA) algorithm to detect

closed gatherings with corresponding groups in sliding win-

dow efficiently.

As shown in Alg. 2, Ga denotes a closed gathering, and

Gr is its corresponding group. Par is the participator set

with their cnts. If Cr is an emerging closed gathering,

we get its participator set in clusters of Cr from scratch

(denoted as Participator(Cr)). Otherwise, we can fast find

out participator set of Cr from Par of last window by only

verifying the objects in cti−1
and ctj (lines 4-6). Lines 8-

19 show the detection process of closed gathering applying

a downward method. VRA first checks if each cluster in the

crowd copy Cr′ contains enough participators shown as lines

12-14. If not, VRA then updates the participators by removing

invalid clusters (lines 9-11), and re-checks each clusters of the

remainder again (lines 12-14) till the remainder is not a crowd

or there is no invalid cluster. If there is no invalid cluster, Cr′

and its current participators are reported as closed gathering

and corresponding group. Actually, we only focus on the real

participators whose cnt ≥ kp instead of all objects in Cr
in this detection process because the participators of a crowd

must be from that of its super-crowd by Lemma 4. Par′(kp)
denotes the set of real participators that satisfy kp threshold,

and Par′(kp, c) denotes the set of real participators in cluster

c.

However, if ctj is an invalid cluster in the process, the

detection falls back to obtained result in last window. As

shown in lines 17-19, we further verify the obtained gathering

of last window by removing the expired timestamp ti−1.

Algorithm 2 Verify with Removing and Adding (VRA)

Input: closed crowd Cr in window W
tj
ti , closed crowd Cr1

and Par in W
tj−1

ti−1
, kc, kp, mp

Output: gathering Ga, and corresponding group Gr
1: Ga ← ∅; Gr ← ∅; Cun ← ∅;
2: if Cr is an emerging closed crowd then
3: Par ← Participator(Cr);
4: else
5: Par ← Par−obj(cti−1

); //delete information of ti−1

6: Par ← Par + obj(ctj ); //add information of tj

7: Cr′ ← Cr; Par′ ← Par;
8: while (|Cr′ − Cun| ≥ kc) do
9: for each c ∈ Cun do
10: Par′ ← Par′ − obj(c);

11: Cr′ ← Cr′ − Cun; Cun ← ∅;
12: for each c ∈ Cr′ do
13: if (|Par′(kp, c)| < mp) then
14: Cun ← Cun ∪ c;

15: if (Cun == ∅) then
16: Ga ← (Cr′); Gr ← Par′(kp); Break;
17: else if (ctj ∈ Cun & |Cr′ − Cun| ≥ kc) then
18: Fall back to Ga and Gr in W

tj−1

ti−1
;

19: Verify Ga-〈cti−1
〉 on Gr; Break;

Lemma 5: Given a closed crowd Cr in the current window

Wc, If Ga is reported as a gathering from Cr by V RA
algorithm, then the gathering Ga is closed in Wc.

Proof 1: Lemma 5 can be proved easily. Suppose Ga is

reported as a gathering by V RA algorithm. According to the

downward flow of our V RA algorithm, Ga is the biggest

sub-crowd of Cr that satisfies the condition that each cluster

contains mp participators. Namely, there is no super-crowd of

Ga which is a gathering. Therefore, Ga is closed in Wc by

closure property of gathering described in Sec. III.

C. Evolving Group Updating

In the third phase, we update the evolving groups by

constructing the sequence chain of groups incrementally. For

each group obtained in the current window, we first evaluate

if it is evolved from a group of last window, namely, whether

it shares most of core members with the groups detected in

last window. If yes, we update the group into the evolving

group. Therefore, we can find that each pair of adjacent groups

in an evolving group has an evolutionary relationship. If the

group does not share most of members with any group in

last window, i.e., the group is an emerging gathering in the

current window, a new evolving group that only contains the

group is constructed. Moreover, If the last group in a chain

(the group in last window) is not continued to be evolved in
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current window, we say that the evolving group is a closed

evolving group.

V. EXPERIMENT

All algorithms in the experiment are implemented in Java

on CHAOS stream engine [20]. All tests run on a computer

equipped with Inter Xeon E5-2660 CPU (2.2GHz), 16G mem-

ory, and Windows Server 2012 operating system.

Real Dataset. We use a real life trajectory dataset Taxi in
the experiment study. The dataset is from T-Drive project [21]

collected by Microsoft Research Asia. In our experiments, we

use a sample of the dataset that contains one week trajectories

of 10,357 taxis in a period from February 2 to February 8

2008. We divide a day into four time periods, morning and

evening peak time (7am to 10am and 4pm to 8pm), work

time in morning and noon (10am to 1pm) and work time in

afternoon (1pm to 4pm). We also interpolate the time domain

into the granularity of minute on Taxi dataset.

A. Effectiveness

First, we evaluate the effectiveness of our proposed evolving

group in case study of traffic condition on Taxi data compared

against gathering pattern [15][16].

We obtain the snapshot clusters at each timestamp by setting

MinPts=5 and Eps=300 meters. Fig. 3(a) shows the average

number of patterns discovered by our proposed algorithm on a

single day with the settings of w=6, kc=5, mc=8, kp=4, mp=5,

mg=0.7, and d=300 meters (i.e., a group of 5 or more core

members travelling at least 5 time points in a 6 min sliding

window). We select the closed evolving groups with kg ≥
9 (i.e., an evolving group lasting for at least 9 consecutive

windows). As comparison, we also search for the gathering

patterns at the corresponding settings kc=15, mc=8, kp=11,
mp=5 (i.e., a gathering of 5 or more participators travelling

together for a period of at least 15 minutes).

In Fig. 3(a), we can find that the overall trend of evolving

groups is consistent with the number of gathering patterns,

which reflects the severe traffic congestion during the rush time

on workday in Beijing. However, more evolving groups are

captured in traffic streams compared with gathering pattern,

especially during two peak times. This is because gathering

only focuses on the serious traffic jams that last for a period

of fixed consecutive time units, while our evolving group also

tracks the short-lived aggregations of vehicles during non-

consecutive time to monitor if they are becoming more serious

or getting ease, except the long traffic congestions.

Next, we compare the average length of discovered patterns

on a single day. We select the closed evolving groups whose

length kg ≥ 15 to make number of evolving groups be equal

to the number of gatherings. From Fig. 3(b), we can easily see

that the average length of evolving group is larger than that of

gathering at all time period, meaning that our group pattern

can detect the crowding events earlier or track the trend of

the events more time units. In particular, the average length

of evolving group is much larger than that of gathering during

evening peak time, reaching at 15 minutes gap. This may be

because that our framework captures the vehicle group events

before the serious traffic jams are formed between 16:40 and

5:10 by observing the discovered patterns.
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Figure 3: Effectiveness study

B. Case studies

We employ a visualized method with two cases to demon-

strate the effectiveness of our evolving group. As shown in

Fig. 4, each circle represents a group in sliding window. For

two connected groups by a solid line, the latter is evolved

from the former, and the weight of line indicates the number

of common members. We also use the size of circle to denote

the number of objects in the group, and the color of circle to

denote the life time of the evolving group, gradually changing

from green to red. We also plot out the IDs of objects in

the rectangle for some significant groups. It is easy to see the

advantages of evolving groups from Fig. 4(a) and 4(b). Even if

a gathering pattern has the same length as an evolving group,

it can not contain such rich information as an evolving group

reveals.

Case 1: Fig. 4(a) shows several evolving groups during

the period of 17:05-17:27 on Feb 4. We simply mark out 3

representative evolving groups as shown in Fig. 4(a). Obvi-

ously, EGr1 is independent of other evolving groups, however,
it evolves continuously over time, for example, the evolving

group grows to 11 core members at clock 17:19, while shrinks

into 6 participators at 17:27. EGr3 represents a serious traffic

jam for 6 minutes at beginning of the case. However, the

traffic jam gets alleviated by splitting into two smaller groups

at 17:13, and then the two evolving groups end at about

17:19 and 17:21 respectively, meaning that transportation

condition becomes much smoother. Another EGr2 interacts

with EGr3 during [17:09, 17:11]. We observe that EGr2
suddenly becomes much bigger at time 17:15, and then be

much smaller at next window. This may be caused by an

emergency, such as a traffic accident or an emergency repair.

Case 2: In Fig. 4(b), four evolving groups during 8:15-

8:37 on Feb 4 are shown in this case. EGr1 shows the

development process of a continuous traffic congestion from

very serious towards somewhat light. However, we can see

that the participators at time 8:17, 8:27 and 8:37 also change

significantly over time, but our model also captures the traffic

jam using gradual evolution in sliding window. EGr3 and

EGr4 share the first half part, which demonstrates the forming

process of a serious traffic jam vividly. This can be revealed
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Figure 4: Case studies on effectiveness

by that most participators keep evolving into next group

continuously from 8:17 to 8:25. The cause of the phenomenon

that the jam is separated into two groups at time 8:27 may be

an efficient shunting strategy. Moreover, we can get that the

two vehicle teams are scattered gradually from 8:28 to 8:35

based on the evolving groups shown in Fig. 4(b).

C. Efficiency

Next, we compare the performance of our framework with

the discovery algorithm of gathering pattern in [16]. We

denote their crowd detection and closed gathering discovery

in gathering pattern [16] as G-crowd and TAD* respectively.
In particular, we measure the running time of each window

in different parameter settings. The results are averaged over

one thousand windows. Each window slides by one minute.

We omit the experiment studying kc and kp, since kc and kp
only affect the number of closed crowds and participators, but

have little impact on the time cost of algorithms.

Running time w.r.t. thresholds mc and mp. First, we

evaluate the performance of two frameworks w.r.t thresholdmc

and mp. Since mc only affects the number of crowds, we only

measure the running time of closed crowds discovery using

two pruning methods: a) -prune, our cluster pruning strategy;

b) -grid, grid-based indexing [15][16]. We fix kc=7 (w=8),
kp=5, d=300 meter, |ODB |=10, 000, and mg=0.7. In Fig. 5(a),

we vary mc from 7 to 11 at fixed mp=5. In Fig. 5(b), we vary

mp from 1 to 17 at fixed mc = 8. As shown in Fig. 5(a), we

can see that Incre-prune outperforms G-crowd-grid and Incre-

grid methods. This may be because 1) we use two optimization

principles to reduce the number of crowd candidates and prune

the unnecessary validating with new clusters; 2) our cluster

pruning efficiently filters the long-distance clusters as well

as short-distance clusters, while grid suffers expensive cost

in indexing clusters in high-speed streaming data. Since mc

affects the number of clusters that satisfy the dense group at

each timestamp, the larger mc we choose, the less number of
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clusters satisfy this threshold. Therefore, the running time of

all algorithms decreases as mc increases. It is also easy to

see that VRA exhibits much better performance than TAD* in

term of CPU time in Fig. 5(b). This is because we reuse the

detection process of participators in finding closed gathering as

window slides, although we maintain much more closed crowd

candidates. mp would affect the number of invalid clusters

in crowd. As mp increases, more clusters are invalid, which

causes process of closed gathering to terminate more quickly

in each window for our framework.
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Figure 5: Running time w.r.t. threshold mc and mp

Running time w.r.t number of objects and hausdorff
distance. Finally, we compare total running time of our

framework against gathering pattern by varying the number

of moving objects and hausdorff distance respectively when

fix w=8, kc= 7, mc = 8, kp = 5, mp = 5, mg=0.7. Fig.

6(a) shows the results at fixed d=300 meters. Our algorithm

is superior to the discovery framework of gathering pattern

(with grid indexing) in detecting closed crowds and gatherings,

shown as Incre+VRA (with pruning strategy). Moreover, our

overall framework also outperforms the gathering pattern in

term of total running time, although our evolving group can

capture more interesting patterns by considering crowds across

non-consecutive time points. In particular, our framework

reaches 31ms per window when |ODB |=10, 000, saving 16%

CPU time compared to the gathering pattern. Fig. 6(b) shows

the results w.r.t hausdorff distance at fixed |ODB |=10, 000.
As expected, the running time of both algorithms increases

as the distance increases. This is because the search space

between new clusters and ending clusters increases although

both employ pruning methods, further causing the number of

crowd candidates increases at each window.
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Figure 6: Running time w.r.t. number of objects and Hausdorff distance

VI. CONCLUSION

In this work we focus on the detection of evolving group

patterns over massive-scale trajectory streams. After analyzing

the requirements of stream trajectory monitoring applications,

we first propose the novel concept of evolving group to capture

the variety of group events and their evolving process in

trajectory streams. Furthermore, we design an online discovery

framework of evolving group, which contains three phases

incorporating a series of optimization principles to reduce

computation cost. At last we evaluate the effectiveness and

efficiency of our framework compared against the state-of-

the-art on a real large-scale traffic dataset.
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