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Abstract. Recommending a limited number of Point-of-Interests (POIs)
a user will visit next has become increasingly important to both users
and POI holders for Location-Based Social Networks (LBSNs). However,
POI recommendation is a challenging task since complex sequential pat-
terns and rich contexts are contained in extremely sparse user check-in
data. Recent studies show that embedding techniques effectively incor-
porate POI contextual information to alleviate the data sparsity issue,
and Recurrent Neural Network (RNN) has been successfully employed
for sequential prediction. Nevertheless, existing POI recommendation
approaches are still limited in capturing user personalized preference due
to separate embedding learning or network modeling. To this end, we pro-
pose a novel unified spatio-temporal neural network framework, named
PPR, which leverages users’ check-in records and social ties to recommend
personalized POIs for querying users by joint embedding and sequential
modeling. Specifically, PPR first learns user and POI representations by
joint modeling User-POI relation, sequential patterns, geographical influ-
ence, and social ties in a heterogeneous graph, and then models user per-
sonalized sequential patterns using the designed spatio-temporal neural
network based on LSTM model for the personalized POI recommendation.
Extensive experiments on three real-world datasets demonstrate that our
model significantly outperforms state-of-the-art baselines for successive
POI recommendation in terms of Accuracy, Precision, Recall and NDCG.
The source code is available at: https://github.com/dsj96/PPR-master.

Keywords: POI recommendation · Location-based social network ·
Spatio-temporal neural network · Heterogeneous graph

1 Introduction

Newly emerging LBSNs has become an important mean for people to share their
experience, write comments, or even interact with friends. With the prosperity of
LBSNs, many users check in at various POIs via mobile devices in real time. There-
fore, a large amount of check-in data is being generated, which is crucial to under-
stand the users’ preferences and behaviors. POI recommendation not only helps
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users explore attractive and interesting places, but also gives guidance to location-
based service providers, where to launch advertisements to target customers for
marketing. Due to the great significance to both of users and businesses, how to
use spatio-temporal information effectively, and recommend a limited number of
POIs users more likely visit next have been attracting increasing attention in both
industry and academia.

In particular, several studies [2,10,14,20,24] have been conducted to recom-
mend successive POIs for users based on users’ spatio-temporal check-in sequence
in LBSNs. Based on Markov chain model, LORE [24] and NLPMM [2] explore
users’ successive check-in patterns by considering temporal and spatial informa-
tion. ST-RNN [10] employs RNN to capture the users’ sequential check-in behav-
iors. In a follow-up work, STGN [28] carefully designs the time gates and distance
gates in LSTM to model users’ sequential visiting behaviors by enhancing long
short term memory. Additionally, some models [1,4] based on Word2Vec [15]
framework to capture the preference and mobility pattern of users and the rela-
tionship among POIs also achieved decent performance. GE [20] uses graph
embedding to combine the sequential effect, geographical influence, temporal
effect and semantic effect in a unified way for location-based recommendation.
Recently, SAE-NAD [14] utilizes a self-attentive encoder to differentiate the user
preference and a neighbor-aware decoder to incorporate the geographical context
information for POI recommendation.

However, location-based POI recommendation still faces three major chal-
lenges. First, data sparsity, unlike the general e-commerce, music and movie
recommendation, which can be collected and verified just online, location-based
POI recommendation systems usually associate with the POI-entities. Only when
a user visits a POI-entity, a check-in record is generated. Therefore, the check-
in records in the POI recommendation task is much sparser. This issue has
plagued many POI recommendation models based on the collaborative filtering.
Furthermore, data sparsity problem in check-in data makes it difficult to cap-
ture user’s sequential pattern, because the check-in sequence is very short or is
not continuous in time. Second, contextual factors, POI recommendation may be
affected by various contextual factors, including social tie influence, geographi-
cal influence, temporal context, and so on. In fact, social ties are often available
in LBSNs, and recently studies show that social networks associated with users
are important in POI recommendation task since users are more likely to be
influenced by their close friends (Who keeps company with the wolf will learn to
howl). In this work, we incorporate social ties, check-in time interval, sequential
and geographical effect into user-POI interaction graph to joint learn user and
POI representations. Lastly, dynamic and personalized preferences, users’ prefer-
ences are changing dynamically over time. At different time and circumstances,
users may prefer different POIs. For example, some users prefer to visit gourmet
restaurants in the local area, but when they go to a new city, some prefer to visit
the cultural landscapes, while some prefer the natural landscapes. Dynamically
and accurately capturing this trend has been proved to be essential for personal-
ized POI recommendation task. However, effectively modeling the personalized
sequential transitions from the sparse check-in data is challenging.
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To address the aforementioned challenges, in this work, we stand on advances
in embedding technique and RNN network, and propose our model, named
PPR, which is a spatial-temporal representation learning framework for person-
alized and successive POI recommendation. First, we jointly model the user-POI
relation, sequential effect, geographical influence and social ties by constructing
a heterogeneous graph, and then develop a densifying trick by adding second-
order neighbors to nodes with low in/out-degrees to alleviate the data sparsity
issue. Then, we learn user and POI representations by embedding the densified
heterogeneous graph into a shared low-dimensional space. Furthermore, to better
capture the user dynamic and personalized preference, we also design a spatio-
temporal neural network by concatenating user embedding, POI embedding and
POI category as personalized sequence input to feed the network.

The main contributions of this paper are summarized as follows:

– We propose a novel PPR model for personalized POI recommendation, which
incorporates users’ check-in records and social ties. We construct a hetero-
geneous graph by jointly taking user-POI relation, sequential pattern, geo-
graphical effect and social ties into consideration to learn the representations
of users and POIs.

– We propose a spatio-temporal neural network to model users’ dynamic and
personalized preference by concatenating user, POI embedding and POI cat-
egory to generate personalized behavior sequence.

– We conduct extensive experiments to compare our method with state-of-
the-art baselines, and our method significantly outperforms state-of-the-art
baselines for successive POI recommendation task.

2 Related Work

General POI Recommendation. The most well-known approaches of person-
alized recommendation are collaborative filtering (CF) and Matrix Factorization
(MF). The conventional CF techniques have been widely studied for POI rec-
ommendation. LARS [6] employs item-based CF to make POI recommendation
with the consideration of travel penalty. FCF [22] is a friend-based CF model
based on the common visited POIs among friends, which considers the social
influence. UTE [23] is a collaborative recommendation model that incorporates
with temporal and geographical information. However, such methods suffer the
data sparsity problem, leading them difficult to identify similar users.

Recommendation models based on MF and embedding learning [7,11,12]
have been intensively studied. Rank-GeoFM [9] fits the users’ preference rank-
ings for POIs to learn the latent embeddings. By incorporating the geographical
context, it utilizes a geographical factorization method for calculating the rec-
ommendation score. TSG-MF [26] models the multi-tag influences via extracting
a user-tag matrix and the social influences via social regularization, and uses a
normalized function to model geographical influences.
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Next POI Recommendation. In the literature, next POI recommendation
issues have been studied in [19,28], in which the main objective is to exploit the
user’s check-in sequence between different POIs and dynamic preference.

Markov Chains (MC) Based Methods. MC based models aim to predict
the next behavior according the historical sequential behaviors. FPMC-LR [3]
considers first-order Markov chain for POI transitions and distance constraints.
HMM [21] exploits check-in category information to capture the latent user
movement pattern by using a mixed hidden Markov chain. LORE [24] incremen-
tally mines sequential patterns and represents it as a dynamic location-location
transition graph. By utilize an additive Markov chain, LORE fuses the sequen-
tial, geographical and social influence in a unified way.

Graph-Based Methods. Graph-based approaches are exploring in the litera-
ture of next POI recommendation. GE [20] jointly captures the latent relations
among the POI, region, time slot and words related to the POIs by constructing
four bipartite graphs. HME [5] projects the entities into a hyperbolic space after
study multiple contextual subgraphs. Although the above approaches achieve
promising performance, they can not model the sequential patterns effectively.

RNN-Based Methods. Recently, RNNs such as LSTM or GRU have demon-
strated groundbreaking performance on predicting sequential problem. ST-
RNN [10] utilizes RNN structure to model the temporal contexts by carefully
designing the time-specific and distance-specific transition matrices. NEXT [25]
encodes the sequential relations within the pre-trained POI embeddings by
adopting DeepWalk [16] technique. Time-LSTM [30] employs LSTM with time
gates to capture time interval among users’ behaviors. CAPE [1] first uses a
check-in context layer to capture the geographical influence of POIs and a text
content layer to model the characteristics of POIs from text content. Then,
CAPE employs RNN as recommendation component to predict successive POIs.
PEU-RNN [13] proposes a LSTM based model that combines the user and POI
embeddings, which are learned from Word2Vec. ASPPA [27] proposes to iden-
tify the semantic subsequences of POIs and discover their sequential patterns.
Recently, STGN [28] extends the LSTM gating mechanism with the spatial and
temporal gates to capture the user’s space and time preference. However, these
approaches fail to capture users’ personalized preferences.

3 Problem Definition

In this section, we first give the key concepts used in this paper. Then, the
problem definition for personalized POI recommendation is formulated.

Definition 1 (POI). A POI is a uniquely identified venue in the form of
〈p, �, cat〉, where p is the POI identifier, cat denotes the category of the POI, and
� represents the geographical coordinates of the POI (i.e., longitude and latitude).

Definition 2 (Check-in record). A check-in record is a triple c = 〈u, v, t〉
that represents user u visiting POI v at timestamp t.
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The collection of all users is denoted as U , and the collection of all POIs is
denoted as V .

Definition 3 (Trajectory). The trajectory of a user u is a sequence of all
check-in records (〈u, v1, t1〉, 〈u, v2, t2〉, . . . , 〈u, vn, tn〉) made by user u in chrono-
logical order. We denote it as Tu.

Definition 4 (Social Ties). Social ties among users is defined as a graph Gu =
(U, Eu), where U is the set of users, and Eu is the set of edges between the users.
Each edge eij ∈ Eu represents users ui and uj being friends in LBSNs and is
associated with a weight wij > 0, which indicates their tie strength.

Problem 1 (Successive POI Recommendation). Given users’ check-in
records and their social ties, and a querying user u with his/her current check-in
〈u, v, t〉, our goal is to recommend top-k POIs that user u would be interested in
in the next τ time period.

4 Methodology

In this section, we first present the details of the proposed framework PPR. Then
we introduce our model how to utilize PPR model to make personalized POI
recommendation.

4.1 Heterogeneous Graph Construction

We first introduce the heterogeneous User-POI graph to model users’ sequential
check-ins and social relationships. Specifically, we employ a heterogeneous graph
G = (V,U, E ,W ) to jointly model the multiple relations between users and POIs.
U and V are the user collection and POI collection respectively, and E is the set
of all edges between nodes in G, which are categorized into three edge types, i.e.,
Eu, Ev, and Eu,v. As mentioned in Definition 4, each edge ei,j ∈ Eu represents
that user ui and uj are friends. Each edge ei,j ∈ Ev denotes that there exists
at least one user visits POI vj after visiting POI vi, and each edge ei,j ∈ Eu,v

indicates that user ui visits POI vj at least one time. Notice that each edge
e ∈ Eu ∪ Eu,v is a bi-directed edge and each edge e ∈ Ev is a directed edge,
and each edge is associated with a weight w ∈ W (w > 0), which indicates the
strength of the relation.

Modeling User-POI Relation. Intuitively, we consider that if user ui visit
POI vj more frequent, ui and vj have a stronger relation than with other POIs.
Therefore, we formulate the weight between user ui and POI vj as:

wi,j = freq(ui, vj), (1)

where freq(, ) denotes check-in frequency of user ui visiting POI vj . Since we
aim to build a directed graph to accommodate the following work, we define
wi,j = wj,i for the bi-directed edge ei,j ∈ Eu,v between user ui and POI vj .
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Modeling Sequential and Geographical Effect. Compared with general
POI recommendation, successive POI recommendation pays more attention to
sequential pattern. The impact of user’s recent check-in behaviors are greater
than those of a long time ago when making POI recommendations [20]. To
further model the sequential effect, we carefully design a weighting strategy for
the edges in Ev.

Let Δtuk,k+1 be the time interval between two consecutive check-in records in
the trajectory Tu of user u. luk,k+1 is the flag that indicates the status of a pair
of consecutive check-in records in the trajectory Tu, which is defined as:

luk,k+1 =
{

1 if Δtuk,k+1 < θ

0 else
, (2)

where θ is a predefined time threshold.
Given an edge ei,j ∈ Ev from POI vi to POI vj , the sequential weight w

(seq)
i,j

for the edge ei,j is defined as:

w
(seq)
i,j =

∑
u∈U

|Tu|−1∑
k=1

luk,k+1, if vk = vi and vk+1 = vj . (3)

Namely, the weight w
(seq)
i,j for the edge from POI vi to POI vj is the total

number of times that all users visit vi first and then vj in their trajectories.
Furthermore, geographical influence indicates the impact of geographical dis-

tance to the users’ spatial behaviors. According to [5,8], the distribution of the
geographical distance between two successive POIs follows the power-law distri-
bution, which means users are more willing to visit POIs close to the current
location. Therefore, we incorporate the geographical distance into our model as
follows:

w
(geo)
i,j =

dκ
i,j∑

vk∈N(vi)

dκ
i,k

, (4)

where N(vi) represents the set of out-neighbor POIs of POI vi in Ev, di,j denotes
the Euclidean distance between POIs vi and vj , and κ is the negative exponent
(i.e., κ < 0). Finally, we combine the sequential and geographical influence as
follows:

wi,j = w
(seq)
i,j · w

(geo)
i,j . (5)

In such way, the sequential, time interval and geographical information are
all reflected in graph G.

Modeling Social Tie Strength. Users in an LBSN have multiple types of
relations with other users, such as friends, family and colleagues. The prefer-
ence of a user in social network are easily affected by his/her close friends or
other users which has some kind of relations with them. Recently, these social
ties are incorporated into the POI recommendation system [25] to improve the
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recommendation performance. In this work, we propose to assign the weight
between the users based on their historical check-in interactions. Specifically, for
two socially connected users ui and uj , we assign the edge weight wi,j as:

wi,j =
ε +

∑
v∈V

min(fui,v, fuj ,v)

|Tui
∩ Tuj

| + 1
, (6)

where ε is a very small float number to avoid two users have connection but no
common visited POIs, fui,v denotes the frequency of user ui visiting at POI v,
and |Tui

∩ Tuj
| represents the number of the common visited POIs for user ui

and uj . Therefore, the common preferences between socially connected users are
also taken into account in the User-POI graph G.

Densifying Graph. Most recommendation models need to take the data spar-
sity into consideration, but the check-in data in POI recommendation area is
much sparser. To address the data sparsity issue, we propose to construct a
dense graph based on the graph G. Specifically, we regard each user and POI
as a node, and expand the neighbors of those nodes with low in/out degrees by
adding higher order neighbors. In this work, we only consider expanding second-
order neighbors to every node. If the out-degree of a node in G is less than
a predefined threshold ρ, we create an edge from node vi to its second-order
out-neighbor node vj and assign the weight as follows:

wi,j =
∑

vk∈N(vi)

wi,k
wk,j

d
(o)
k

, (7)

where N(vi) is the set of out-neighbors of node vi, and d
(o)
k is the out-degree of

the node vk. The densifying method for nodes with a low in-degree less than ρ is
same. After densifying the User-POI graph, we can get the a more dense network,
denoted by Gdense. Then we use Gdense instead of G and exploit embedding
technique to learn the nodes’ representation vectors.

4.2 Learning Latent Representation

Inspired by LINE [17], which learns the first- and second-order relations repre-
sentations of homogeneous networks. We develop it to learn heterogeneous node
representations on our constructed heterogeneous graph Gdense.

Specifically, we regard each user or POI as a node v and ignore their node
type. In graph Gdense, each node plays two roles: the node itself and a specific
“context” of other nodes. We use −→vi to denote the embedding vector of node vi

when it is treated as a node, and −→vi
′ to denote the embedding vector of vi when

it is treated as a specific “context”. In particular, we use a binary cross-entropy
loss to encourage nodes and their “context” connected with an edge, to have
similar embeddings. Therefore, we minimize the following objective function:

O = −
∑

ei,j∈E

(
log

(
σ(−→vj

′T · −→vi )
)

+ wn

∑
vn∈Neg(vi)

log
(
1 − σ(−→vn

′T · −→vi )
))

, (8)
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where σ() is the sigmoid function, −→vj
′T denotes vector transpose, Neg(vi) is a

negative edge sampling w.r.t. node vi in Gdense, and wn denotes the negative
sampling ratio, which is a tunable hyper-parameter to balance the positive and
negative samples.

By minimizing the objective function O with ASGD (asynchronous stochas-
tic gradient) optimization and edge sampling technique, we can learn a d-
dimensional embedding vector for each user and POI in Gdense. Additionally,
the representation learning is highly efficient and is able to scale to very large
graphs because of the use of edge sampling technique.

4.3 Modeling User Dynamic and Personalized Preference

Fig. 1. Architecture of the proposed model

After representation learning, all users and POIs are mapped into a low dimen-
sional space. However, the latent representations only capture the users’ prefer-
ences or POIs’ characteristics in a general way. Although it can model sequence
transition patterns and geographical influence, some personalized preference may
not be preserved in the node representations.

Furthermore, the categories of POIs are very useful to make a better rep-
resentation of venues and improve the recommendation performance. In order
to model user dynamic and personalized preference, we propose to concatenate
user embedding, POI embedding and POI category to generate a new and more
personalized embedding to represent a check-in record. More concretely, we use
one-hot encoding to represent the POI category information.

Additionally, to better model user dynamic preference and sequential behav-
ior patterns, we utilize LSTM model to construct a spatio-temporal neural net-
work. As illustrated in Fig. 1, ht and ct denote the hidden state and cell state of
LSTM at time t respectively. Given a user u and his/her trajectory sequence Tu,
first, we concatenate the user embedding, POI embeddings with POI categories
that he/she visited, and we can get a new embedding sequence. Second, we feed
LSTM network with these new embedding sequences of all users. Specifically,
we utilize the first i − 1 POIs as input to train the network, and predict the
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(i + 1)-th POI as the recommended POI based on the current i-th POI. At the
output layer, we also connect a multi-layer perceptron (MLP). Therefore, we use
the following objective function to train the model:

Olstm =
i−1∑
t=1

MSE(MLP (ht),−−→vt+1), (9)

where ht is hidden representation at time step t, MSE(·, ·) is a criterion that
measures the mean squared error (e.g., squared L2 norm) between each element.

4.4 Personalized POI Recommendation

As described in Sect. 4.3, the user embedding and the first i POI embedding
sequence are used to train the spatio-temporal neural network. For the querying
user u, the embedding vector of the (i + 1)-th POI can be predicted by the
current POI vi as:

v̂i+1 = MLP (hi). (10)

Therefore, for each POI v, we calculate its recommendation score as follows:

Score(v|v̂i+1, u, Tu) = 1 − MSE(v̂i+1,
−→v ). (11)

Finally, we rank all POIs by their recommendation scores and select top-k POIs
as the candidate that user u is more likely to visit in the next τ time period.

5 Experiments

5.1 Datasets

We conduct extensive experiments on three public real-world large-scale
datasets: Foursquare1, Gowalla2 and Brightkite3. The basic statistics of these
three datasets are summarized in Table 1. Notice that we preprocess these
datasets utilizing the same method of [29] by filtering the POIs visited by less
than five users and the users with less than ten check-in records.

– Foursuqare: This dataset contains 483,813 check-in records generated by
4,163 users who live in California from December 2009 to July 2013.

– Gowalla: Gowalla is a location-based social networking website where users
share their locations by checking-in. We choose data from Asian area for our
experiments. It includes 251,378 check-in records generated by 6,846 users
over the period of February 2009 to October 2010.

– Brightkite: Brightkite is also a location-based social networking service
provider. We use the same selection strategy to obtain the check-in records
generated by Asian users, which contains 572,739 records of 5,677 users.

Notice that there are 35 POI categories in Foursquare, and no category infor-
mation is attached to Gowalla and Brightkite datasets.
1 https://sites.google.com/site/dbhongzhi/.
2 http://snap.stanford.edu/data/loc-Gowalla.html.
3 http://snap.stanford.edu/data/loc-Brightkite.html.

https://sites.google.com/site/dbhongzhi/
http://snap.stanford.edu/data/loc-Gowalla.html
http://snap.stanford.edu/data/loc-Brightkite.html
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Table 1. Basic statistics of three datasets

Dataset Foursquare Gowalla Brightkite

# of users 4,163 6,846 5,677

# of POIs 121,142 74,856 128,799

# of check-ins 483,813 251,378 572,739

# of categories 35 / /

Time span Dec. 2009–Jul. 2013 Feb. 2009-Oct. 2010 Apr. 2008 - Oct. 2010

5.2 Evaluation Metrics

To evaluate the recommendation model performance, we use four widely-used
metrics, i.e., Accuracy (Acc@k), Precision (Pre@k), Recall (Rec@k) and Nor-
malized Discounted Cumulative Gain (NDCG@k), which are also used to eval-
uate top-k POI recommendation in [1,18,27,28].

Let #hit@k denote the number of hits in the test set, and |DTest| is the
number of all test records. Acc@k is defined as:

Acc@k =
#hit@k

|DTest| . (12)

Let Rk denote the top-k POIs with the highest recommendation score, and
Tk be the ground truth of the corresponding record, respectively. Pre@k and
Rec@k are defined as:

Pre@k =
1

|DTest|
∑ |Rk ∩ Tk|

|Rk| , (13)

Rec@k =
1

|DTest|
∑ |Rk ∩ Tk|

|Tk| . (14)

To better measure the ranking quality, we further utilize NDCG@k, which
assigns higher scores to POIs at top position ranks, to evaluate the model. The
NDCG@k for each test case is defined as:

NDCG@k =
DCG@k

IDCG@k
, (15)

where DCG@k =
k∑

i=1

2reli−1
log2(i+1) , IDCG@k =

k∑
i=1

1
log2(i+1) and reli = 1 refers to

the graded relevance of result ranked at position i. We use the binary relevance
in our experiments, i.e., reli = 1 if the recommended POI is in the ground truth,
otherwise, reli = 0.

5.3 Baselines

We compare our model against the following baselines for successive POI rec-
ommendation:
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– Rank-GeoFM [9]: It is a ranking based geographical factorization model,
which earns the embeddings of users and POIs by combining geographical
and temporal influence in a weighting scheme.

– ST-RNN [10]: ST-RNN is a RNN-based model with spatial and temporal
contexts for next POI recommendation.

– GE [20]: GE jointly learns the embedding of POIs, regions, time slots and
word into a shared low dimensional space by constructing four bipartite
graphs.

– PEU-RNN [13]: It is a LSTM based model that combines the user and POI
embeddings, which are learned from Word2Vec, for modeling the dynamic
user preference and successive transition influence.

– SAE-NAD [14]: SAE-NAD exploits the self-attentive encoder to differenti-
ate the user preference and the neighbor-aware decoder to incorporate the
geographical context information for POI recommendation.

Notice that STGN [28] and ASPPA [27] are not compared in our experi-
ment due to no publicly available source code. However, our PPR consistently
outperforms ASPPA and STGN in terms of Acc@k on both Foursquare and
Gowalla datasets according to the experimental results reported in [27] (e.g.,
PPR vs. STGN vs. ASPPA: 0.3008: 0.2: 0.2796 in Acc@5, 0.3935: 0.2592: 0.3371
in Acc@10 on Foursquare; PPR vs. STGN vs. ASPPA: 0.3835: 0.1947: 0.2363 in
Acc@5, 0.4905: 0.2367: 0.2947 in Acc@10 on Gowalla).

To further validate the effectiveness of each component in our model, we
design four variations of PPR:

– PPR-RL: This is a simplified version of PPR, which do not use LSTM net-
work for personalized preference modeling. After representation learning on
Gdense, we use Score(v|vc, u) = −→u ·−→v +−→vc ·−→v to calculate the recommendation
score, where vc is the current location of the querying user u.

– PPR-Seq: This variation do not model the sequential and geographical effect
(i.e., ignore POI-POI edges) in graph Gdense, and the other components
remain the same.

– PPR-Den: This variation directly learns representations for users and POIs
on graph G, which do not densify the graph. And the other components remain
the same.

– PPR-GRU: In this variation, we use GRU to replace LSTM in user person-
alized preference modeling, and the other components remain the same.

5.4 Parameter Setting

Following [24,28,29], we utilize the first 80% chronological check-ins of each user
as the training set, the remaining 20% as the test data.

We use the source code released by their authors for baselines. We set learning
rate to 0.0025 in graph embedding, embedding dimension d to 128, the number
of negative samples to 5, threshold θ to 24 h, κ to −2, ε to 0.5 and in/out-degree
threshold ρ to 400. Following [5], we uniformly set the next time period as
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τ= 6 h for all methods unless stated otherwise, and other parameters of all
baselines are tuned to be optimal. In the experiment, we use a two-layer stacked
LSTM, the hidden state size is 128. The learning rate of LSTM is set to 0.001
with epoch decay, which makes the learning rate becomes 1/10 of the original
value when the number of training rounds reaches 75%.

Table 2. Performance comparison on Foursquare dataset

Methods Acc@5 Acc@10 Pre@5 Pre@10 Rec@5 Rec@10 NDCG@5 NDCG@10

Rank-GeoFM 0.2456 0.2983 0.0618 0.0413 0.0509 0.0669 0.0683 0.0468

ST-RNN 0.1642 0.2150 0.0167 0.0118 0.1207 0.1790 0.0175 0.0152

GE 0.1357 0.3100 0.0378 0.0342 0.1579 0.1919 0.0431 0.0362

PEU-RNN 0.2021 0.2775 0.0495 0.0276 0.1888 0.2848 0.0494 0.0375

SAD-NAE 0.2429 0.3221 0.0588 0.0442 0.0333 0.0505 0.0672 0.0542

PPR 0.3008 0.3935 0.0698 0.0501 0.2471 0.3387 0.0802 0.0628

Table 3. Performance comparison on Gowalla dataset

Methods Acc@5 Acc@10 Pre@5 Pre@10 Rec@5 Rec@10 NDCG@5 NDCG@10

Rank-GeoFM 0.2162 0.2643 0.0647 0.0453 0.0887 0.1180 0.0696 0.0499

ST-RNN 0.1865 0.2246 0.0278 0.0217 0.0817 0.1075 0.0606 0.0574

GE 0.1763 0.4060 0.0391 0.0203 0.1363 0.3135 0.0813 0.0157

PEU-RNN 0.3329 0.3766 0.0663 0.0390 0.2504 0.3613 0.0919 0.0627

SAD-NAE 0.3273 0.4300 0.0849 0.0645 0.1102 0.1600 0.0956 0.0777

PPR 0.3835 0.4905 0.0936 0.0687 0.2573 0.3430 0.1055 0.0840

5.5 Performance Comparison

Table 4. Performance comparison on Brightkite dataset

Methods Acc@5 Acc@10 Pre@5 Pre@10 Rec@5 Rec@10 NDCG@5 NDCG@10

Rank-GeoFM 0.3681 0.4270 0.0968 0.0618 0.2497 0.2983 0.1058 0.0700

ST-RNN 0.2396 0.3540 0.0389 0.0394 0.2279 0.3400 0.1166 0.1074

GE 0.1903 0.4259 0.0869 0.0483 0.1303 0.4119 0.1313 0.1217

PEU-RNN 0.7187 0.7383 0.1437 0.0720 0.6944 0.7204 0.2348 0.1538

SAD-NAE 0.2578 0.3383 0.0645 0.0499 0.0703 0.1047 0.0708 0.0584

PPR 0.8717 0.8966 0.1788 0.0927 0.8485 0.8741 0.2875 0.1889

First, we evaluate the overall performance of our model PPR compared with
five baselines on three real-world datasets. We repeat 10 runs for all methods
on each dataset and report average Acc@k, Pre@k, Rec@k and NDCG@k in
Table 2, Table 3 and Table 4, respectively.
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From Table 2, we observe that PPR is significantly better than all baselines
in terms of four evaluation metrics on Foursquare dataset. Specifically, PPR
achieves 0.3008 in Acc@5 and 0.3935 in Acc@10, improving 22.5% and 22.2% over
second-best baseline Rank-GeoFM and SAD-NAE, respectively. Additionally,
our PPR slightly outperforms the strong baselines (e.g., SAD-NAE) in Pre@k,
but it is significantly better than the strong baselines in Rec@k.

As depicted in Table 3, our PPR also significantly outperforms all baselines
in terms of Acc@k, Pre@k, Rec@k and NDCG@k on Gowalla dataset. In par-
ticular, PPR performs better than the second-best baseline by 14.6% in Acc@k
and 9.2% in NDCG@k on average. PPR shows slightly poor performance com-
pared to PEU-RNN in terms of Rec@10. This phenomenon can be explained
that PEU-RNN uses a distance constraint, which may significantly reduce the
potential POIs as k increases.

As we can see in Table 4, PPR consistently significantly outperforms all base-
lines in terms of all evaluation metrics on Brightkite dataset. PPR achieves the
state-of-the-art performance, e.g., 0.8717 in Acc@5 and 0.8485 in Rec@5. More
specifically, our PPR achieves about 21.3%, 24.4%, 22.2% and 22.4% improve-
ment compared to state-of-the-art RNN-based method PEU-RNN in terms of
Acc@5, Pre@5, Rec@5 and NDCG@5, respectively. Furthermore, all methods
achieve better performance on Brightkite than the other datasets. This is because
users in Brightkite have more check-in records than users in Foursquare and
Gowalla on average, which may enable all methods to model users’ behavior and
preference more accurately.

5.6 Ablation Study

(a) Foursquare (b) Gowalla (c) Brightkite

Fig. 2. Performance comparison of variations

To explore the benefits of incorporating the sequential and geographical effect,
densifying technique and modeling personalized preference into PPR respec-
tively, we compare our model with four carefully designed variations, i.e., PPR-
RL, PPR-Seq, PPR-Den and PPR-GRU. We show the results in terms of Acc@5,
Pre@5, Rec@5, and NDCG@5 on three datasets in Fig. 2.

Based on the results, we have the following observations: First, PPR achieves
the best performance in most cases on three datasets, indicating that PPR
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benefits from simultaneously considering the various contextual factors and
personalized preference in a joint way. Second, the contributions of different
components to recommendation performance are different. Sequential and geo-
graphical effect and modeling personalized preference have comparable impor-
tance, specifically, the later contributes more on Gowalla, and the former con-
tributes more on Foursquare. And both of them are necessary for improving
performance. Furthermore, through the comparison of PPR and PPR-Den, it
is obvious that the densifying trick works for alleviating the data sparse issue.
Third, our PPR and PPR-GRU exhibit a decent performance compared to other
variations, which indicates that sequential pattern and users’ dynamic and per-
sonalized preference play an important role in location-based recommendation.

5.7 Sensitivity of Hyper-parameters

We now investigate the sensitivity of our model compared against three strong
baselines (i.e., Rank-GeoFM, PEU-RNN, and SAE-NAD) with respect to the
important parameters, including embedding dimension d, the number of recom-
mended POIs k, and next time period τ . To clearly show the influence of these
parameters, we report Acc@5 with different parameter settings on Foursquare
and Gowalla datasets. Figure 3 and Fig. 4 show the experimental results.

As shown in Figs. 3(a) and 4(a), PPR achieves best performance compared to
the three strong baselines with the increasing number of dimension d. Meanwhile,
PPR achieves the best result when d = 128, and then begins to decline as
d further increases. From the results in Figs. 3(b) and 4(b), we can see that
the recommendation accuracy of all methods increases as k increases. This is
expected, because the more results are recommended, the easier they are to
fall into the ground truth. However, we also observe that our PPR exhibits an
increasing performance improvement compared to all baselines, as k increases. In
Figs. 3(c) and 4(c), as τ increases, our PPR is also consistently better than the
strong baselines. More specifically, PPR improves the recommendation accuracy
more significantly for near future prediction (e.g., τ = 2 vs. τ = 12), indicating
that our PPR can effectively capture users’ personalized preferences, especially
short-term preferences.

(a) Acc@5 w.r.t. d (b) Acc@k w.r.t. k (c) Acc@5 w.r.t. τ

Fig. 3. Parameter sensitivity w.r.t. parameter d, k and τ on Foursquare
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(a) Acc@5 w.r.t. d (b) Acc@k w.r.t. k (c) Acc@5 w.r.t. τ

Fig. 4. Parameter sensitivity w.r.t. parameter d, k and τ on Gowalla

6 Conclusion

In this work, we propose a novel spatio-temporal representation learning model
for personalized POI recommendation. By incorporating the user-POI relation,
sequential effect, geographical effect and social ties, we construct a heteroge-
neous network. Afterwards, we exploit the embedding technique to learn the
latent representation of users and POIs. In light of recent success of RNN on
sequential prediction problem, we feed the spatio-temporal network with con-
catenated user and POI embedding sequences for capturing the users’ dynamic
and personalized preference. The results on three real-world datasets demon-
strate the superiority of our proposal over state-of-the-art baselines. Further-
more, we explore the importance of each factor in improving recommendation
performance. We observe that sequential effect, geographical effect, and users’
dynamic and personalized preference play a vital role in POI recommendation
task.
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