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Abstract
Recommending a limited number of Point-of-Interests (POIs) a user will visit next has become increasingly important to 
both users and POI holders for Location-Based Social Networks (LBSNs). However, POI recommendation is a challenging 
task since complex sequential patterns and rich contexts are contained in extremely sparse user check-in data. Recent stud-
ies show that embedding techniques effectively incorporate POI contextual information to alleviate the data sparsity issue, 
and Recurrent Neural Network (RNN) has been successfully employed for sequential prediction. Nevertheless, existing POI 
recommendation approaches are still limited in capturing user personalized preference due to separate embedding learning 
or network modeling. To this end, we propose a novel unified spatio-temporal neural network framework, named PPR, which 
leverages users’ check-in records and social ties to recommend personalized POIs for querying users by joint embedding 
and sequential modeling. Specifically, PPR first learns user and POI representations by joint modeling User-POI relation, 
sequential patterns, geographical influence, and social ties in a heterogeneous graph and then models user personalized 
sequential patterns using the designed spatio-temporal neural network based on LSTM model for the personalized POI recom-
mendation. Furthermore, we extend PPR to an end-to-end recommendation model by jointly learning node representations 
and modeling user personalized sequential preference. Extensive experiments on three real-world datasets demonstrate that 
our model significantly outperforms state-of-the-art baselines for successive POI recommendation in terms of Accuracy, 
Precision, Recall and NDCG. The source code is available at: https:// www. anony mous. 4open. scien ce/r/ DSE- 1BEC.
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1 Introduction

Newly emerging LBSNs has become an important mean 
for people to share their experience, write comments, or 
even interact with friends. With the prosperity of LBSNs, 
many users check-in at various POIs via mobile devices 
in real time. Therefore, a large amount of check-in data is 
being generated, which is crucial to understand the users’ 

preferences and behaviors. Recently, [9] leverages a large-
scale LBSN simulator to simulate human behaviors and gen-
erate synthetic, dense and large-scale LBSN data based on 
human patterns of life, which provides a good opportunity to 
understand people’s behavior patterns. POI recommendation 
not only helps users explore attractive and interesting places, 
but also gives guidance to location-based service providers, 
where to launch advertisements to target customers for mar-
keting. Due to the great significance to both users and busi-
nesses, how to use spatio-temporal information effectively 
and to recommend a limited number of POIs users more 
likely visit next have been attracting increasing attention in 
both industry and academia.

In particular, several studies [3, 15, 19, 26, 30] have been 
conducted to recommend successive POIs for users based 
on users’ spatio-temporal check-in sequence in LBSNs. 
Based on Markov chain model, LORE [30] and NLPMM 
[3] explore users’ successive check-in patterns by consider-
ing temporal and spatial information. ST-RNN [15] employs 
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RNN to capture the users’ sequential check-in behaviors. 
In a follow-up work, STGN [34] carefully designs the time 
gates and distance gates in LSTM to model users’ sequential 
visiting behaviors by enhancing long short-term memory. 
Additionally, some models [1, 7] based on Word2Vec [20] 
framework to capture the preference and mobility pattern of 
users and the relationship among POIs also achieved decent 
performance. GE [26] uses graph embedding to combine the 
sequential effect, geographical influence, temporal effect and 
semantic effect in a unified way for location-based recom-
mendation. Recently, SAE-NAD [19] utilizes a self-attentive 
encoder to differentiate the user preference and a neighbor-
aware decoder to incorporate the geographical context infor-
mation for POI recommendation.

However, location-based POI recommendation still faces 
three major challenges. First, data sparsity, unlike the gen-
eral e-commerce, music and movie recommendation, which 
can be collected and verified just online, location-based POI 
recommendation systems usually associate with the POI-
entities. Only when a user visits a POI-entity, a check-in 
record is generated. Therefore, the check-in records in the 
POI recommendation task is much sparser. This issue has 
plagued many POI recommendation models based on the 
collaborative filtering. Furthermore, data sparsity problem 
in check-in data makes it difficult to capture user’s sequen-
tial pattern, because the check-in sequence is very short or 
is not continuous in time. Second, contextual factors, POI 
recommendation may be affected by various contextual fac-
tors, including social tie influence, geographical influence, 
temporal context, and so on. In fact, social ties are often 
available in LBSNs, and recently studies show that social 
networks associated with users are important in POI recom-
mendation task since users are more likely to be influenced 
by their close friends (Who keeps company with the wolf 
will learn to howl). In this work, we incorporate social ties, 
check-in time interval, sequential and geographical effect 
into user-POI interaction graph to joint learn user and POI 
representations. Lastly, dynamic and personalized prefer-
ences, users’ preferences are changing dynamically over 
time. At different time and circumstances, users may prefer 
different POIs. For example, some users prefer to visit gour-
met restaurants in the local area, but when they go to a new 
city, some prefer to visit the cultural landscapes, while some 
prefer the natural landscapes. Dynamically and accurately 
capturing this trend has been proved to be essential for per-
sonalized POI recommendation task. However, effectively 
modeling the personalized sequential transitions from the 
sparse check-in data is challenging.

To address the aforementioned challenges, in this work, 
we stand on advances in embedding technique and RNN 
network, and propose our model, named PPR, which is a 
spatial-temporal representation learning framework for 
personalized and successive POI recommendation. First, 

we jointly model the user-POI relation, sequential effect, 
geographical influence and social ties by constructing a 
heterogeneous graph and then develop a densifying trick 
by adding second-order neighbors to nodes with low in/
out-degrees to alleviate the data sparsity issue. Then, we 
learn user and POI representations by embedding the den-
sified heterogeneous graph into a shared low-dimensional 
space. Furthermore, to better capture the user dynamic and 
personalized preference, we also design a spatio-temporal 
neural network by concatenating user embedding, POI 
embedding and POI category as personalized sequence 
input to feed the network.

This work is extended from a conference paper [6]. The 
differences between this work and the conference paper are 
summarized as follows: First, we extend PPR [6] to an end-
to-end POI recommendation model, named GCN-LSTM. 
GCN-LSTM jointly learns user and POI representations 
using Graph Convolutional Network (GCN) in the con-
structed heterogeneous graph and captures the user per-
sonalized sequential preference using the spatio-temporal 
neural network. Second, we conduct additional experiments 
to evaluate our extended model. Experimental results dem-
onstrate that GCN-LSTM outperforms all baselines and also 
performs better than our previous PPR. Third, we add an 
overview framework for our model, which illustrates the 
relationships between the key components of our model. 
Additionally, we design a new variant PPR-Soc to verify the 
social ties influence on model performance, and the result is 
shown in Fig. 3. Lastly, we verify the effect of hyperparam-
eters � and � on the performance of our model, and results 
are depicted in Table 5 and Fig. 6, respectively.

We conduct extensive experiments on three real-world 
datasets to verify the effectiveness of our proposed models. 
Experimental results demonstrate our models significantly 
improve the performance on successive POI recommenda-
tion task compared to state-of-the-art baseline methods. The 
main contributions of this paper are summarized as follows:

– We propose a novel PPR model for personalized POI 
recommendation, which incorporates users’ check-in 
records and social ties. We construct a heterogeneous 
graph by jointly taking user-POI relation, sequential pat-
tern, geographical effect and social ties into consideration 
to learn the representations of users and POIs.

– We propose a spatio-temporal neural network to model 
users’ dynamic and personalized preference by concat-
enating user, POI embedding and POI category to gener-
ate personalized behavior sequence.

– we propose an end-to-end POI recommendation models 
to jointly learn user and POI representations and model 
users’ dynamic and personalized preference.

– We conduct extensive experiments to compare our 
method with state-of-the-art baselines, and our method 
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significantly outperforms state-of-the-art baselines for 
successive POI recommendation task.

2  Related Work

General POI Recommendation The most well-known 
approaches of personalized recommendation are collabo-
rative filtering (CF) and Matrix Factorization (MF). The 
conventional CF techniques have been widely studied for 
POI recommendation. LARS [11] employs item-based CF to 
make POI recommendation with the consideration of travel 
penalty. FCF [28] is a friend-based CF model based on the 
common visited POIs among friends, which considers the 
social influence. UTE [29] is a collaborative recommenda-
tion model that incorporates with temporal and geographical 
information. However, such methods suffer the data sparsity 
problem, leading them difficult to identify similar users.

Recommendation models based on MF and embedding 
learning [12, 16, 17] have been intensively studied. Rank-
GeoFM [13] fits the users’ preference rankings for POIs 
to learn the latent embeddings. By incorporating the geo-
graphical context, it utilizes a geographical factorization 
method for calculating the recommendation score. TSG-MF 
[32] models the multi-tag influences via extracting a user-
tag matrix and the social influences via social regulariza-
tion, and uses a normalized function to model geographical 
influences.

Next POI Recommendation In the literature, next POI rec-
ommendation issues have been studied in [25, 34], in which 
the main objective is to exploit the user’s check-in sequence 
between different POIs and dynamic preference.

Markov Chains (MC)-based Methods MC-based models 
aim to predict the next behavior according the historical 
sequential behaviors. FPMC-LR [4] considers first-order 
Markov chain for POI transitions and distance constraints. 
HMM [27] exploits check-in category information to capture 
the latent user movement pattern by using a mixed hidden 
Markov chain. LORE [30] incrementally mines sequential 
patterns and represents it as a dynamic location-location 
transition graph. By utilize an additive Markov chain, LORE 
fuses the sequential, geographical and social influence in a 
unified way.

Graph-based Methods Graph-based approaches are 
exploring in the literature of next POI recommendation. 
GE [26] jointly captures the latent relations among the POI, 
region, time slot and words related to the POIs by construct-
ing four bipartite graphs. HME [8] projects the entities into a 
hyperbolic space after study multiple contextual subgraphs. 
Although the above approaches achieve promising perfor-
mance, they cannot model the sequential patterns effectively.

RNN-based Methods Recently, RNNs such as LSTM 
or GRU have demonstrated groundbreaking performance 

on predicting sequential problem. ST-RNN [15] utilizes 
RNN structure to model the temporal contexts by carefully 
designing the time-specific and distance-specific transi-
tion matrices. NEXT [31] encodes the sequential relations 
within the pre-trained POI embeddings by adopting Deep-
Walk [21] technique. Time-LSTM [37] employs LSTM 
with time gates to capture time interval among users’ 
behaviors. CAPE [1] first uses a check-in context layer 
to capture the geographical influence of POIs and a text 
content layer to model the characteristics of POIs from 
text content. Then, CAPE employs RNN as recommen-
dation component to predict successive POIs. PEU-RNN 
[18] proposes a LSTM-based model that combines the 
user and POI embeddings, which are learned from Word-
2Vec. ASPPA [33] proposes to identify the semantic sub-
sequences of POIs and discover their sequential patterns. 
Recently, STGN [34] extends the LSTM gating mechanism 
with the spatial and temporal gates to capture the user’s 
space and time preference. However, these approaches 
fail to capture users’ personalized preferences. In addi-
tion, PLSPL [25] adopts the attention mechanism to model 
the long-term preference and employs two LSTM mod-
els to model the short-term preference on location-based 
and category-based sequence, respectively. Nevertheless, 
PLSPL does not utilize the geographical information and 
social ties, which play important roles in POI recommen-
dation task [5, 6, 32].

3  Problem Definition

In this section, we first give the key concepts used in this 
paper. Then, the problem definition for personalized POI 
recommendation is formulated.

Definition 1 (POI) A POI is a uniquely identified venue 
in the form of ⟨p,�, cat⟩ , where p is the POI identifier, 
cat denotes the category of the POI, and � represents the 
geographical coordinates of the POI (i.e., longitude and 
latitude).

Definition 2 (Check-in record) A check-in record is a triple 
c = ⟨u, v, t⟩ that represents user u visiting POI v at timestamp 
t.

The collection of all users is denoted as U, and the col-
lection of all POIs is denoted as V.

Definition 3  (Trajec tor y)  The  t ra jec tor y  of 
a user u is a sequence of all check-in records 
(⟨u, v1, t1⟩, ⟨u, v2, t2⟩,… , ⟨u, vn, tn⟩) made by user u in chron-
ological order. We denote it as Tu.
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Definition 4 (Social Ties) Social ties among users is 
defined as a graph Gu = (U, Eu) , where U is the set of users, 
and Eu is the set of edges between the users. Each edge 
eij ∈ Eu represents users ui and uj being friends in LBSNs 
and is associated with a weight wij > 0 , which indicates their 
tie strength.

Problem (Successive POI Recommendation) Given users’ 
check-in records and their social ties, and a querying user u 
with his/her current check-in ⟨u, v, t⟩ , our goal is to recom-
mend top-k POIs that user u would be interested in in the 
next � time period.

4  Methodology

In this section, we first present the details of the proposed 
framework PPR. Then, we introduce our model how to uti-
lize PPR model to make personalized POI recommendation. 
Finally, we describe how to extend PPR to an end-to-end 
recommendation model.

Figure 1 illustrates the overview of the proposed model, 
consisting of three key components: (1) heterogeneous graph 
construction, (2) learning latent representation, and (3) 
modeling user personalized preference.

4.1  Heterogeneous Graph Construction

We first introduce the heterogeneous User-POI graph to 
model users’ sequential check-ins and social relation-
ships. Specifically, we employ a heterogeneous graph 
G = (V ,U, E,W) to jointly model the multiple relations 
between users and POIs. U and V are the user collection 
and POI collection, respectively, and E is the set of all edges 
between nodes in G , which are categorized into three edge 
types, i.e., Eu , Ev , and Eu,v . As mentioned in Definition 4, 

each edge ei,j ∈ Eu represents that user ui and uj are friends. 
Each edge ei,j ∈ Ev denotes that there exists at least one user 
visits POI vj after visiting POI vi , and each edge ei,j ∈ Eu,v 
indicates that user ui visits POI vj at least one time. Notice 
that each edge e ∈ Eu ∪ Eu,v is a bi-directed edge and each 
edge e ∈ Ev is a directed edge, and each edge is associated 
with a weight w ∈ W(w > 0) , which indicates the strength 
of the relation.

4.1.1  Modeling User‑POI Relation

Intuitively, we consider that if user ui visit POI vj more fre-
quent, ui and vj have a stronger relation than with other POIs. 
Therefor, we formulate the weight between user ui and POI 
vj as:

where freq(, ) denotes check-in frequency of user ui visiting 
POI vj . Since we aim to build a directed graph to accom-
modate the following work, we define wi,j = wj,i for the bi-
directed edge ei,j ∈ Eu,v between user ui and POI vj.

4.1.2  Modeling Sequential and Geographical Effect

Compared with general POI recommendation, successive 
POI recommendation pays more attention to sequential 
pattern. The impact of user’s recent check-in behaviors are 
greater than those of a long time ago when making POI rec-
ommendations [26]. To further model the sequential effect, 
we carefully design a weighting strategy for the edges in Ev.

Let Δtu
k,k+1

 be the time interval between two consecutive 
check-in records in the trajectory Tu of user u. lu

k,k+1
 is the 

flag that indicates the status of a pair of consecutive check-in 
records in the trajectory Tu , which is defined as:

(1)wi,j = freq(ui, vj),
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Fig. 1  The overview of the proposed model
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where � is a predefined time threshold.
Given an edge ei,j ∈ Ev from POI vi to POI vj , the sequential 

weight w(seq)

i,j
 for the edge ei,j is defined as:

Namely, the weight w(seq)

i,j
 for the edge from POI vi to POI vj 

is the total number of times that all users visit vi first and 
then vj in their trajectories.

Furthermore, geographical influence indicates the impact of 
geographical distance to the users’ spatial behaviors. Accord-
ing to [8, 14], the distribution of the geographical distance 
between two successive POIs follows the power-law distribu-
tion, which means users are more willing to visit POIs close to 
the current location. Therefore, we incorporate the geographi-
cal distance into our model as follows:

where N(vi) represents the set of out-neighbor POIs of POI 
vi in Ev , di,j denotes the Euclidean distance between POIs vi 
and vj , and � is the negative exponent (i.e., 𝜅 < 0 ). Finally, 
we combine the sequential and geographical influence as 
follows:

In such way, the sequential, time interval and geographical 
information are all reflected in graph G.

4.1.3  Modeling Social Tie Strength

Users in an LBSN have multiple types of relations with other 
users, such as friends, family and colleagues. The preference 
of a user in social network are easily affected by his/her close 
friends or other users which has some kind of relations with 
them. Recently, these social ties are incorporated into the POI 
recommendation system [31] to improve the recommendation 
performance. In this work, we propose to assign the weight 
between the users based on their historical check-in interac-
tions. Specifically, for two socially connected users ui and uj , 
we assign the edge weight wi,j as:

where � is a very small float number to avoid two users have 
connection but no common visited POIs, fui,v denotes the 

(2)lu
k,k+1

=

{
1 if Δtu

k,k+1
< 𝜃

0 else
,

(3)w
(seq)

i,j
=
∑

u∈U

|Tu|−1∑

k=1

lu
k,k+1

, if vk = vi and vk+1 = vj.

(4)w
(geo)

i,j
=

d�
i,j

∑
vk∈N(vi)

d�
i,k

,

(5)wi,j = w
(seq)

i,j
⋅ w

(geo)

i,j
.

(6)wi,j =
� +

∑
v∈V min(fui,v, fuj,v)

�Tui ∩ Tuj � + 1
,

frequency of user ui visiting at POI v, and |Tui ∩ Tuj | repre-
sents the number of the common visited POIs for user ui and 
uj . Therefore, the common preferences between socially con-
nected users are also taken into account in the User-POI 
graph G.

4.1.4  Densifying Graph

Most recommendation models need to take the data sparsity 
into consideration, but the check-in data in POI recommenda-
tion area is much sparser. To address the data sparsity issue, we 
propose to construct a dense graph based on the graph G . Spe-
cifically, we regard each user and POI as a node and expand 
the neighbors of those nodes with low in/out degrees by adding 
higher order neighbors. In this work, we only consider expand-
ing second-order neighbors to every node. If the out-degree of 
a node in G is less than a predefined threshold � , we create an 
edge from node vi to its second-order out-neighbor node vj and 
assign the weight as follows:

where N(vi) is the set of out-neighbors of node vi , and d(o)
k

 
is the out-degree of the node vk . The densifying method for 
nodes with a low in-degree less than � is same. After den-
sifying the User-POI graph, we can get the a more dense 
network, denoted by Gdense . Then, we use Gdense instead of G 
and exploit embedding technique to learn the nodes’ repre-
sentation vectors.

4.2  Learning Latent Representation

Inspired by LINE [22], which learns the first- and second-
order relations representations of homogeneous networks. We 
develop it to learn heterogeneous node representations on our 
constructed heterogeneous graph Gdense.

Specifically, we regard each user or POI as a node v and 
ignore their node type. In graph Gdense , each node plays two 
roles: the node itself and a specific “context” of other nodes. 
We use ��⃗vi to denote the embedding vector of node vi when it 
is treated as a node, and ��⃗vi′ to denote the embedding vector of 
vi when it is treated as a specific “context”. In particular, we 
use a binary cross-entropy loss to encourage nodes and their 
“context” connected with an edge, to have similar embeddings. 
Therefore, we minimize the following objective function:

(7)wi,j =
∑

vk∈N(vi)

wi,k

wk,j

d
(o)

k

,

(8)

O = −
∑

ei,j∈E

(
log

(
𝜎(��⃗vj

�T
⋅ ��⃗vi)

)

+ wn

∑

vn∈Neg(vi)

log
(
1 − 𝜎( ��⃗vn

�T
⋅ ��⃗vi)

))
,
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where �() is the sigmoid function, ��⃗vj
�T denotes vector trans-

pose, Neg(vi) is a negative edge sampling w.r.t. node vi in 
Gdense , and wn denotes the negative sampling ratio, which is 
a tunable hyperparameter to balance the positive and nega-
tive samples.

By minimizing the objective function O with ASGD 
(asynchronous stochastic gradient) optimization and edge 
sampling technique, we can learn a d-dimensional embed-
ding vector for each user and POI in Gdense . Additionally, the 
representation learning is highly efficient and is able to scale 
to very large graphs because of the use of edge sampling 
technique.

4.3  Modeling User Dynamic and Personalized 
Preference

After representation learning, all users and POIs are mapped 
into a low dimensional space. However, the latent represen-
tations only capture the users’ preferences or POIs’ charac-
teristics in a general way. Although it can model sequence 
transition patterns and geographical influence, some per-
sonalized preference may not be preserved in the node 
representations.

Furthermore, the categories of POIs are very useful to 
make a better representation of venues and improve the rec-
ommendation performance. In order to model user dynamic 
and personalized preference, we propose to concatenate user 
embedding, POI embedding and POI category to generate a 
new and more personalized embedding to represent a check-
in record. More concretely, we use one-hot encoding to rep-
resent the POI category information.

Additionally, to better model user dynamic preference 
and sequential behavior patterns, we utilize LSTM model 
to construct a spatio-temporal neural network.

As illustrated in Fig. 2, ht and ct denote the hidden state 
and cell state of LSTM at time t, respectively. Given a user u 
and his/her trajectory sequence Tu , first, we concatenate the 
user embedding, POI embeddings with POI categories that 
he/she visited, and we can get a new embedding sequence. 
Second, we feed LSTM network with these new embedding 
sequences of all users. Specifically, we utilize the first i − 1 

POIs as input to train the network and predict the (i + 1) th 
POI as the recommended POI based on the current ith POI. 
At the output layer, we also connect a multi-layer perceptron 
(MLP). Therefore, we use the following objective function 
to train the model:

where ht is hidden representation at time step t, MSE(⋅, ⋅) is a 
criterion that measures the mean squared error (e.g., squared 
L2 norm) between each element.

4.4  Personalized POI Recommendation

As described in Sect. 4.3, the user embedding and the first i 
POI embedding sequence are used to train the spatio-tempo-
ral neural network. For the querying user u, the embedding 
vector of the (i + 1) th POI can be predicted by the current 
POI vi as:

Therefor, for each POI v, we calculate its recommendation 
score as follows:

Finally, we rank all POIs by their recommendation scores 
and select top-k POIs as the candidate that user u is more 
likely to visit in the next � time period.

4.5  End‑to‑End GCN‑LSTM Recommendation Model

Recently, GCNs have been widely used in network embed-
ding to capture graph structure by aggregating neighbor 
node features and have achieved great success [2, 24, 36]. 
In this paper, the User-POI heterogeneous network is a 
weighted graph in nature, and the features of each user or 
POI can be regarded as the signals on the graph. Therefore, 
in order to make full use of topological properties of the het-
erogeneous User-POI graph, we perform graph convolutions 

(9)Oseq =
∑

u∈U

i−1∑

t=1

MSE(MLP(ht), �����⃗vt+1),

(10)v̂i+1 = MLP(hi).

(11)Score(v|�vi+1, u, Tu) = 1 −MSE(�vi+1, �⃗v).

Fig. 2  Modeling user dynamic 
and personalized preference
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based on the spectral graph theory [10] to directly process 
the features.

In spectral graph analysis, User-POI graph can be rep-
resented by its corresponding Laplacian matrix. The prop-
erties of the User-POI graph structure can be obtained by 
analyzing Laplacian matrix and its eigenvalues. Laplacian 
matrix of a graph is defined as � = � − � , and we adopt 
its normalized form � = � − �

−
1

2��
−

1

2 ∈ ℝ
N×N , where � is 

the adjacent matrix, � is the identity matrix, and the degree 
matrix � is diagonal matrix.

Following [10], multi-layer GCN performs the following 
layer-wise propagation rule:

where �(l) is a specific layer trainable weight matrix, 
�̃ = � + � and �̃ii =

∑

j

�̃ij . �(0) = � ∈ ℝ
N×D0 , where � 

denotes the feature matrix and D0 is the number of features. 
�(l) is the output of the lth layer.

4.5.1  Graph Convolution on User‑POI Graph

As described in Sect. 4.1, our User-POI graph is a weighted, 
directed and heterogeneous graph, i.e., Ev,u are directional. 
To accommodate to GCN, we first symmetrize the adjacency 
matrix � as follows:

Then, we utilize the layer-wise propagation rule in Eq. (12) 
to model the user-POI relation, sequential pattern, geo-
graphical effect and the common preferences between 
socially connected users. For POIs, we adopt the contextual 
factors as their features, e.g., the POI category and textual 
comments. For users, we aggregate the POIs’ feature where 
the user visited. Afterward, the max-min normalization 
operation is performed. We take the symmetrical adjacency 
weight matrix � and the feature matrix � as the input of 
graph convolution network. The forward-propagation out-
put of graph convolution network is the embeddings � of 
all nodes.

4.5.2  Jointly Learning with LSTM

Different from Sect. 4.2, which learns the latent representa-
tion and user dynamic and personalized preference sepa-
rately, in this section, we formally define the jointly learning 
objective function to obtain the recommendation result of 
global optimization. Specifically, we adopt an unsupervised 
objective function Ogcn to maximize the similarity of the 
node representations appearing in the same random walks:

(12)�
(l+1) = Relu(�̃

−
1

2 �̃�̃
−

1

2�
(l)
�

(l)),

(13)�i,j = max(�i,j,�j,i).

where si,j denotes the similarity score (e.g., inner product 
operation) between the representation vectors of node vi and 
node vj , Walks is the set of random walks sampled in User-
POI graph, and Neg(vi) is a negative sampling w.r.t. node vi 
in User-POI graph.

Finally, we combine Ogcn and Oseq via a hyperparameter � 
(we can tune � automatically by optuna, 1 a Bayesian hyper-
parameter optimization tools), which is used to balance the 
importance of Ogcn and Oseq . Namely, we minimize the fol-
lowing objective Ojoint to train our end-to-end recommenda-
tion model:

Notice that POI recommendation process for the given user 
u is the same as in Sect. 4.4.

5  Experiments

5.1  Datasets

We conduct extensive experiments on three public real-
world large-scale datasets: Foursquare,2 Gowalla3 and 
Brightkite.4 The basic statistics of these three datasets are 
summarized in Table 1.

– Foursquare This dataset contains 483,813 check-in 
records generated by 4163 users who live in California 
from December 2009 to July 2013.

– Gowalla Gowalla is a location-based social networking 
website where users share their locations by checking-
in. We choose data from Asian area for our experiments. 
It includes 251,378 check-in records generated by 6846 
users over the period of February 2009 to October 2010.

– Brightkite Brightkite is also a location-based social 
networking service provider. We use the same selec-
tion strategy to obtain the check-in records generated 
by Asian users, which contains 572,739 records of 5677 
users.

(14)

Ogcn =
�

vi∈V

⎛
⎜
⎜
⎝

�

ei,j∈Walks

− log(�(si,j))

−
�

vn∈Neg(vi)

log(1 − �(si,n))

�

,

(15)Ojoint = �Ogcn + (1 − �)Oseq

1 https:// github. com/ pfnet/ optuna.
2 https:// sites. google. com/ site/ dbhon gzhi/.
3 http:// snap. stanf ord. edu/ data/ loc- Gowal la. html.
4 http:// snap. stanf ord. edu/ data/ loc- Brigh tkite. html.

https://github.com/pfnet/optuna
https://sites.google.com/site/dbhongzhi/
http://snap.stanford.edu/data/loc-Gowalla.html
http://snap.stanford.edu/data/loc-Brightkite.html
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Notice that there are 35 POI categories in Foursquare, and no 
category information is attached to Gowalla and Brightkite 
datasets.

5.2  Evaluation Metrics

To evaluate the recommendation model performance, we use 
four widely used metrics, i.e., Accuracy (Acc@k), Precision 
(Pre@k), Recall (Rec@k) and Normalized Discounted Cumu-
lative Gain (NDCG@k), which are also used to evaluate top-k 
POI recommendation in [1, 23, 33, 34].

Let #hit@k denote the number of hits in the test set, and 
|DTest| is the number of all test records. Acc@k is defined as:

Let Rk denote the top-k POIs with the highest recommenda-
tion score, and Tk be the ground truth of the corresponding 
record, respectively. Pre@k and Rec@k are defined as:

To better measure the ranking quality, we further utilize 
NDCG@k, which assigns higher scores to POIs at top posi-
tion ranks, to evaluate the model. NDCG@k for each test 
case is defined as:

where DCG@k =
∑k

i=1

2reli−1

log2(i+1)
 , IDCG@k =

∑k

i=1

1

log2(i+1)
 

and reli = 1 refers to the graded relevance of result ranked at 
position i. We use the binary relevance in our experiments, 
i.e., reli = 1 if the recommended POI is in the ground truth, 
otherwise, reli = 0.

(16)Acc@k =
#hit@k

|DTest|
.

(17)Pre@k =
1

|DTest|

∑ |Rk ∩ Tk|

|Rk|
,

(18)Rec@k =
1

|DTest|

∑ |Rk ∩ Tk|

|Tk|
.

(19)NDCG@k =
DCG@k

IDCG@k
,

5.3  Baselines

We compare our model against the following baselines for 
successive POI recommendation:

– Rank-GeoFM [13] It is a ranking based geographical fac-
torization model, which earns the embeddings of users 
and POIs by combining geographical and temporal influ-
ence in a weighting scheme.

– ST-RNN [15] ST-RNN is a RNN-based model with spa-
tial and temporal contexts for next POI recommendation.

– GE [26] GE jointly learns the embedding of POIs, 
regions, time slots and word into a shared low dimen-
sional space by constructing four bipartite graphs.

– PEU-RNN [18] It is a LSTM-based model that combines 
the user and POI embeddings, which are learned from 
Word2Vec, for modeling the dynamic user preference 
and successive transition influence.

– SAE-NAD [19] SAE-NAD exploits the self-attentive 
encoder to differentiate the user preference and the 
neighbor-aware decoder to incorporate the geographical 
context information for POI recommendation.

Notice that STGN [34] and ASPPA [33] are not compared 
in our experiment due to no publicly available source code. 
However, our PPR consistently outperforms ASPPA and 
STGN in terms of Acc@k on both Foursquare and Gowalla 
datasets according to the experimental results reported in 
[33] (e.g., PPR vs. STGN vs. ASPPA: 0.3008: 0.2: 0.2796 
in Acc@5, 0.3935: 0.2592: 0.3371 in Acc@10 on Four-
square; PPR vs. STGN vs. ASPPA: 0.3835: 0.1947: 0.2363 
in Acc@5, 0.4905: 0.2367: 0.2947 in Acc@10 on Gowalla).

To further validate the effectiveness of each component 
in our model, we design five variations of PPR:

– PPR-RL This is a simplified version of PPR, which 
does not use LSTM network for personalized preference 
modeling. After representation learning on Gdense , we 
use Score(v|vc, u) = �⃗u ⋅ �⃗v + ��⃗vc ⋅ �⃗v to calculate the recom-
mendation score, where vc is the current location of the 
querying user u.

– PPR-Seq This variation does not model the sequential 
and geographical effect (i.e., ignore POI-POI edges) in 
graph Gdense , and the other components remain the same.

– PPR-Soc This variation does not model the social ties 
(i.e., ignores User-User edges) in graph Gdense , and the 
other components remain the same.

– PPR-Den This variation directly learns representations 
for users and POIs on graph G , which does not densify 
the graph. And the other components remain the same.

– PPR-GRU  In this variation, we use GRU to replace 
LSTM in user personalized preference modeling, and 
the other components remain the same.

Table 1  Basic statistics of three datasets

Dataset Foursquare Gowalla Brightkite

# of users 4163 6846 5677
# of POIs 121,142 74,856 128,799
# of check-ins 483,813 251,378 572,739
# of categories 35 / /
Time span Dec. 2009–Jul. 

2013
Feb. 2009–

Oct. 2010
Apr. 2008–Oct. 

2010
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5.4  Parameter Setting

In order to make our model satisfactory to the scenario of 
POI recommendation in real world, we first sort the check-
in records of each user in chronological order. Afterward, 
we filter the POIs visited by less than five users and the 
users with less than ten check-in records according to [35]. 
Following [14, 34], we choose the first 80% of each user’s 
check-ins in chronological order as train data, the remaining 
20% as test data.

We use the source code released by their authors for base-
lines. We set learning rate to 0.0025 in graph embedding, 
embedding dimension d to 128, the number of negative sam-
ples to 5, threshold � to 24 hours, � to -2, � to 0.5 and in/out-
degree threshold � to 400. For the hyperparameter � , we per-
form optuna, a Bayesian hyperparameter optimization tools, 
and the search range for weight is set to [0, 1]. Following 
[8], we uniformly set the next time period as � = 6 hours for 
all methods unless stated otherwise, and other parameters of 
all baselines are tuned to be optimal. In the experiment, we 
use a two-layer stacked LSTM, the hidden state size is 128. 
The learning rate of LSTM is set to 0.001 with epoch decay, 
which makes the learning rate becomes 1/10 of the original 
value when the number of training rounds reaches 75%.

5.5  Performance Comparison

First, we evaluate the overall performance of our model 
PPR and GCN-LSTM compared with five baselines 
on three real-world datasets. We repeat 10 runs for all 

methods on each dataset and report average Acc@k, 
Pre@k, Rec@k and NDCG@k in Tables  2,   3 and   4, 
respectively. The best two are shown in bold.

From Table 2, we observe that PPR is significantly bet-
ter than all baselines in terms of four evaluation metrics 
on Foursquare dataset. Specifically, PPR achieves 0.3008 
in Acc@5 and 0.3935 in Acc@10, improving 22.5% and 
22.2% over second-best baseline Rank-GeoFM and SAD-
NAE, respectively. Additionally, our PPR slightly outper-
forms the strong baselines (e.g., SAD-NAE) in Pre@k, 
but it is significantly better than the strong baselines in 
Rec@k.

As depicted in Table 3, our PPR also significantly outper-
forms all baselines in terms of Acc@k, Pre@k, Rec@k and 
NDCG@k on Gowalla dataset. In particular, PPR performs 
better than the second-best baseline by 14.6% in Acc@k 
and 9.2% in NDCG@k on average. PPR shows slightly poor 
performance compared to PEU-RNN in terms of Rec@10. 
This phenomenon can be explained that PEU-RNN uses 
a distance constraint, which may significantly reduce the 
potential POIs as k increases.

As we can see in Table 4, PPR consistently significantly 
outperforms all baselines in terms of all evaluation metrics 
on Brightkite dataset. PPR achieves the state-of-the-art 
performance, e.g., 0.8717 in Acc@5 and 0.8485 in Rec@5. 
More specifically, our PPR achieves about 21.3%, 24.4%, 
22.2% and 22.4% improvement compared to state-of-the-
art RNN-based method PEU-RNN in terms of Acc@5, 
Pre@5, Rec@5 and NDCG@5, respectively. Furthermore, 
all methods achieve better performance on Brightkite than 

Table 2  Performance 
comparison on Foursquare 
dataset

Best two for each column are shown in bold

Methods Acc@5 Acc@10 Pre@5 Pre@10 Rec@5 Rec@10 NDCG@5 NDCG@10

Rank-GeoFM 0.2456 0.2983 0.0618 0.0413 0.0509 0.0669 0.0683 0.0468
ST-RNN 0.1642 0.2150 0.0167 0.0118 0.1207 0.1790 0.0175 0.0152
GE 0.1357 0.3100 0.0378 0.0342 0.1579 0.1919 0.0431 0.0362
PEU-RNN 0.2021 0.2775 0.0495 0.0276 0.1888 0.2848 0.0494 0.0375
SAD-NAE 0.2429 0.3221 0.0588 0.0442 0.0333 0.0505 0.0672 0.0542
PPR 0.3008 0.3935 0.0698 0.0501 0.2471 0.3387 0.0802 0.0628
GCN-LSTM 0.3165 0.3971 0.0726 0.0521 0.2503 0.3434 0.0815 0.0637

Table 3  Performance 
comparison on Gowalla dataset

Best two for each column are shown in bold

Methods Acc@5 Acc@10 Pre@5 Pre@10 Rec@5 Rec@10 NDCG@5 NDCG@10

Rank-GeoFM 0.2162 0.2643 0.0647 0.0453 0.0887 0.1180 0.0696 0.0499
ST-RNN 0.1865 0.2246 0.0278 0.0217 0.0817 0.1075 0.0606 0.0574
GE 0.1763 0.4060 0.0391 0.0203 0.1363 0.3135 0.0813 0.0157
PEU-RNN 0.3329 0.3766 0.0663 0.0390 0.2504 0.3613 0.0919 0.0627
SAD-NAE 0.3273 0.4300 0.0849 0.0645 0.1102 0.1600 0.0956 0.0777
PPR 0.3835 0.4905 0.0936 0.0687 0.2573 0.3430 0.1055 0.0840
GCN-LSTM 0.3895 0.4986 0.0974 0.0694 0.2648 0.3433 0.1116 0.0862
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the other datasets. This is because users in Brightkite have 
more check-in records than users in Foursquare and Gowalla 
on average, which may enable all methods to model users’ 
behavior and preference more accurately.

From Tables  2,  3 and 4 , compared with PPR, our 
extended end-to-end model GCN-LSTM further improves 
the recommendation performance w.r.tall metrics.

5.6  Ablation Study

To explore the benefits of incorporating the sequential and 
geographical effect, densifying technique and modeling per-
sonalized preference into PPR, respectively, we compare our 
model with four carefully designed variations, i.e., PPR-RL, 
PPR-Seq, PPR-Den and PPR-GRU. We show the results in 
terms of Acc@5, Pre@5, Rec@5, and NDCG@5 on three 
datasets in Fig. 3.

Based on the results, we have the following observations: 
First, PPR achieves the best performance in most cases on 
three datasets, indicating that PPR benefits from simultane-
ously considering the various contextual factors and person-
alized preference in a joint way. Second, the contributions 
of different components to recommendation performance 
are different. Sequential and geographical effect and mod-
eling personalized preference have comparable importance, 
specifically, the later contributes more on Gowalla, and the 
former contributes more on Foursquare. And both of them 
are necessary for improving performance. Furthermore, 

through the comparison of PPR and PPR-Den, it is obvious 
that the densifying trick works for alleviating the data sparse 
issue. Third, removing social relationships would degrade 
our model performance. However, the performance degra-
dation is not significant, which means our model does not 
rely on social ties heavily. There may be two reasons: On the 
one hand, it may be related to our proposed graph modeling, 
which effectively captures spatial correlations between the 
related users. On the other hand, there is some noise (e.g., 
two users who have social relations differ greatly in their 
check-in preferences) in social relationships. When social 
ties are removed, some noise is also removed simultane-
ously. This is why PPR-Soc and PPR-Den have the similar 
performance. Fourth, PPR and PPR-GRU exhibit a decent 
performance compared to other variations, which indicates 
that sequential pattern and users’ dynamic and personal-
ized preference play an important role in location-based 
recommendation.

5.7  Sensitivity of Hyperparameters

We now investigate the sensitivity of our models (i.e., PPR 
and GCN-LSTM) compared against three strong baselines 
(i.e., Rank-GeoFM, PEU-RNN, and SAE-NAD) with respect 
to the important parameters, including embedding dimen-
sion d, the number of recommended POIs k, and next time 
period � . To clearly show the influence of these parame-
ters, we report Acc@5 with different parameter settings on 

Table 4  Performance 
comparison on Brightkite 
dataset

Best two for each column are shown in bold

Methods Acc@5 Acc@10 Pre@5 Pre@10 Rec@5 Rec@10 NDCG@5 NDCG@10

Rank-GeoFM 0.3681 0.4270 0.0968 0.0618 0.2497 0.2983 0.1058 0.0700
ST-RNN 0.2396 0.3540 0.0389 0.0394 0.2279 0.3400 0.1166 0.1074
GE 0.1903 0.4259 0.0869 0.0483 0.1303 0.4119 0.1313 0.1217
PEU-RNN 0.7187 0.7383 0.1437 0.0720 0.6944 0.7204 0.2348 0.1538
SAD-NAE 0.2578 0.3383 0.0645 0.0499 0.0703 0.1047 0.0708 0.0584
PPR 0.8717 0.8966 0.1788 0.0927 0.8485 0.8741 0.2875 0.1889
GCN-LSTM 0.8809 0.8974 0.1789 0.0949 0.8403 0.8890 0.2944 0.1973

(a) Foursquare (b) Gowalla (c) Brightkite

Fig. 3  Performance comparison of variations
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Foursquare and Gowalla datasets. Figs. 4 and  5 show the 
experimental results.

As shown in Figs.  4a and 5a, PPR and GCN-LSTM 
achieve better performance compared to the three strong 
baselines with the increasing number of dimension d. GCN-
LSTM remains basically stable when d reaches 128 or more. 
Meanwhile, PPR achieves the best result when d = 128 and 
then begins to decline as d further increases.

From the results in Figs. 4b and 5b, we can see that the 
recommendation accuracy of all methods increases as k 
increases. This is expected, because the more results are 
recommended, the easier they are to fall into the ground 
truth. However, we also observe that our PPR and GCN-
LSTM exhibit an increasing performance improvement 
compared to all baselines, as k increases. In Figs. 4c and 
5c, as � increases, our models are also consistently better 
than the strong baselines. More specifically, PPR improves 
the recommendation accuracy more significantly for near 
future prediction (e.g., � = 2 vs. � = 12 ), indicating that our 
PPR can effectively capture users’ personalized preferences, 
especially short-term preferences.

Next, we evaluate the impact of � on our PPR by varying 
� from 0 to 600. The results are reported in Table 5.

On Foursquare, Gowalla and Brightkite datasets, PPR 
achieves the best performance when � = 300 , � = 400 and 
� = 100, respectively. For Brightkite, PPR achieves the best 
performance when � is small compared to Foursquare and 
Gowalla. The main reason may lay that users in Brightkite 
have denser check-in records than users in Foursquare and 
Gowalla on average, which leads to a small � . Additionally, 
with the increase of � , the overall performance is increasing 
gradually and then falls. This may be because as � increases, 
some noise edges are generated, resulting in the overall per-
formance degradation.

Finally, we evaluate the impact of hyperparameter � on rec-
ommendation performance of our GCN-LSTM. From Fig. 6, 
we observe that both Ogcn (representation learning) and Oseq 
(sequential modeling) have their own role in POI recommen-
dation. Acc@5 of GCN-LSTM first increases to the maxi-
mum value and then decreases as � increases. This is intuitive 
because both representation learning and sequential modeling 
are essential for a precise recommendation.

(a) Acc@5 w.r.t. d (b) Acc@k w.r.t. k (c) Acc@5 w.r.t. τ

Fig. 4  Parameter sensitivity w.r.t. parameter d, k and � on Foursquare

(a) Acc@5 w.r.t. d (b) Acc@k w.r.t. k (c) Acc@5 w.r.t. τ

Fig. 5  Parameter sensitivity w.r.t. parameter d, k and � on Gowalla
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6  Conclusion

In this work, we propose a novel spatio-temporal represen-
tation learning model for personalized POI recommenda-
tion. By incorporating the user-POI relation, sequential 
effect, geographical effect and social ties, we construct a 
heterogeneous network. Afterward, we exploit the embed-
ding technique to learn the latent representation of users 
and POIs. In light of recent success of RNN on sequential 
prediction problem, we feed the spatio-temporal network 
with concatenated user and POI embedding sequences for 
capturing the users’ dynamic and personalized preference. 
The results on three real-world datasets demonstrate the 
superiority of our proposal over state-of-the-art baselines. 
Furthermore, we explore the importance of each factor in 
improving recommendation performance. We observe that 
sequential effect, geographical effect, and users’ dynamic 
and personalized preference play a vital role in POI recom-
mendation task.
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