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Accurate citywide traffic inference is critical for improving intelligent transportation systems with smart city

applications. However, this task is very challenging given the limited training data, due to the high cost of

sensor installment and maintenance across the entire urban space. A more practical scenario to study the

citywide traffic inference is effectively modeling the spatial and temporal traffic patterns with limited histor-

ical traffic observations. In this work, we propose a dynamic multi-view graph neural network for citywide

traffic inference with the method CTVI+. Specifically, for the temporal dimension, we propose a temporal

self-attention mechanism that is capable of learning the dynamics of traffic data with the time-evolving traf-

fic volume variations. For spatial dimension, we build a multi-view graph neural network, employing the

road-wise message passing scheme to capture the region dependencies. With the designed spatial-temporal

learning paradigms, we enable our traffic inference model to encode the dynamism from both spatial and

temporal traffic patterns, which is reflective of intra- and inter-road traffic correlations. In our evaluation,

CTVI+ achieves consistent better performance compared with different baselines on real-world traffic vol-

ume datasets. Further ablation study validates the effectiveness of key components in CTVI+. We release the

model implementation at https://github.com/dsj96/TKDD.
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1 INTRODUCTION

Real-time traffic monitoring has attracted much attention in smart cities because of various ur-

ban sensing applications can benefit from it, including intelligent transportation system [2], user

mobility trace analysis [10], location-based recommendation [11, 20], and public safety [14]. For

instance, accurate citywide traffic inference can benefit the decision maker to generate appropriate

traffic volume management strategies, which reduces traffic congestion and contributes to a more

efficient transportation system [50]. Additionally, to improve the efficiency of ride-hailing service

for public transit, reliable traffic volume inference can be beneficial for offering better on-demand

ride-sharing service [22].

However, accurately inferring citywide traffic volume is non-trivial with several key challenges.

First, Arbitrary Missing Values: Because the device communication failure or sensor errors can

happen at any time, data incompleteness is ubiquitous in the sensed traffic volume data arbitrary

missing values. Such traffic data incompleteness brings the challenge of modeling spatial-temporal

dependencies for inferring the citywide traffic volume. Second, Limited Sensed Traffic Data: Due

to the high cost of sensor deployment for monitoring traffic information with large geographical

coverage, the collected traffic volume data is very limited. In the city of Jinan, only 2% of road

segments in the entire urban space are covered by the deployed surveillance cameras for real-time

traffic volume monitoring [45]. It is worth noting that different from the problem of traffic volume

forecast [35] based on the historical data, there is no any historical data available for the unmon-

itored roads. Therefore, it is necessary to design effective traffic inference model to learn quality

representations with insufficient traffic data. Third, Complex Spatial-Temporal Dependencies:
To capture complex traffic patterns, dynamic spatial and temporal dependency modeling plays an

important role in inferring traffic volume of different road segments in a city. Moreover, various

road context features, such as speed limitation and the number of lanes, also affect traffic volume

distribution as they reveal the characteristics of a road.

Inspired by the spatial-temporal data analytical solutions and deep learning techniques, several

methods have been proposed to infer the citywide traffic volume based on partial past observa-

tions. In particular, ST-SSL [25] constructs a spatio-temporal affinity graph based on travel speed

patterns and spatial correlations extracted from loop detectors and taxi trajectories. Then, it in-

fers the citywide volume by applying graph-based semi-supervised learning on the affinity graph.

References [32, 48] extend ST-SSL by incorporating with simulation module (i.e., SUMO [16]) to

recover full routers from incomplete trajectories. In addition, [32] leverages reinforcement learn-

ing to improve the route recovery, and jointly models road segment similarities using graph-based

embedding on both dense and incomplete trajectories. Despite their effectiveness, these works suf-

fer from two limitations: (i) most existing models either require dense GPS trajectories or aim to

recover full trajectories based on the designed traffic simulator; (ii) transition probability based on

biased dense trajectories or uncertain recovered trajectories may not accurately model the com-

plex traffic patterns between adjacent segments. Yi et al. [45] propose CT-Gen based on key-value

memory neural network for traffic volume inference, which consists of a candidate selection mod-

ule and a key-value attention network. Particularly, the former component selects related road

segments with volume information as candidates and the latter network learns the extrinsic de-

pendencies among road segments. However, due to the high dynamics and complexity of urban

traffic, road segments with similar road contexts are not necessarily guaranteed to have similar

traffic volume.

In light of the aforementioned challenges, we proposed a spatial-temporal learning framework

CTVI+ which effectively captures both spatial and temporal dependencies across space and time,

to achieve accurate traffic inference results. In particular, to inject the spatial context into our
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representation model, dynamic spatial and feature affinity graphs are generated between road

segments with respect to their geographical and road characteristics (e.g., speed limit, road type).

To capture road segment-wise spatial relationships, we develop a multi-view graph convolution

network to perform message passing over the constructed spatial affinity graph for road seg-

ment representation. To encode the traffic dependency with the time dimension, a temporal self-

attention mechanism is designed to consider time-evolving traffic patterns with different reso-

lutions (e.g., daily, weekly). We validate the performance improvement of our proposed CTVI+

method against state-of-the-art methods on several real-life traffic datasets.

We highlight key contributions of this work as follows:

— To tackle the citywide traffic inference task, we develop a graph neural network-based model

CTVI+ to capture spatial and temporal dependencies among different road segments in a

dynamic environment.

— We integrate multi-view graph convolution network with temporal self-attention network

to model spatial and temporal correlations. To enhance the representation learning over road

segments, a semi-supervised spatial-temporal constraint is introduced with the random walk

in our CTVI+ framework.

— Experiments on real-world datasets verify the performance superiority of our proposed traf-

fic inference model.

While this work is based on a conference article [9], the scope of the proposed work has been sig-

nificantly extended. The differences between this work and the conference paper are summarized

as follows:

— We extend our CTVI+ by taking the periodic traffic volume patterns into consideration to

optimize the semi-supervised objective.

— We conduct additional experiments to demonstrate the effectiveness of the optimized model

on two new real-world traffic datasets. Experimental results show the optimized model is

significantly better than the model in the conference version. We also re-perform the exper-

iments for parameter sensitivity of our optimized model.

— We add the ablation study to verify the effectiveness of each component in our CTVI+. We

also visualize the temporal self-attention weights to understand the impact of different his-

torical volume information on the current volume. Experimental results are shown in Table 5

and Figure 8.

— We perform the time efficiency evaluation experiment to demonstrate the effect of parallel

optimization for our model. Experimental results are shown in Table 6.

— With more examples and explanations, we elaborate on each component and the benefits of

our model, making the method easier to understand. In addition, we also provide the pseudo-

code of CTVI+ and time complexity analysis in Algorithm 1 and Section 4.6, respectively.

— We also add and discuss the recent related work for traffic volume inference in the related

work section.

2 RELATED WORK

Traffic Volume Forecast. Forecasting traffic volume is a critical issue in the field of transporta-

tion. Inspired by the effectiveness of graph neural networks (GNNs), T-GCN [53] utilizes the

graph convolutional network (GCN) to learn complex topological structures for capturing spa-

tial dependence, and exploits the gated recurrent unit (GRU) to learn dynamic changes of traffic

data for capturing temporal dependence. Graph attention mechanism is adopted by ST-GDN [51]

for encoding the global region dependencies. GPTE [23] represents the road network as a property
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graph and performs traffic estimation via neural network modeling and iterative information prop-

agation. ASTGCN [12] adopts the spatial-temporal attention mechanism and the spatial-temporal

convolution module to capture the dynamic spatial-temporal correlations and spatial patterns in

traffic data. STGNN [35] combines the positional graph neural layer, recurrent neural network

layer, and transformer layer to model the spatial and temporal relations between road segments

for traffic volume prediction. Based on meta and transfer learning, MetaST [44] uses a local CNN

and an LSTM to jointly capture spatial-temporal features and correlations, and leverages infor-

mation from multiple cities to increase the stability of transfer. However, traffic volume forecast

is different from traffic volume inference, because there has been no historical data available for

unmonitored road segments.

Recovering Missing Spatio-temporal Data. There are varieties of research try to fill missing

spatio-temporal data based on Principal Component Analysis (PCA) [17, 28, 29] or extended

Collaborative Filtering (CF) [1, 38, 46]. Yi et al. [46] propose ST-MVL model, which fills missing

values in geo-sensory time series using CF from multiple spatial and temporal perspectives. Wang

et al. [38] propose a three-dimensional tensor factorization method to estimate the missing travel

time for drivers on road segments. Tayyabasif et al. [1] propose matrix and tensor based methods

to estimate these missing values by extracting common traffic patterns in large road networks.

Ruan et al. [30] propose a robust low-rank tensor completion method, which utilizes the potential

spatial-temporal structure and sparse noise characteristics to recover missing data. Xiang et al. [43]

propose an edge computing-empowered system, GTR, for large-scale traffic data recovery with

low-rank theory. GTR regards the data recovery problem as a low-rank minimization problem,

then utilize the fixed-point continuation iterative scheme to model spatio-temporal correlations

for accurate traffic recovery. However, these approaches rely on historical data heavily when filling

in missing data. Hence they are not suitable for traffic volume inference for unmonitored road

segments.

Citywide Traffic Volume Inference. Semi-supervised learning becomes the effective solution in

inferring the missing traffic data. For example, Zhan et al. [49] propose a Bayesian-based method to

estimate citywide traffic volume using probe taxi trajectories. They need to estimate travel speeds

for volume inference using full taxi trajectories. Wang et al. [37] propose a real-time traffic volume

inference model based on sparse surveillance cameras. They first learn the transition probability

from the third-party GPS dataset to model the entire road network traffic. Then, they estimate

the unobserved traffic patterns using a multivariate normal distribution model with the transition

probabilities. However, these methods require full GPS trajectories, which are not available from

actual transportation systems.

Deep neural networks have emerged as promising techniques in representation learning of com-

plex spatial-temporal dependencies for traffic volume inference. For instance, memory-augmented

neural network is designed in [45] to model traffic patterns based on the key-value attentive mecha-

nism and the identification of relevant road segments for spatial relation learning. In the study [32],

the proposed JMDI method utilizes the reinforcement learning method to impute vehicle mobility

trace. In JMDI, the traffic simulator SUMO [16] is adopted. A multi-view graph embedding method

is designed to capture the dependencies among different road segments. Zhang et al. [52] propose

TGMC-S model, which constructs a spatial affinity graph employing the correlation coefficients

of speed data to characterize the similarities among roads. Then, the spatial affinity graph and

temporal continuity constraint are incorporated into the geometric matrix completion framework

for network-wide traffic volume estimation.

Different from JMDI [32] constructs a spatio-temporal graph based on recovered trajectory and

sets multi-hop edges among different time intervals, CTVI+ designs spatial and feature affinity
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graphs on each time interval based on road network and features at each time interval, respec-

tively, and captures temporal correlation through a temporal self-attention mechanism. Different

from constructing spatial or temporal affinity graphs in our CTVI+, CT-Gen [45] aggregates the

traffic volume through key-value attention network [26] from related road segments according to

adjacent roads and road characteristics directly. TGMC-S [52] is a matrix completion framework,

which incorporates spatial affinity correlations formed through crowdsourcing floating car data

and temporal continuity characteristics into a geometric matrix factorization model, and utilizes

the alternating direction method of multipliers (ADMM) algorithm to solve it. While CTVI+

obtains the representation of road segments through multi-view graph convolution, and leverages

the correlation of learned representations to infer the traffic volume. Furthermore, compared with

the previous works, the biggest difference is that we also propose a well-designed joint learning

objective function, which combines unsupervised topological structure and semi-supervised traf-

fic volume constraint.

Graph Neural Networks for Spatial-Temporal Data. Recent years has witnessed the success

of GNNs in various domains, such as social network analysis [3, 31], recommendation [4, 13], and

healthcare [8, 21]. The key idea of GNNs is to capture the structural dependence of graph data

through the message passing schemes for information aggregation [34, 42, 47]. Due to the strong

relation learning ability of GNNs, many GNN-based spatial-temporal learning methods have been

proposed to tackle the challenges in spatial-temporal data, such as location-based recommenda-

tion [39], traffic speed prediction [24], interactive behavior forecasting [19], crime prediction [18],

and region representation learning [41]. Motivated by the effectiveness of GNNs, our proposed

CTVI+ is designed with graph-based message passing for spatial context learning.

3 PROBLEM DEFINITION

In this section, important definitions with notations are introduced. Then, the studied task is for-

mally presented.

Definition 1 (Road Segment). For a city, each road segment serves as the spatial unit for traffic

volume inference. We define R = {r1, r2, . . . , rn } to represent the set of citywide road segments.

In our problem, various geographical contextual features xi = {x1
i ,x

2
i , . . . ,x

f
i } are considered in

our model to enhance road segment representations, such as road length, road levels, the number

of lanes, starting/ending positions, as well as speed limitation. X is defined to denote the feature

matrix of all road segments.

Definition 2 (Time Interval). For temporal dimension, the entire time period is partitioned into

m time intervals with equal time length, i.e., T = {t1, t2, . . . , tm }.
To measure the traffic volume of each road segment at a certain time interval, sensing devices

(e.g., loop detectors, and surveillance cameras) are adopted as the traffic information monitor. How-

ever, due to expensive installation and maintenance costs, it is far from sufficient in terms of acquir-

ing the city scale volume information [25]. We defineM and U to represent the road segments

with and without the monitored traffic volume, respectively.

Definition 3 (Traffic Volume). For each road segment ri , we define y j
i to represent its traffic vol-

ume at the jth time interval which is the total number of corresponding traversing vehicles.

Problem 1 (Problem Statement). Given the above definitions, our studied problem of citywide

traffic volume inference is to predict the unobserved traffic volume of the road segments (ri ∈ U )

without the monitored traffic information at the target time intervals.

Key notations used in this article are summarized in Table 1.
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Table 1. Main Notations and their Definitions

Notation Definition

n,m the number of road segments and time intervals

ri the road segment ri

xi the feature vector of road segment ri

X the feature matrix of all road segments

y j
i /ŷ

j
i the ground truth/referred traffic volume of ri during tj

M/U the monitored/unmonitored road segment set

G j
s /G j

f
the spatial/feature affinity graph at time interval tj

As/Af the adjacent matrix of affinity/feature affinity graph

G j the set of spatial and feature affinity graphs at time interval tj

G the affinity graph set at all time intervals

Hs ,Hf ,Hc the hidden representation in spatial/feature/common space

Hs ,Hf ,Hc the hidden representation matrix at all time intervals

H the fused hidden representation matrix at all time intervals

tc , tr , td , tw the currently/recently/daily/weekly time intervals

Fig. 1. The model architecture of our proposed CTVI+.

4 METHODOLOGY

This section describes the details of our CTVI+ method which is composed of four key compo-

nents: (i) affinity graph construction, (ii) multi-view graph convolution network, (iii) temporal self-

attention mechanism, and (iv) joint learning optimization. First, we construct spatial/feature affinity

graphs on each time interval to model road constraints and feature similarities, respectively. Second,

we present a multi-view graph convolution network on the affinity graphs to adaptively capture

the deep correlations of road segment representation in both spatial structures and road contexts.

Third, we employ a temporal self-attention mechanism to learn the different temporal dependen-

cies of road segments in the embedding space. Finally, we design a joint learning objective function

to guide the learning of final road segment representations for citywide traffic volume inference.

The overall model architecture is illustrated in Figure 1.

4.1 Generating the Affinity Graph

The key challenge of inferring citywide traffic volume lies in the accurately encoding of spatial-

temporal dependencies. Traffic patterns of different road segments are inter-dependent in a
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Fig. 2. An illustration of spatio-temporal affinity graph.

time-evolving scenario across different time intervals. Hence, it is important to capture the dy-

namic spatial dependencies between different regions. To tackle the challenge of learning region-

wise spatial dynamics, our method proposes to generate spatio-temporal affinity graph illustrated

in Figure 2.

The constructed spatial affinity graphs vary by different time intervals. Each individual spatial

affinity graph Gi
s will be differentiated with weights. In our affinity graph, nodes and edges rep-

resent the road segments and their connections. In particular, the connection edge will be added

between two road segments if the end intersection of one road segment is the same as the start

intersection of another road segment. Thus, road network constraints are modeled by the spatial

affinity graph.

By considering that the traffic volume similarity between regions may be affected by the number

of lanes at an intersection, the edge weight ei j in our graph is defined as follows:

wi j = σ

(
liner

(
min(lanei , lanej )

max(lanei , lanej )

))
, (1)

where lanei denotes the number of lanes on road segment ri , liner is a linear function, and σ is the

sigmoid function to compression weight to the range (0, 1). Notice that all spatial affinity graphs

are the same since the road network structure is generally unchanged.

Furthermore, we extract road contextual features from the road network. In particular, various

types of road features can be considered in our model, e.g., road type, the number of lanes, speed

limitation as well as the starting/ending locations. We also consider the traffic volume value as an

additional road segment feature for each time interval. We initialize the unobserved volume with

traffic volume averaged from its spatially k-nearest road segments. Then, we generate the feature

affinity graph Gi
f

based on kNN method with our extracted time interval-specific feature matrix

X.

Specifically, we first calculate the feature similarity matrix S ∈ Rn×n among n road segments.

In this article, we employ cosine similarity (Equation (2)), which is a popular way to obtain the

similarity between two vectors.

Si j =
xi · xj

|xi | |xj |
, (2)
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where xi and xj are feature vectors of road segments i and j. Afterward, we select top k simi-

lar road segments for each road segment to build edges and finally we get the adjacency matrix

Af .

Specifically, we generate a spatial affinity graph G j
s based on the road network connections in

urban space. Furthermore, we incorporate road contextual features into the spatial dependency

modeling by constructing the feature affinity graph G j

f
. The set of our generated affinity graphs

of different time intervals is denoted as G = {G1,G2, . . . ,Gm }. Here, G = {G1,G2, . . . ,Gm }.

4.2 Multi-View Graph Convolution Network

Graph convolutional neural networks (GCNs) have been widely used in representation learn-

ing to capture graph structure by aggregating neighbor features and have achieved great suc-

cess [6, 40, 54]. Motivated by [36], we propose a multi-view GNN over the generated spatial and

feature affinity graphs for road segment representations in each time interval.

4.2.1 Spatial Convolution Module. To capture the spatial dependency across regions and aggre-

gate spatial contextual signals from neighboring road segments, we design a convolutional layer

over our spatial affinity graph Gs based on the spectral graph theory [15].

Following the learning paradigm in [15], we define our multi-layer spatial convolution based on

the following propagation scheme:

H
(l+1)
s = ReLU (D̃

− 1
2

s Ãs D̃
− 1

2
s H

(l )
s W

(l )
s ), (3)

where W
(l )
s represents the learnable projection layer, Ãs = As + I and D̃s,ii =

∑
j Ãs,i j . H

(0)
s =

X ∈ Rn×f , where X denotes the feature matrix of all road segments. Here, f denotes the feature

dimension. Furthermore, H
(l )
s ∈ Rn×d represents the output of the lth layer. The hidden state

dimensionality is denoted by d for latent representations of all road segments.

4.2.2 Feature Convolution Module. Nevertheless, our developed spatial graph convolutional op-

erations may not be able to encode the complex dependencies with respect to the graph topological

structures and corresponding node features [36]. Specifically, when just spatial graph convolution

is performed, it may not distinguish the importance of road constrains and road features.

Intuitively, the more similar the road features are, the more similar the traffic volume is. There-

fore we perform feature convolution with Af and X as input:

H
(l+1)
f
= ReLU (D̃

− 1
2

f
Ãf D̃

− 1
2

f
H

(l )
f

W
(l )
f

), (4)

where W
(l )
f

is a trainable neural layer for embedding transformation. By doing so, we can generate

road segment feature representation H
(l )
f

.

4.2.3 Common Convolution Module. In reality, the spatial and feature spaces are not completely

irrelevant. Thus, we not only need to extract the road segment-specific embedding in these two

spaces, but also to extract the common information shared by these two spaces. After that, we

design a common GCN to perform convolution operations with the parameter sharing strategy.

We formally define the propagation scheme with the following operations:

H
(l+1)
cs = ReLU (D̃

− 1
2

s Ãs D̃
− 1

2
s H

(l )
cs W

(l )
c ), (5)

H
(l+1)
cf
= ReLU (D̃

− 1
2

f
Ãf D̃

− 1
2

f
H

(l )
cf

W
(l )
c ). (6)

ACM Transactions on Knowledge Discovery from Data, Vol. 17, No. 4, Article 53. Publication date: February 2023.



Dynamic Multi-View Graph Neural Networks for Citywide Traffic Inference 53:9

Given our generated spatial graph Gs and feature graph Gf , we can obtain two representations

Hcs and Hcf . We define a common embedding Hc in the spatial and feature space as follows:

H
(l )
c =

H
(l )
cs + H

(l )
cf

2
. (7)

4.2.4 Multi-View Fusion. During the fusion phase, attentive aggregation mechanism

att (Hs ,Hf ,Hc ) is introduced:

(as , af , ac ) = att (Hs ,Hf ,Hc ), (8)

where as , af , ac ∈ Rn×1 denotes the attention weight of n road segments w.r.t. Hs ,Hf , and Hc ,

respectively. Take one road segment representation hi
s ∈ R1×d in spatial space Hs for instance. We

first transform the representation through a nonlinear transformation, and then use one shared

attention vector q ∈ Rd×1 to get the attention weight ωi
s as follows:

ωi
s = qT · Tanh(W · (hi

s )T + b), (9)

where W ∈ Rd×d denotes the trainable matrix, and b ∈ Rd×1 is the bias. Similarly, we can obtain

the attention weightωi
f

andωi
c for road segments ri , respectively. Afterward, we perform so f tmax

function to normalize the attention weight as follows:

ai
s = so f tmax (ωi

s ) =
exp(ωi

s )

exp(ωi
s ) + exp(ωi

f
) + exp(ωi

c )
. (10)

Similarly, ai
f
= so f tmax (ωi

f
) and ai

c = so f tmax (ωi
c ). We generalize this definition to all roads

and have the learned attention weight aS = diaд(as ), aF = diaд(af ), and aC = diaд(ac ). The

multi-view representations are aggregated with the following operations:

H = aS · Hs + aF · Hf + aC · Hc . (11)

4.2.5 Multi-View Graph Learning across Different Time Intervals. Finally, we apply our multi-

view graph encoder on the constructed affinity and feature graphs of each time interval. Due to

the multi-view convolution operation on each time interval does not influence each other, this

operation has high parallelism and efficiency.

Specifically, we take the spatial affinity graph and feature affinity graph as the input of multi-

view convolution networks, and the forward-propagation output of multi-view convolution net-

works on G = {G1,G2, . . . ,Gm } is the representation H ∈ Rm×n×d of all road segments at all time

intervals in a d-dimensional space.

4.3 Temporal Self-Attention Mechanism

In real-world urban sensing scenarios, traffic patterns may exhibit multi-grained transitional regu-

larities, such as daily, weekly, or even seasonally temporal dependencies [25, 45, 48]. As shown in

Figure 3, the traffic volume of a road segment has strong recent, daily, and weekly patterns during

a period of half a month with 5-min time intervals.

To effectively consider such periodic traffic patterns, we propose to endow our temporal encoder

with the consideration of recent, daily, and weekly traffic transitional patterns.

To encode the temporal traffic patterns, our model considers four types of time intervals in our

temporal encoder (as illustrated in Figure 4): (i) the current time interval tc , (ii) the recent time

intervals tr , (iii) time intervals with day resolution, and (iv) time intervals tw with week resolution.

Then, the learned embeddings with different types of time intervals are fed into our temporal self-

attention module. Formally, we define the relation learning function in our temporal self-attention
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Fig. 3. The traffic volume of a road during a 15-day interval.

Fig. 4. An illustration of the input of temporal self-attention.

as follows:

Si = (Hi + P)WQ ((Hi + P)WK )
T
(i = {1, 2, . . . ,n}), (12)

time interval-specific representations of road segments are concatenated as Hi = {htw

i , h
td

i , h
tr

i ,

h
tc

i }. Here, WQ ∈ Rd×d and WK ∈ Rd×d represents the transformation weight matrices over the

node embedding Hi . We further inject the positional embedding P into the node representation so

as to discriminate the temporally ordered information of the traffic sequence.

We define our pre-defined representation P as follows:

Pi, j =
⎧⎪⎨⎪⎩

sin(i
/
10000j/d ) i f i%2 = 0,

cos(i
/
10000j−1/d ) else .

(13)

Then temporal self-attention score matrix Si is divided by the scalar
√
d . The reason behind this

is that the softmax function is sensitive to very large inputs. This will kill the gradient, slow down

or even stop learning. If we use
√
d to scale the input vector, we can prevent it from entering the

saturation region or making the gradient too small. The node representations which preserve the

historical information can be presented as follows:

Zi = so f tmax

(
Si√
d

)
(Hi + P)WV (i = {1, 2, . . . ,n}), (14)

where WV ∈ Rd×d denotes the learnable transformation matrix for embedding projection.

4.4 Multi-Head Temporal Self-Attention

To encode the temporal dependency across different time intervals, we design a temporal self-

attention as the encoder to aggregate information along the time dimension. In practice, traffic

volume patterns during different time intervals may be dependent on different aspects. Hence, we
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endow our temporal self-attentive network to model cross-time relation learning under multiple

head representation spaces [33]. Multiple temporal self-attention heads (or facets) are computed

over historical time intervals to compute final road segment representations.

Zi = FC (concat (Z(1)
i ,Z

(2)
i , . . . ,Z

(#h)
i )). (15)

Here, #h represents the number of attention heads in our temporal encoder. We further design a

fully connected network FC to aggregate head-specific representations.

4.5 Joint Learning Optimization

After learning representations for road segments that preserve spatio-temporal dynamics based

on the spatial/feature affinity graph and temporal self-attention, a joint learning objective is in-

troduced for road segment representations. Spatial and temporal traffic patterns are effectively

preserved in the encoded embeddings.

Below we formally define the joint learning objective function to obtain the results of global

optimization.

We first propose to encode the dynamic spatial and temporal context with an unsupervised

objective function for road segment representation. In our model, we use the dynamic representa-

tions of a node vi at time interval t , Zt
i to capture the local spatial information of v based on the

spatial affinity graph representation. Specifically, we use a binary cross-entropy loss function at

each time interval to encourage nodes co-occurring in fixed-length random walks, to have similar

representations:

Lwalk =
∑
t ∈T

∑
vi ∈V

���
�

∑
vj ∈N t

walk
(vi )

− log
(
σ

(
st

i j

))
−

∑
vk ∈N eдt (vi )

log
(
1 − σ

(
st

ik

))	


�
, (16)

st
i j denotes the representation similarity between the road segments ri and r j (i.e., similarity be-

tween Zt
i and Zt

j ), which can be any vector similarity measure function (e.g., inner product opera-

tion). σ is the sigmoid function,N t
walk

(vi ) represents the set of nodes sampled with the vi during

the process of random walks. We define the negative edge sampling set as Neдt (vi ) for node vi at

time interval t .
Second, we propose to reach an agreement between the target road segment and its top-k most

similar road segments with respect to their traffic patterns under the representation space. In addi-

tion to considering the current time interval, we also consider the periodicity of the traffic volume,

that is, the traffic volume of each road segment should be close to its inferred historical volume.

Specifically, we consider four types of traffic volume patterns, i.e., current pattern, recent pattern,

daily pattern, and weekly pattern, to be integrated into our objective. We formally present the

optimized loss objective with the semi-supervised learning paradigm below:

Lvolume = βtc
Ltc

vol
+ βtr

Ltr

vol
+ βtd

Ltd

vol
+ βtw

Ltw

vol
, (17)

we define hyperparameters βtc
, βtr
, βtd
, βtw

to control the importance of the current, recent, daily,

and weekly traffic patterns for the traffic volume inference over the target time interval.

Ltc

vol
=

∑
t ∈T

∑
ri ∈M

������
yt

i −
∑k

j s
t
i jy

t
j∑k

j s
t
i j

������
, (18)

Ltr

vol
=

∑
t ∈T

∑
ri ∈M

������
yt

i −
∑k

j s
t−tr

i j yt−tr

j∑k
j s

t−tr

i j

������
, (19)
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Ltd

vol
=

∑
t ∈T

∑
ri ∈M

������
yt

i −
∑k

j s
t−td

i j yt−td

j∑k
j s

t−td

i j

������
, (20)

Ltw

vol
=

∑
t ∈T

∑
ri ∈M

������
yt

i −
∑k

j s
t−tw

i j yt−tw

j∑k
j s

t−tw

i j

������
, (21)

yt
i denotes the ground truth traffic volume of road ri during the time interval t .

∑k
j s t

i j yt
j∑k

j s t
i j

aims to

infer the traffic volume at the road segment ri based on top-k most similar road segments of this

target road segment in the spatial-temporal representation space at the time interval of t .
Finally, we integrate Lwalk and Lvolume into a joint learning framework through hyperparam-

eters α , βtc
, βtr
, βtd
, and βtw

, which are used to balance the importance of spatial structural prox-

imities and spatio-temporal volume patterns and can be optimized during the training process. By

minimizing the joint objective Ljoint , we can learn the hyperparameters of our framework.

Ljoint = αLwalk+Lvolume +
λ

2
| |Θ| |2, (22)

where λ represents the hyperparameter for regularization. Here, we define Θ to denote the model

parameters. With the Equation (22), our CTVI+ method is able to well preserve the spatial and

temporal dynamic patterns for traffic volume.

Taking all the aforementioned factors into consideration, we can infer the traffic volume for

unmonitored road segments according to the final learned road segment representations:

ŷt
i =

∑k
j s

t
i jy

t
j∑k

j s
t
i j

. (23)

Algorithm 1 shows the pseudo-code of our CTVI+ model. First, we feed the spatial adjacency ma-

trices and the feature adjacency matrices in historical traffic volume data into our model. Then, ac-

cording to the joint objective function, the multi-view GNN and multi-head temporal self-attention

network are trained at the same time. As shown in lines 3–9, we can obtain the road segment repre-

sentations by optimizing Equations (3), (4), (7), (11), and (15) recursively. Finally, the traffic volume

on unmonitored road segments can be inferred using the learned road segment representations by

Equation (23).

4.6 Time Complexity Analysis

We now analyze the time complexity of our proposed CTVI+ for citywide traffic volume infer-

ence. CTVI+ is mainly composed of three modules: affinity graph construction, multi-view graph

convolution, and temporal self-attention module. First, the time complexity of affinity graph con-

struction ismax (O (mndmax ),O (mn2 f )), wherem is the number of time intervals, n is the number

of road segments, f denotes the dimension of road segment features, and dmax is the maximum de-

gree of nodes in the spatial affinity graph. We should notice that dmax << n. Therefore, the overall

time complexity of affinity graph construction is O (mn2 f ). This part also can be included in the

preprocessing. Second, for the multi-view graph convolution module, we perform spatial, feature,

and common convolution separately to aggregate neighbors’ features. Therefore, the computa-

tional complexity is O (m |E |d f ), where |E | is the number of edges in the graph, and d is embed-

ding dimension. Third, the computational complexity of the temporal self-attention mechanism

is O (mnd2#h), where #h represents the number of attention heads in our temporal self-attention

mechanism. Therefore, the total time complexity of CTVI+ is O (mn2 f +m |E |d f +mnd#h). Since

multi-view graph construction and convolution operations on each time interval are independent
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ALGORITHM 1: The Learning Process of CTVI+

Input: Affinity graphs at all time intervals G, road segment feature matrix X, embedding dimen-

sion d , number of attention heads #h, observed traffic volume {yt
i |ri ∈ M, t = 1, 2, . . . ,m}.

Output: Inferred traffic volume {ŷt
i |ri ∈ U , t = 1, 2, . . . ,m}

1: Calculate spatial adjacency matrix As = {A1
s ,A

2
s , . . . ,A

m
s } by Equation (1)

2: Calculate feature adjacency matrix Af = {A1
f
,A2

f
, . . . ,Am

f
} by Equation (2)

3: while Ljoint not converge do

4: Hs = {H1
s ,H

2
s , . . . ,H

m
s } ← perform spatial convolution by Equation (3)

5: Hf = {H1
f
,H2

f
, . . . ,Hm

f
} ← perform feature convolution by Equation (4)

6: Hc = {H1
c ,H

2
c , . . . ,H

m
c } ← perform common convolution by Equation (7)

7: H = {H1,H2, . . . ,Hm } ← perform attention mechanism by Equation (11)

8: Z = {Z1,Z2, . . . ,Zn } ← perform multi-head temporal self-attention by Equation (15)

9: end while

10: Infer traffic volume ŷt
i by Equation (23)

of each other, that is, they can be performed in parallel, so the total time complexity of our CTVI+

can be reduced to O (n2 f + |E |d f +mnd2#h).

5 EXPERIMENT

In this section, we first introduce the details of four evaluation datasets and the competitor al-

gorithms. We study the effectiveness of our method in inferring citywide traffic volume on four

datasets compared to state-of-the-art baselines. We then focus on the ablation study to verify the

effect of each component of our proposed model on four datasets. Finally, the parameter sensitivity

of our model w.r.t. the important parameters and model efficiency are investigated.

5.1 Datasets

We evaluate the performance of our CTVI+ method on two collected traffic volume datasets

from the cities of Hangzhou and Jinan in China. Furthermore, we also conduct extensive experi-

ments on two public real-world datasets collected from California in USA by the Caltrans Perfor-

mance Measurement System (PeMS) [5, 12]. Particularly, the traffic volume of road segments in

Hangzhou is measured through the deployed traffic radars. In Jinan city, traffic surveillance cam-

eras serve as traffic volume detector. The loop detectors, deployed on the highway, are utilized to

monitor the traffic flow information in California. These four datasets are collected from 46 traffic

radars in Yuhang district at Hangzhou city, 165 surveillance cameras in Jinan city, 307, and 170

loop detectors in major urban areas of California. Since the traffic volume during the morning

rush hour has the greatest impact on urban traffic, our experiments are conducted only during the

period between 7AM and 9AM on each dataset. Table 2 lists the detailed information of evaluation

datasets.

5.2 Methods for Performance Comparison

In the performance comparison, the following methods are considered as baselines.

— K-Nearest Neighbors (KNN) - This baseline calculates the averaged volume from the top-k
nearest road segments as the inference results.

— Contextual Average (CA) - CA estimates the traffic volume of the target road segment

from the identified top-k similar road segments based on the generated features.
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Table 2. Basic Statistics of Four Datasets

Dataset Hangzhou City Jinan City PeMS04 PeMS08

Time Spans 2021/01/03-01/03 2016/08/01-08/31 2018/01/01-01/31 2016/07/01-07/31

#Road Segments 553 493 340 295

#Monitored Segments 46 165 307 170

#Features 8 7 3 3

Time Interval (minute) 5 5 5 5

Sensor Type Traffic radar Surveillance

camera

Loop detector Loop detector

— MLP - This baseline takes the flattened features as the input and incorporates them into the

Multilayer perceptron for feature vector projection.

— XGBoost [7] - XGBoost is an efficient algorithm with the gradient boosted trees to perform

regression over the traffic volume of each road segment. Each time interval is trained sepa-

rately in XGBoost method.

— ST-SSL [25] - This approach is built on the semi-supervised learning framework to fusion

data from different sources. In ST-SSL, the affinity graph is constructed to model spatial and

temporal correlations across time intervals and road segments.

— CityVolInf [48] - CityVolInf combines SSL-based similarity module with traffic simulation

module to model spatio-temporal correlations and transitions of traffic volume between ad-

jacent road segments.

— CT-Gen [45] - CT-Gen proposes to consider similar traffic patterns among adjacent road

segments by proposing a memory neural network.

— JMDI [32] - JMDI is a reinforcement learning method to learn vehicle mobility information

from incomplete trajectories. This approach introduces a graph embedding component with

the semi-supervised learning scheme to estimate the traffic volume information across the

urban space.

For a fair comparison, we perform the model training on each time interval separately for baselines

that cannot deal with the traffic volume on multiple time intervals.

5.3 Evaluation Metric

We adopt the widely used evaluation metrics: Root Mean Square Error (RMSE) [27] and Mean

Absolute Percentage Error (MAPE) [45] to measure the accuracy of our inference results. We

formally present those metrics as follows:

RMSE =

√√
1

nm

m∑
t=1

n∑
i=1

(yt
i − ŷt

i )2, (24)

MAPEt =
100%

nm

m∑
t=1

n∑
i=1

�����
yt

i − ŷt
i

yt
i

�����
, (25)

MAPEp =
100%

nm

m∑
t=1

n∑
i=1

�����
yt

i − ŷt
i

ŷt
i

�����
. (26)

Here,m and n denote the number of time intervals and test samples, respectively.yt
i \ŷt

i represents

the operation of the ground truth\inferred traffic volume information of road segment ri during

the time interval t .
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Fig. 5. Illustration of searching parameters on Jinan data.

Notice that RMSE focuses more on larger values, while MAPE receives more punishments from

smaller values. Therefore, the combination of two metrics evaluates the performance of inference

methods more comprehensively.

5.4 Parameter Setting

In our experiments, the length of the time interval is set as 5 minutes. We randomly partition road

segments with the traffic volume information into two sets for training (80%) and testing (20%).

We further set 20% of our training data as the validation set for parameter tuning. The learning

rate is set as 0.005 for model optimization. The depth of our graph neural architecture is searched

from the range of {1, 2, 3}. We tune the embedding dimensionality from {24, 25, 26, 27, 28}. λ is set

to 5e−3. The number of similar road segments (k) selected in the feature space is set as 5. In our

multi-head attention, the number of representation heads is set to 3. We set the number of negative

samples to 5. We perform optuna,1 a Bayesian hyperparameter optimization tool, for 100 rounds to

tune the hyperparameters, and the search ranges for weights are set to [0.1, 10]. Specifically, when

α = 7.8635, βtc
= 0.8568, βtr

= 1.5996 in Hangzhou dataset, α = 2.0253, βtc
= 0.6178, βtr

= 8.9403,

βtd
= 0.9342, βtw

= 3.6822 in Jinan dataset, α = 1.6481, βtc
= 6.7405, βtr

= 0.9033, βtd
= 2.3741,

βtw
= 3.6643 in PeMS04 dataset, and α = 3.4267, βtc

= 1.3315, βtr
= 4.2419, βtd

= 0.5515,

βtw
= 0.5048 in PeMS08 dataset, our model CTVI+ obtains the best performance. For all methods,

experiments are repeated with 10 runs and the averaged performance are reported. The detailed

searching of optimal hyperparameters on Jinan dataset is shown in Figure 5.

The parameters setting for other baselines are listed as follows. For KNN and CA, we set k = 5.

For MLP, we set the learning rate to 0.05, the dropout rate to 0.1, the number of layers to 3, and the

hidden dimension size to 128. For XGBoost, we set the learning rate to 0.05, the maximum depth

to 5, the minimum sum of instance weight needed in a child to 1, and L2 regularization term on

weights to 0.01.2 For ST-SSL, we set the learning rate to 0.001, the number of spatial neighbors to

30, and spatio-temporal factor α = 1, β = 1. For CityVolInf, we set the maximum iteration number

1https://github.com/pfnet/optuna.
2https://github.com/dmlc/xgboost.
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Table 3. Performance Comparison of Different Baselines on Hangzhou and Jinan Datasets

Dataset Hangzhou City Jinan City

Methods MAPEt MAPEp RMSE MAPEt MAPEp RMSE

KNN (k = 5) 0.6636 0.7139 63.1035 0.6446 0.6306 60.3842

CA (k = 5) 0.6879 0.7325 65.4562 0.6568 0.6423 61.2357

MLP 0.6029 0.6561 56.4201 0.8180 0.6808 69.3974

XGBoost 0.4689 0.5243 53.9832 1.5811 0.5917 93.3649

ST-SSL 0.5638 0.5983 44.2793 0.7052 0.6883 59.0377

CityVolInf 0.4891 0.5047 37.4397 0.6526 0.4985 57.8793

CT-Gen 0.3602 0.4622 31.9691 0.6727 0.4760 57.4482

JMDI \ \ \ 0.4655 0.5574 42.0020

CTVI+ 0.2420 0.3368 28.8727 0.3884 0.3780 30.2166

Table 4. Performance Comparison of Different Baselines on PeMS04 and PeMS08 Datasets

Dataset PeMS04 PeMS08

Methods MAPEt MAPEp RMSE MAPEt MAPEp RMSE

KNN (k = 5) 0.7923 0.8234 87.4532 0.6734 0.7125 83.4526

CA (k = 5) 0.8121 0.8033 88.2539 0.6811 0.7301 84.2223

MLP 0.7464 0.6498 86.8951 0.6275 0.6628 79.2848

XGBoost 0.8491 0.9433 90.1311 0.7728 0.8807 83.0742

ST-SSL 0.6522 0.6308 84.1763 0.6425 0.7581 77.9416

CityVolInf 0.5572 0.5053 72.7174 0.5915 0.5394 75.8549

CT-Gen 0.4625 0.5323 68.3129 0.4433 0.5125 66.2835

JMDI \ \ \ \ \ \
CTVI+ 0.3994 0.4573 63.1672 0.3792 0.4247 59.7413

ψ = 1000, coefficient parameters α = 4.6, β = 8.3, η = 25, respectively, and use the default setting

of SUMO in the experiment. For CT-Gen, we set the candidate number to 15, the dimension of

volume key embedding to 10, volume value embedding to 10, and the dimension of road context

embedding to 5. For JMDI, we set discount factor γ to 0.8, mini-batch to 128, learning rate to 0.001

for deep reinforcement learning framework, speed limits to 1 m/s and 40 m/s in the simulating

environment, and window size to 10 in Skip-gram.

5.5 Performance Validation

We show the evaluation results of all compared methods on four real-world traffic datasets in

Tables 3 and 4. Due to the unavailability of vehicle trajectories in Hangzhou and PeMS datasets,

JDMI method cannot be applied on Hangzhou, PeMS04, and PeMS08 for performance comparison.

From the evaluation results, we can observe that our new CTVI+ framework achieves the best

inference results as compared to alternative solutions. In particular, the relative performance im-

provement of our CTVI+ over the best-performed baseline CT-Gen is 25.80%, 19.74%, and 18.62%

in terms ofMAPEt ,MAPEp , and RMSE (on average across four experimented datasets). This obser-

vation sheds light on the limitation of CT-Gen method in encoding complex spatial dependencies

among road segments. In CT-Gen, the region-wise correlations are considered merely based on

the handcrafted road features. Instead, our CTVI+ designs the multi-view graph convolution layer

to learn the time-aware spatial relationships and then proposes a temporal self-attention to ag-

gregate relevant context across all historical time slots for inference. By doing so, the spatial and

temporal dynamics can be well preserved in our traffic data representation paradigm. In addition,
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Table 5. Ablation Experiment Results

Dataset Hangzhou City Jinan City

Methods MAPEt MAPEp RMSE MAPEt MAPEp RMSE

CTVI-TA 0.3078 0.4483 34.6892 0.4431 0.4259 33.0753

CTVI-PE 0.2888 0.4197 31.5093 0.4728 0.5052 35.8841

CTVI-RW 0.3286 0.5055 34.1412 0.4434 0.4256 33.0653

CTVI-VL 0.3957 0.4683 38.0991 0.4814 0.4936 36.0105

CTVI-C 0.3480 0.4136 34.3503 0.4389 0.4275 33.4542

CTVI-R 0.3086 0.3946 32.4999 0.4463 0.4280 33.1873

CTVI-D \ \ \ 0.4412 0.4281 33.1672

CTVI-W \ \ \ 0.4451 0.4298 33.2166

CTVI+ 0.2420 0.3368 28.8727 0.3884 0.3780 30.2166

CTVI+ performs better than the baseline JMDI by 16.56%, 32.19%, and 28.06% in terms of MAPEt ,

MAPEp , and RMSE on Hangzhou dataset, respectively.

The performance gain of our CTVI+ can be attributed to the joint consideration of spatial-

temporal context with the geographical proximity and time-evolving dependencies. In addition,

feature similarities are incorporated into our model to enhance the spatial-temporal dependency

modeling in citywide traffic volume inference. As compared to representative conventional base-

lines, including CA, KNN, XGboost, and MLP, CTVI+ achieves better performance. We attribute

this performance improvement to the advantage of our CTVI+ method in capturing traffic dynam-

ics from both spatial and temporal dimensions. Additionally, the inference performance superiority

can be observed in our CTVI+ approach compared with all competitive methods, which validates

the effectiveness of our traffic inference framework with the integration of the multi-view graph

convolutional module and temporal self-attention scheme.

5.6 Ablation Study

To verify each component of CTVI+, we further conduct the ablation study. We compare our model

with eight carefully designed variants. Despite the changed part(s), all variations have the same

framework structure and parameter settings. The performance of all variations on Hangzhou and

Jinan datasets are shown in Table 5.

— CTVI-TA - This variation removes the temporal self-attention mechanism, and directly

uses the representations learned from spatial and feature affinity graphs for traffic volume

inference.

— CTVI-PE - This variation removes the position encoding structure and ignores the historical

sequence information to verify its necessity.

— CTVI-RW - This variation does not take unsupervised loss Lwalk , for augmenting the final

objective function, into consideration. Specifically, we set α to 0, and the other components

remain the same.

— CTVI-VL - This variant does not take the traffic volume loss Lvolume into consideration,

which aims to verify the necessity of traffic volume patterns and constraints. Specifically,

we set βtc
, βtr

, βtd
, and βtw

to 0.

— CTVI-C - This variant does not take the current traffic volume constraint into consideration

by setting βtc
to 0.

— CTVI-R - This variant does not take the recent traffic volume constraint into consideration

by setting βtr
to 0.
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Fig. 6. Parameter sensitivity w.r.t. d and #h on

Hangzhou.

Fig. 7. Parameter sensitivity w.r.t. d and #h on Jinan.

— CTVI-D - This variant does not take the daily traffic volume pattern into consideration by

setting βtd
to 0.

— CTVI-W - This variant does not take the weekly traffic volume pattern into consideration

by setting βtw
to 0.

CTVI-TA and CTVI-PE mainly aim to verify the structure of the proposed framework.

CTVI-RW, CTVI-VL, CTVI-C, CTVI-R, CTVI-D, and CTVI-W pay more attention on the set-

ting of the joint leaning objective function, which reflects random walk enhancement and

current\recent\daily\weekly traffic volume patterns, respectively. As we can see in Table 5, all

variants significantly perform worse than CTVI+, which fully validates the effectiveness of all

components of our model.

The comparisons between CTVI-TA, CTVI-RW, and CTVI+ highlight the effectiveness of the

temporal self-attention structure and unsupervised random walk enhancement, respectively. The

temporal self-attention mechanism attempts to capture the correlation dependence of road seg-

ment representations in the temporal dimension, which is crucial in urban traffic prediction

and inference. The performance comparison verifies that the designed temporal self-attention

module effectively implements the expected function. More specifically, on the long-term Jinan

dataset, CTVI-PE performs worse than CTVI-TA, which further illustrates that in the temporal

self-attention module, the sequence information of historical data is more important, and thus the

sequence position coding is also necessary.

From Table 5, we can observe that CTVI-VL performs the worst among all variants for inferring

traffic in Hangzhou and Jinan city. This indicates the effectiveness of spatio-temporal traffic

volume pattern constraints in inferring traffic volume. In addition, the comparisons between

CTVI-C, CTVI-R, CTVI-D, CTVI-W, and CTVI+ reflect the importance of four types of traffic

volume patterns. Specifically, the current traffic volume pattern plays a more important role

compared to the recent on Hangzhou dataset. In addition, current\recent\daily\weekly traffic

volume patterns appear similar importance in Jinan dataset. Finally, our CTVI+ significantly

outperforms all variants on both datasets. The reason behind this is that the joint embedding

in CTVI+ arguments the representation capacity obtained from spatiotemporal correlations and

traffic volume pattern constraints.

5.7 Parameter Sensitivity

In this subsection, we study the influence of hyperparameters on the model inference accuracy, i.e.,

the embedding dimensionality d and the number of heads for attentive representation. Figures 6

and 7 present the model performance in terms of MAPEt , MAPEp , and RMSE with the configu-

rations of different hyperparameters on Hangzhou and Jinan datasets. To keep different metrics

with the same scale, we multiply RMSE score by 0.01 and show results in terms of three metrics

in Figures 6 and 7.
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Fig. 8. Temporal self-attention weight.

Table 6. Runtime Comparison Analysis (Second)

Method

Cost Dataset
Hangzhou Jinan PeMS04 PeMS08

CTVI+ (w/o parallel) 460.33 130894.50 114323.76 93638.35

CTVI+ (parallel) 287.04 3376.18 4930.64 5263.68

Speedup 1.60 38.77 23.19 17.79

From the evaluation results shown in Figures 6(a) and 7(a), we can observe that the best inference

performance can be achieved with the embedding dimensionality d of 128 on two experimented

datasets. With the increase of hidden state dimensionality d , the model tends to be overfitting.

To investigate the effect of the number of heads in our attention mechanism, we show the eval-

uation results with the settings of different head numbers in Figures 6(b) and 7(b). As we can

see, CTVI+ is more sensitive to the number of heads in our attentional temporal aggregation on

Hangzhou dataset than that on Jinan dataset. This overfitting phenomenon is caused by the spar-

sity of Hangzhou dataset.

Furthermore, to understand the impact of different historical volume information on the current

volume, e.g., daily\weekly traffic patterns, we visualize the temporal self-attention weight Si with

#h = 3 of a road segment on Jinan dataset in Figure 8. Each column denotes a type of attention

score, e.g., the first and second columns denote the weekly pattern weight, and the third and fourth

columns denote the daily pattern weight. Similarly, each row denotes the combination of historical

sequence scores. For example, the last row denotes the effect of the historical volume sequence on

the current volume. We can see that the importance of current\recent\daily\weekly traffic patterns

on different heads is significantly different, and the importance of historical volume at different

time intervals in the same attention score matrix is also different. From Figure 8(a), we can observe

that the current volume and recent\weekly volume have a more strong relation. Additionally, in

Figure 8(b), the current volume pays more attention to the daily\weekly volume patterns. There-

fore, our CTVI+ can capture the complex temporal relationships from multiple perspectives by in-

corporating the multi-head temporal self-attention into the spatial-temporal learning architecture.

5.8 Model Efficiency Study

Finally, we further evaluate the optimized efficiency of our model by reporting the running time

on four datasets in Table 6. We evaluate the time efficiency of all methods on a machine with an

8-core 1.70 GHz Intel Xeon E5-2609 CPU, 32G RAM, and 2 × GeForce RTX 2080 (8G).

As shown in Table 6, our model with parallel optimization is significantly faster than the model

without parallel optimization. Specifically, CTVI+ (parallel) achieves 1.60×, 38.77×, 23.19×, and
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17.79× faster than CTVI+ (w/o parallel) on Hangzhou, Jinan, PeMS04, and PeMS08 datasets, re-

spectively. This is consistent with our previous analysis of time complexity (CTVI+ (w/o parallel)

is O (mn2 f +m |E |d f +mnd#h) and CTVI+ (parallel) is O (n2 f + |E |d f +mnd#h)). Since parallel

optimization only works on the multi-view GCNs in different time intervals, not on the temporal

self-attention module, the speedup ratio is much smaller than the number of the time intervals.

Additionally, the speedup ratio on Hangzhou dataset is the smallest. The reason is that the time

span of Hangzhou dataset (only one day) is much smaller than other datasets, and thus the number

of time intervals is small, so the effect of parallel optimization is not significant.

6 CONCLUSION

In this article, we present a novel multi-view graph neural architecture CTVI+ which performs

information aggregation over the spatial and feature affinity graphs, so as to capture the spatial

and feature dependence. Additionally, CTVI+ designs a temporal self-attention mechanism to

discriminate dependencies across different historical time slots. In our CTVI+ framework, a joint

learning objective function is introduced to guide the representation learning of road segments

for accurate traffic volume inference by incorporating both spatial and temporal traffic patterns.

We perform comprehensive experiments on four real-world datasets to demonstrate the model

superiority of our new proposed CTVI+ framework as compared to various state-of-the-art base-

lines. Moreover, we further evaluate the rationality of our designed sub-modules for improving

our inference performance.
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