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Density-based clustering for big data is critical for many modern applications ranging from Internet data processing to massive-
scale moving object management. This paper proposes Cludoop algorithm, an efficient distributed density-based clustering for big
data using Hadoop. First, we propose a serial clustering algorithm CluC by leveraging cell partition optimization and c-cluster
to fast find clusters. CluC completes classification of the points using the relationships of connected cells around points instead
of expensive completed neighbor query, which significantly reduce the number of distance calculations. Second, we propose the
Cludoop, which can efficiently cluster very-large-scale data in parallel using already existing data partition onMap/Reduce platform.
It employs the proposed serial clustering CluC as a plugged-in clustering on parallel mapper, along with a cell description instead
of completed cell in transmission to reduce both network and I/O costs. Guided by proposed cell-based principles, we also design
a Merging-Refinement-Merging 3-step framework to merge c-clusters on the overlay of assigned preclustering result on reducer.
Finally, our comprehensive experimental evaluation on 10 network-connected commercial PCs, using both huge-volume real and
synthetic data, demonstrates (1) the effectiveness of our algorithm in finding correct clusters with arbitrary shape and (2) the fact
that our proposed algorithm exhibits better scalability and efficiency than state-of-the-art method.

1. Introduction

Clustering is to group data objects into different classes or
clusters, and the objects within a cluster have high similarity,
while objects in intercluster differ significantly with one
another. Clustering has played a crucial role in numerous
applications ranging from pattern recognition, mobile sensor
networks, and moving object management to location-based
service. With the rise of big data science, clustering analysis
has attracted considerable interests in the big data mining,
while clustering based on density is very useful to distance-
based data mining in many applications with increasingly
large-scale data owing to their capability to discover clusters
with arbitrary shape.

Existing density-based algorithms such as DBSCAN [1],
OPTICS [2], DENCLUE [3], and GDDSCAN [4] can obtain
better groups of data points in the static large-scale and

high-dimension databases, which were widely applied into
many applications in the past decade. However applying
the algorithms into current data-intensive applications is
challenging due to rapidly increasing distributed stored big
data. For example, the traffic data (GPS trajectories and
infrared acquisition) from intelligent transportation system
in Jiangsu Province reaches 6.94 billion records, and 4TB
sensor datawere collected fromolder’s healthcaremonitoring
in Shanghai for one week; the emerging wearable devices
will further promote coming of big medical data era. The
dataset released by Twitter is larger than 133 TB, increased
data updated by Tencent’s mobile applications reaches about
200 to 300 TB a day, and even the operational data of Yahoo
reaches 5 PB. When the amount of data is this large, it is
impossible to handle the data using the serial clustering
methods on a single machine. Therefore, the best clustering
algorithm is the one that (a) combines a scalable effective
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serial algorithm, (b) makes it run efficiently in distributed
platform, and (c) does not need to preprocess all dataset.

For big data analysis, Map/Reduce and its open source
equivalent Hadoop have attracted a lot of attentions due
to its parallel way to handle massive-scale data. Hadoop
is a desirable distributed computing platform based on a
shared-nothing cluster architecture. It is designed to scale
up from single servers to thousands of machines, each offer-
ing local computation and storage. Hadoop adopts HDFS
(Hadoop Distributed File System) storage structure and sim-
ple Map/Reduce programming model. HDFS provides high-
throughput access to application data and initially partitions
data inmultiple nodes, anddata is represented as<key, value>
pairs. In Map and Reduce phases, Map and Reduce functions
take a key-value pair as input and then output key-value
pairs. The Map function is first called on different partitions
of input data on each slave node in parallel. The outputs
by mappers are next grouped and merged by each distinct
key. Then a Reduce function is invoked for each distinct
key with the list of all values sharing the key. Finally the
Map/Reduce framework executes the main function on a
single master machine to postprocess the outputs of Reduce
functions. Depending on the applications, a pair of Map and
Reduce functions can be executed once or nested multiple
times. Ever since Hadoop was first introduced in 2003,
Map/Reduce received great success because it allows easy
development of scalable parallel application to process big
data on thousands of commodity nodes, tolerating the failure
nodes in the process; some works also already reflected the
fact in academia (see [5]). However, finding density-based
clusters from big data is a very challenging problem today.

This paper focuses on the problem of efficient, effec-
tive, and scalable density-based clustering for big data.
Our method employs Hadoop as computing platform and
incorporates cell partition and c-cluster optimizations into
density-based clustering. Our major research works are (a)
how to minimize the communication (network) cost among
processing nodes, (b) how to avoid preprocessing the data,
namely, reducing the I/O cost, and (c) how to extract exact
density-based clusters. So this paper proposes the distributed
density-based clustering using Hadoop-Cludoop method,
which efficiently handles large-scale data without any prepro-
cess.

The main contributions of this paper include the fol-
lowing. (1) We propose a c-cluster definition along with
cell-connected observations to significantly reduce com-
putational cost of neighbor range query. (2) We propose
an efficient serial clustering algorithm 𝐶𝑙𝑢𝐶 leveraging c-
clusters and neighbor searching optimization. (3)We propose
the distributed clustering framework for big data using
Map/Reduce structure based on the proposed serial clus-
tering algorithm as a plugged-in clustering on Map, along
with a 3-step merging framework on Reduce. (4)We conduct
comprehensive experiments on Hadoop platform deployed
on 10 commodity machines to evaluate the performance of
Cludoopusing larger-scale real and synthetic data.The results
show that our methods are both effective and efficient.

The paper is organized as follows: we first discuss related
work in Section 2. In Section 3, we present preliminary

notions and problem statement. Section 4 introduces the-
oretical ideas and presents the serial clustering algorithm.
In Section 5, we then present the distributed Cludoop algo-
rithm. In Section 6, we perform an experimental evaluation
of the effectiveness, efficiency, and scalability of our algo-
rithm. Section 7 concludes whole paper with a summary.

2. Related Work

In this section, we mainly review related work in the areas of
density-based clustering, parallel variants of DBSCAN, and
distributed clustering on Map/Reduce platform.

Density-Based Clustering. Density-based methods describe
the clusters being the high density area of points separated
from the low-density regions in the data space, so clusters
exhibit arbitrary shapes in the high-density region. There
are two types of density-based clustering method: algorithms
based on local connectivity such asDBSCAN [1] andOPTICS
[2] and algorithms based on density function such as DEN-
CLUE [3]. DBSCAN determines a nonhierarchical, disjoint
partitioning of the data into several clusters. Clusters are
expanded starting at arbitrary seed points within dense areas.
Objects in areas of low density are assigned to a separate
noise partition. DBSCAN is robust against noise and the
user does not need to specify the number of clusters in
advance. OPTICS is proposed to solve parameters selec-
tion problem on density-based clustering algorithms. The
paper proposes two concepts: core-distance and reachability-
distance to organize points. The point objects would be
ordered by reachability-distance and their core point to
obtain the clustering structure, which contains hierarchical
clusters under a broad range of parameter settings. OPTICS
visualizes clearly the cluster structure via the ordered point
list and could find arbitrary shaped clusters and overlapping
clusters. DENCLUE formalizes the cluster notion by non-
parametric kernel density estimation based on modelling the
local influence of each data object on the feature space by a
simple kernel function, for example, Gaussian. It defines a
cluster as a local maximum of the probability density.

Parallel Variants of Density-Based Clustering. Xu et al. [6]
propose a parallel clustering algorithmPDBSCAN formining
large distributed spatial databases. It uses the so-called
shared-nothing cluster architecture, which has the main
advantage that it can be scaled up to a high number of
computers. However it is not fully paralleled while it still
needs a single node to aggregate intermediate results. Januzaj
et al. [7] depict a distributed clustering based on DBSCAN
and DBDC and formed local and global two-level clustering.
The local clustering is carried out independently on local data;
then global clustering is done on a central server based on
the transmitted representatives from local clustering. Subse-
quently, they design a density-based distributed clustering
[8] which allows a user-defined tradeoff between clustering
quality and the number of transmitted objects from the local
sites to the global server site based on DBDC idea. They
first order all objects located at a local site according to a
quality criterion reflecting their suitability to serve as local
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representatives and then send the best of these representatives
to a server site where they are clustered with a slightly
enhancedDBSCAN algorithm to obtain high quality clusters.
Dash et al. [9] propose a parallel hierarchical agglomerative
clustering based on partially overlapping partitioning on
shared memory multiprocessor architecture for handling
nested data. The experiment shows the algorithm achieves
near linear speedup. Brecheisen et al. [10] present a paral-
lel DBSCAN on a workstation, which is parallelized by a
conservative approximation of complex distance functions,
based on the concept of filter merge points. The final result
is derived from a global cluster connectivity graph. Böhm et
al. [11] implement several data mining tasks under the highly
parallel environment of GPUs, including similarity search
and clustering. For density-based clustering, they design a
parallel DBSCAN algorithm supported by their proposed
similarity join on GPU. They then propose a massively
parallel density-based clustering method [12] using GPUs
by leveraging the high parallelism combined with a high
bandwidth in memory transfer at low cost. Andrade et al.
[13] also propose a GPU parallel version of DBSCAN, named
G-DBSCAN, using graph to index point objects with less
than a given distance threshold to each other. However the
parallel density-based clustering can not straightforward be
transferred on the Hadoop, because not only have GPU-
capable parallel algorithms shared main memory but groups
of the processors even share very fast memory units, while
Hadoop uses a distributed file system.

Distributed Clustering on Map/Reduce. Ene et al. [14] develop
partition-based clustering algorithms, 𝑘-center and 𝑘-
median, running on Map/Reduce, which use sampling to
decrease the data size and run in a time constant number
of Map/Reduce rounds. For density-based clustering, He
et al. [15] propose a parallel DBSCAN using Map/Reduce
framework, MR-DBSCAN, which partitions all spatial
data into different Maps by the space location in the
preprocessing stage and then performs DBSCAN in each
mapper and merges the bordering spaces in Reduce step.
Similarly, Dai and Lin [16] also propose aMap/Reduce-based
DBSCAN with a data partition, partition with Reduce
boundary points (PRBP), selecting partition boundaries
based on the distribution of data points. However the data
partition based on data space easily causes load unbalancing
due to the sparse data. Subsequently, He et al. [17] also
propose a load balancing mechanism based on a cost-based
spatial partitioning for heavily skewed data. However above
methods expend I/O cost due to preprocessing, especially
for the distributed stored big data. This is also one of the
key points which we resolve in this paper. Cordeiro et al.
[18] present a clustering solution to find subspace for high-
dimensional data using Map/Reduce; however they focus
on the tradeoff problem between the I/O cost and network
cost and aim to dynamically choose the best strategy. These
techniques did not explore the optimization opportunities
enabled by the nature insights of serial density-based
clusters; this is exactly what our work does for delivering
highly scalable distributed solutions along with an efficient
optimized serial density-based clustering.

3. Preliminaries and Problem Statement

3.1. Definitions and Theorems. This section introduces the
definitions of related terms based on the notion of connected
density in [1]. 𝐸𝑝𝑠 and 𝑀𝑖𝑛𝑃𝑡𝑠 are the neighbor range
parameter and the minimum number of neighbor points,
respectively.

Definition 1 (Eps-range). The Eps-range of a point 𝑝 is the
circular area with radius 𝐸𝑝𝑠 centered on the specific point
𝑝.

Definition 2 (Eps-neighbor). All points included inEps-range
of the point 𝑝 are called Eps-neighbor of 𝑝, denoted by
𝑁
𝐸𝑝𝑠
(𝑝).

Therefore, 𝑁
𝐸𝑝𝑠
(𝑝) is a set of data points. Let |𝑁

𝐸𝑝𝑠
(𝑝)|

denote the cardinality of𝑁
𝐸𝑝𝑠
(𝑝). Obviously, the neighbor is

symmetric for pairs of points.

Definition 3 (core point). A point 𝑝 is called a core point if
|𝑁
𝐸𝑝𝑠
(𝑝)| ≥ 𝑀𝑖𝑛𝑃𝑡𝑠.

Definition 4 (border point). For a point 𝑝, if |𝑁
𝐸𝑝𝑠
(𝑝)| <

𝑀𝑖𝑛𝑃𝑡𝑠 and ∃𝑞 (𝑞 ∈ 𝑁
𝐸𝑝𝑠
(𝑝)) is a core point, the point 𝑝

is a border point of the cluster including point 𝑞.

Definition 5 (isolated point). A point 𝑝 is classified as an
isolated point if it is neither a core point nor a border point.

Note that isolated points can be considered as either
anomalous points or noise.

Definition 6 (directly density reachable). A point 𝑝 is directly
density reachable from another point 𝑞, if the point 𝑝 is one
of Eps-neighbors of 𝑞, and 𝑞 is a core point.

The Eps-neighbors of a core point 𝑝 are directly density
reachable from 𝑝, and the border points are directly density
reachable from their Eps-neighbors which are core points.

Definition 7 (density reachable). A point 𝑝 is density reach-
able from a point 𝑞, if there is a chain of points 𝑝

1
, 𝑝
2
, . . . ,

𝑝
𝑛
, 𝑝
1
← 𝑝, 𝑝

𝑛
← 𝑞 such that 𝑝

𝑖−1
is directly density reach-

able from 𝑝
𝑖
.

Definition 8 (density connected). A point 𝑝 is density con-
nected to a point 𝑞, if there exists a point 𝑜 such that both 𝑝
and 𝑞 are density reachable from 𝑜.

Definition 9 (density-based cluster (d-cluster)). Let 𝐷 be
points set. A density-based cluster is a nonempty subset of𝐷
including at least a core point and all points which are density
reachable from the core point.

Note that all core points would be classified in density-
based clusters.

Lemma 10. If a core point 𝑝 belongs to two d-clusters 𝐶
1
and

𝐶
2
, respectively, the𝐶

1
and𝐶

2
can bemerged into one d-cluster.
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Figure 1: An example of Lemma 10; 𝑝 is a core point.

Proof. Since point 𝑝 ∈ 𝐶
1
and 𝑝 is a core point, then

𝑁
𝐸𝑝𝑠
(𝑝) ∈ 𝐶

1
. According to Definition 9, the d-cluster𝐶

1
can

be expanded to 𝐶
1
= {𝑜 | 𝑜 ∈ 𝐷 and 𝑜 is density reachable

from 𝑝}. Similarly, due to 𝑝 ∈ 𝐶
1
, 𝐶
2
also is equivalent to

{𝑜 | 𝑜 ∈ 𝐷 and 𝑜 is density reachable from 𝑝}. So 𝐶
1
and

𝐶
2
should be merged into one d-cluster. In summary, a core

point only belongs to a d-cluster.
Figure 1 shows an example demonstrating Lemma 10; 𝑝 is

a core point and belongs to both blue and green d-clusters, so
the two d-clusters would be merged.

Definition 11 (cell). According to the 𝐸𝑝𝑠, the data space is
divided into cubes whose length of the sides is 𝐸𝑝𝑠/(2 ∗ √2),
and each partition of space is called a 𝐶𝑒𝑙𝑙. A cell is denoted
by 𝐺
(𝑑
1
,𝑑
2
)
(𝑑
1
= 2∗√2∗𝑥/𝐸𝑝𝑠, 𝑑

2
= 2∗√2∗𝑦/𝐸𝑝𝑠), if the

cell’s center is (𝑥, 𝑦) in 2D space.

Let |𝐺
(𝑑
1
,𝑑
2
)
| denote the number of points falling in

𝐺
(𝑑
1
,𝑑
2
)
. In this paper, we describe the concept of cell in 2D

space for generality, though 𝑚-dimensional space could
equally be applied.

Lemma 12. Given a point 𝑝 in the cell 𝐺
(𝑥,𝑦)

, if
∑
1,1

𝑖=−1,𝑗=−1
|𝐺
(𝑥+𝑖,𝑦+𝑗)

| ≥ 𝑀𝑖𝑛𝑃𝑡𝑠, then point 𝑝 is a core
point.

Proof. Lemma 12 can be easily proven using the definition
of 𝐶𝑒𝑙𝑙. Since the edge length of cell is 𝐸𝑝𝑠/(2 ∗ √2),
the distance between any point in the cells 𝐺

(𝑥+𝑖,𝑦+𝑗)
(𝑖 =

−1, 0, 1; 𝑗 = −1, 0, 1) and 𝑝 is not greater than 𝐸𝑝𝑠. Therefore,
if ∑1,1
𝑖=−1,𝑗=−1

|𝐺
(𝑥+𝑖,𝑦+𝑗)

| ≥ 𝑀𝑖𝑛𝑃𝑡𝑠, then 𝑁
𝐸𝑝𝑠
(𝑝) must be

≥ 𝑀𝑖𝑛𝑃𝑡𝑠; thus 𝑝 is a core point.
Thus all points in the cells 𝐺

(𝑥+𝑖,𝑦+𝑗)
(𝑖 = −1, 0, 1; 𝑗 =

−1, 0, 1) are directly density reachable from 𝑝. These 9 cells
are called inner cells with respect to 𝑝. By Lemma 12, we can
further deduce Corollary 13.

Corollary 13. Given a cell 𝐺
(𝑥,𝑦)

, if ∑1,1
𝑖=−1,𝑗=−1

|𝐺
(𝑥+𝑖,𝑦+𝑗)

| ≥

𝑀𝑖𝑛𝑃𝑡𝑠, then ∀𝑝 (𝑝 ∈ 𝐺
(𝑥,𝑦)

) is a core point.

Lemma 14. Given a point𝑝 in the cell𝐺
(𝑥,𝑦)

, there exist atmost
36 cells in which the points need to be checked when verifying
whether 𝑝 is a core point or not.

18 19 20 21

36 1 2
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3 4 5 22

35 16 6 23
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33 14

13
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2

Figure 2: Demonstration of Lemma 14.

Proof. Lemma 14 is intuitive by Lemma 12 and definition of
Eps-neighbor (Definition 2). We directly demonstrate this in
Figure 2. Suppose the central cell is 𝐺

(𝑥,𝑦)
. First, for ∀𝑝 (𝑝 ∈

𝐺
(𝑥,𝑦)

), the Eps-range of 𝑝 must be located within the area
according to the side of cell. Second, all of the 36 cells would
be covered in theEps-range of somepoint in𝐺

(𝑥,𝑦)
; in extreme

cases, the number 17 to number 36 cells are covered when the
𝑝 is located at four vertexes.These 36 cells are called outer cells
with respect to 𝑝.

According to the d-cluster definition (Definition 9) and
Lemma 12, we observe that if a core point 𝑝 in the cell 𝐺

(𝑥,𝑦)

belongs to a d-cluster 𝐶, then all points in inner cells with
respect to 𝑝 belong to 𝐶. If all points falling in a cell 𝐺 can be
determined to belong to a d-cluster 𝐶, we call it an inclusive
cell of 𝐶. Therefore, the d-cluster 𝐶 can be represented by all
inclusive cells and other border points not in the inclusive
cells. Here we give a formalized definition of cell-cluster (c-
cluster) by the cell-connected observation.

Definition 15 (cell-cluster (c-cluster)). Given a d-cluster 𝐶,
a cell-cluster is 2-tuple {𝐼𝐺𝑠, 𝑃𝑠}, where 𝐼𝐺𝑠 is the set of all
inclusive cells of 𝐶 and 𝑃𝑠 is the set of all border points
not in the inclusive cells. The cell-cluster {𝐼𝐺𝑠, 𝑃𝑠} is called
equivalent cell-cluster with respect to d-cluster 𝐶.

c-Cluster simplifies the d-cluster by leveraging inclusive
cells instead of large amounts of density-connected points.
One no longer checks the status of every point in the
clustering; instead one only changes the cluster identifier of
the inclusive cells. Therefore, one uses c-cluster instead of d-
cluster in the subsequent clustering process.

Definition 16 (exclusive cell). Given a cell 𝐺
(𝑥,𝑦)

and a c-
cluster 𝐶, if there exists a core point in both of 𝐺

(𝑥,𝑦)
and 𝐶,

then 𝐺
(𝑥,𝑦)

is called an exclusive cell of c-cluster 𝐶.
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Obviously, an exclusive cell must be an inclusive cell of
the c-cluster, while an inclusive cell may not be an exclusive
cell.

Lemma 17. Given a cell 𝐺
(𝑥,𝑦)

and a c-cluster 𝐶, if 𝐺
(𝑥,𝑦)

is an
exclusive cell of𝐶, then the inner cells of𝐺

(𝑥,𝑦)
must be inclusive

cells of c-cluster 𝐶.

Proof. Lemma 17 is intuitive. Since there exists one core point
𝑝 in 𝐺

(𝑥,𝑦)
that belongs to the d-cluster corresponding to 𝐶,

then all points in inner cell of 𝑝 belong to the d-cluster; thus
the inner cells are inclusive cells of c-cluster 𝐶.

Lemma 18. Given a cell 𝐺
(𝑥,𝑦)

and a c-cluster 𝐶, if 𝐺
(𝑥,𝑦)

is an
exclusive cell of 𝐶, then any c-clusters containing 𝐺

(𝑥,𝑦)
as an

inclusive cell can be merged into 𝐶.

Proof. Lemma 18 is similar to Lemma 10. Since 𝐺
(𝑥,𝑦)

is an
exclusive cell of 𝐶, there exists at least one core point 𝑝 in
𝐺
(𝑥,𝑦)

that belongs to the d-cluster corresponding to 𝐶. If
there exists a c-cluster 𝐶󸀠 that 𝐺

(𝑥,𝑦)
∈ 𝐶
󸀠. 𝐼𝐺𝑠, then 𝑝 also

belongs to the counterpart of 𝐶󸀠. Thus 𝐶󸀠 should be merged
into 𝐶 by Lemma 10.

3.2. Problem Statement. In this work, we focus on the efficient
parallel solution of finding density-based clusters from big
data on Hadoop platform. Next, we define the distributed
clustering problem based on the above definitions, which this
paper just aims to resolve.

Problem (distributed clustering with c-cluster). Given a
massive-scale dataset𝐷, parameter setting (𝐸𝑝𝑠 and𝑀𝑖𝑛𝑃𝑡𝑠)
and network-connected computers 𝐶𝑃 deployed Hadoop
platform, the distributed clustering is that we output exact c-
clusters from𝐷 with respect to the given 𝐸𝑝𝑠 and𝑀𝑖𝑛𝑃𝑡𝑠 on
the 𝐶𝑃.

4. Proposed Serial Clustering with c-Cluster

Our proposed distributed clustering solution is designed
based on one optimized serial clustering method that we
propose next: clustering with c-cluster—𝐶𝑙𝑢𝐶. CluC aims to
find out c-clusters from a large-scale dataset. In the following,
we present a basic version of CluC omitting details of data
structure and additional information for understanding, as
shown in Algorithm 1.

𝐸𝑝𝑠 and 𝑀𝑖𝑛𝑃𝑡𝑠 are density parameters same as in
DBSCAN. We can get the set of cells according to the dataset
𝐷 and 𝐸𝑝𝑠. For each point 𝑝, if its cell and itself are not
yet included in any c-cluster, the function of 𝐸𝑥𝑝𝑎𝑛𝑑𝐶𝑙𝑢𝑠𝑡𝑒𝑟
would be performed to get the c-cluster including all points
density-connected to 𝑝. The 𝑖𝑛𝑛𝑒𝑟𝐶𝑒𝑙𝑙𝑠(𝐺) stands for the
set of 9 inner cells around 𝐺, including itself. CluC verifies
whether 𝑝 is a core point by Lemmas 12 and 14 and no longer
uses𝑁

𝐸𝑝𝑠
(𝑝) via the completed neighbor range query.

The 𝐶.𝐼𝐺𝑠 and 𝐶.𝐸𝐺𝑠 maintain the set of inclusive cells
and exclusive cells of c-cluster 𝐶, respectively. The set 𝐺𝑠𝑒𝑒𝑑𝑠
keeps the unchecked inclusive cells, and 𝐺𝑠𝑒𝑒𝑑𝑠.𝑔𝑒𝑡𝐹𝑖𝑟𝑠𝑡()

returns the first cell in the set. CluC first expands the c-
cluster by the connected cells by Lemma 17, as shown on
lines 19–29, and then further checks the border points in
bordering cells as lines 40–48. 𝐶.𝑚𝑒𝑟𝑔𝑒(𝑔𝑒𝑡𝐶𝑙𝑢𝑠𝑡𝑒𝑟(𝐺.𝑐𝑖𝑑))
merges the previous c-cluster of the cell 𝐺 into the c-cluster
𝐶; this operator is performed by Lemma 18 because the cell𝐺
is an exclusive cell of 𝐶. The similar reason can be explained
for 𝐶.𝑚𝑒𝑟𝑔𝑒(𝑔𝑒𝑡𝐶𝑙𝑢𝑠𝑡𝑒𝑟(𝑝.𝑐𝑖𝑑)). However, the point labelled
with 𝑁𝑜𝑖𝑠𝑒 on line 51 may be changed later, if it is density
reachable from some points.

The 𝐶.𝑃𝑠 keeps all border points of c-cluster 𝐶 not in
inclusive cells. The 𝑜𝑢𝑡𝑒𝑟𝐶𝑒𝑙𝑙𝑠(𝐶.𝐸𝐺𝑠) denotes set of all outer
cells with respect to each cell in 𝐶.𝐸𝐺𝑠. The 𝑑𝑖𝑠𝑡(𝑝, 𝐶.𝐸𝐺𝑠)
represents the smallest distance between 𝑝 and any points in
the 𝐶.𝐸𝐺𝑠. Namely, for the point 𝑝, not in inclusive cells, if
there exists any point 𝑞 in the 𝐶.𝐸𝐺𝑠 such that 𝑑𝑖𝑠𝑡(𝑝, 𝑞) ≤
𝐸𝑝𝑠, the 𝑝 is a border point with respect to the c-cluster 𝐶.

CluC first expands the inclusive cells recursively to reduce
a large amount of distance calculations; then it can fast
searches the border points in the pruned space that eliminate
the inclusive cells. Therefore, the CluC achieves an efficient
and also effective improvement compared with the state-of-
the-art serial methods.

5. Cludoop: Distributed Density-Based
Clustering on Hadoop

5.1. Cludoop Framework. The overall architecture of our
Cludoop framework is depicted in Figure 3. Cludoop uses the
existing data partition and does the parallel CluC algorithm
in mappers and then does the merging work based on
intermediate c-clusters in reducers. The final c-clusters that
consist of inclusive cell descriptions and a tiny amount of
border points are obtained on one reducer/machine.

5.2. Preclustering on Mapper. As shown in Figure 3, Cludoop
starts with 𝑚 mappers reading the data in parallel from the
HDFS and employs CluC as a plugged-in clustering on each
mapper. We call the phase preclustering to distinguish whole
clustering. In this phase, we first build the cell index according
to the received dataset,mapping the points into the cells.Then
each mapper performs CluC algorithm on the cell-structure
data in parallel, aiming to output the c-clusters and noises as
preclustering result. However, the preclustering results need
to be normalised and shipped to the appropriate reducers
over the network, to get final clusters.Thus the network traffic
and normalization would cost much CPU resources when
shipping all c-clusters and noises to reducers. How can we
reduce the network cost for this large-scale dataset?

Our main idea is to only ship the c-clusters with inclu-
sive cells’ descriptions and the border points to reduc-
ers, rather than send all points which have already been
classified into c-clusters. Thus, we use a simple descrip-
tion (𝑡ℎ𝑒 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟 𝑜𝑓 𝑐𝑒𝑙𝑙—𝐼𝐷, 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡𝑠—𝑛,
𝑖𝑠 𝑎𝑛 𝑒𝑥𝑐𝑙𝑢𝑠𝑖V𝑒 𝑐𝑒𝑙𝑙?, and 𝑡ℎ𝑒 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟 𝑜𝑓 𝑐-𝑐𝑙𝑢𝑠𝑡𝑒𝑟—𝑐𝑖𝑑)
to represent an inclusive cell; however the description pro-
vides sufficient information with reducers for further merg-
ing process. This is because of the following. (1) We build
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Input: dataset𝐷, parameters: 𝐸𝑝𝑠 and𝑀𝑖𝑛𝑃𝑡𝑠.
Output: c-clusters
(1) //𝐷 is Unclassified
(2) Get SetOfCells from𝐷;
(3) //SetOfCells is Unclassified
(4) for each point 𝑝 ∈ 𝐷 do
(5) Get Cell 𝐺 ← 𝑝.𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒;
(6) if 𝐺.𝑐𝑖𝑑 = Unclassified then
(7) if 𝑝.𝑐𝑖𝑑 = Unclassified then
(8) Create c-cluster 𝐶 ← 𝐶𝑙𝑢𝑠𝑡𝑒𝑟(𝑐𝑖𝑑);
(9) if expandcluster (𝑝, 𝐺,𝐷, 𝐶, 𝐸𝑝𝑠,𝑀𝑖𝑛𝑃𝑡𝑠) then
(10) Create c-cluster 𝐶 ← 𝐶𝑙𝑢𝑠𝑡𝑒𝑟(𝑐𝑖𝑑++);
(11) end if
(12) end if
(13) end if
(14) end for
(15) function expandcluster (𝑝, 𝐺,𝐷, 𝐶, 𝐸𝑝𝑠,𝑀𝑖𝑛𝑃𝑡𝑠)
(16) if ∑ |𝑖𝑛𝑛𝑒𝑟𝐶𝑒𝑙𝑙𝑠(𝐺)| ≥ 𝑀𝑖𝑛𝑃𝑡𝑠 || 𝑝 is a core point then
(17) 𝐶.𝐼𝐺𝑠.𝑎𝑑𝑑(𝐺); 𝐶.𝐸𝐺𝑠.𝑎𝑑𝑑(𝐺); 𝐺𝑠𝑒𝑒𝑑𝑠.𝑎𝑑𝑑(𝑖𝑛𝑛𝑒𝑟𝐶𝑒𝑙𝑙𝑠(𝐺));
(18) 𝐺𝑠𝑒𝑒𝑑𝑠.𝑑𝑒𝑙𝑒𝑡𝑒(𝐺);
(19) while 𝐺𝑠𝑒𝑒𝑑𝑠 <> Empty do
(20) 𝐺 ← 𝐺𝑠𝑒𝑒𝑑𝑠.𝑔𝑒𝑡𝐹𝑖𝑟𝑠𝑡();
(21) if ∑ |𝑖𝑛𝑛𝑒𝑟𝐶𝑒𝑙𝑙𝑠(𝐺)| ≥ 𝑀𝑖𝑛𝑃𝑡𝑠 then
(22) if 𝐺.𝑐𝑖𝑑 <> 𝑈𝑛𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 and 𝐺.𝑐𝑖𝑑 <> 𝐶.𝑐𝑖𝑑 then
(23) 𝐶.𝑚𝑒𝑟𝑔𝑒(𝑔𝑒𝑡𝐶𝑙𝑢𝑠𝑡𝑒𝑟(𝐺.𝑐𝑖𝑑)) //Merge two c-clusters;
(24) end if
(25) 𝐶.𝐼𝐺𝑠.𝑎𝑑𝑑(𝐺); 𝐶.𝐸𝐺𝑠.𝑎𝑑𝑑(𝐺);
(26) 𝐺𝑠𝑒𝑒𝑑𝑠.𝑎𝑑𝑑(𝑖𝑛𝑛𝑒𝑟𝐶𝑒𝑙𝑙𝑠(𝐺));
(27) else if ∃𝑝 ∈ 𝐺, 𝑝 is a core point then
(28) if 𝐺.𝑐𝑖𝑑 <> 𝑈𝑛𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 and 𝐺.𝑐𝑖𝑑 <> 𝐶.𝑐𝑖𝑑 then
(29) 𝐶.𝑚𝑒𝑟𝑔𝑒(𝑔𝑒𝑡𝐶𝑙𝑢𝑠𝑡𝑒𝑟(𝐺.𝑐𝑖𝑑)) //Merge two c-clusters;
(30) else if 𝑝.𝑐𝑖𝑑 <> 𝑈𝑛𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 and 𝑝.𝑐𝑖𝑑 <> 𝐶.𝑐𝑖𝑑 then
(31) 𝐶.𝑚𝑒𝑟𝑔𝑒(𝑔𝑒𝑡𝐶𝑙𝑢𝑠𝑡𝑒𝑟(𝑝.𝑐𝑖𝑑)) //Merge two c-clusters;
(32) end if
(33) 𝐶.𝐼𝐺𝑠.𝑎𝑑𝑑(𝐺); 𝐶.𝐸𝐺𝑠.𝑎𝑑𝑑(𝐺);
(34) 𝐺𝑠𝑒𝑒𝑑𝑠.𝑎𝑑𝑑(𝑖𝑛𝑛𝑒𝑟𝐶𝑒𝑙𝑙𝑠(𝐺));
(35) else
(36) 𝐶.𝐼𝐺𝑠.𝑎𝑑𝑑(𝐺);
(37) end if
(38) 𝐺𝑠𝑒𝑒𝑑𝑠.𝑑𝑒𝑙𝑒𝑡𝑒(𝐺);
(39) end while
(40) for each cell 𝐺 ∈ 𝑜𝑢𝑡𝑒𝑟𝐶𝑒𝑙𝑙𝑠(𝐶.𝐸𝐺𝑠) do
(41) if 𝐺.𝑐𝑖𝑑 <> 𝐶.𝑐𝑖𝑑 then
(42) for each point 𝑝 ∈ 𝐺 do
(43) if 𝑑𝑖𝑠𝑡(𝑝, 𝐶.𝐸𝐺𝑠) ≤ 𝐸𝑝𝑠 then
(44) 𝐶.𝑃𝑠.𝑎𝑑𝑑(𝑝); 𝑝.𝑐𝑖𝑑 ← 𝐶.𝑐𝑖𝑑

(45) end if
(46) end for
(47) end if
(48) end for
(49) return true;
(50) else
(51) 𝑝.𝑐𝑖𝑑 ← 𝑁𝑜𝑖𝑠𝑒; return false;
(52) end if
(53) end function

Algorithm 1: Clustering with c-cluster (CluC) method.
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Figure 3: Overall architecture of Cludoop clustering.

the cells according to the received points and given 𝐸𝑝𝑠 in
each of the mappers, so the cell with the same 𝐼𝐷 in different
mappers stands for the same area; thus we can only use the
cell 𝐼𝐷 to locate the assigned range in overall data space. (2)
The points in an inclusive cell must belong to a c-cluster,
so the cell 𝐼𝐷 and c-cluster 𝑐𝑖𝑑 are enough to stand for
classification of all points in the cell. (3) The border points
or noise in/nearby an inclusive cell in other mappers need
to refine their status in Reduce phase; however the number
of points in the inclusive cell is sufficient to determine their
status. (4) By Lemma 18, themarked exclusive cell can be used
to directly merge the c-clusters sharing the cell in the Reduce
phase. Using the inclusive cell’s description, only the border
points of c-cluster and noise need to be shuffled through
the network to other machines.This significantly reduces the
amount of data points shipped in the shuffling step, with the
consequent savings for the network cost, as well as the I/O
cost for the intermediate clustering results. Therefore, the c-
cluster in subsequent Reduce phase actually is the pruned c-
cluster, namely, only including the inclusive cells’ descriptions
not the completed cells.

To efficiently merge the c-clusters located in near area
on different mappers, meanwhile to avoid the computation
unbalancing for skewed data, we combine the spatial distri-
bution and uniform division in shuffle mechanism. We set
𝑟 𝐾𝑒𝑦s according to the number of reducers; similar with
spatial partitioning, we first normalize the mean coordinate
of inclusive cells of each c-cluster to the corresponding
nearest 𝐾𝑒𝑦 value. Thus the c-clusters with same 𝐾𝑒𝑦 value
on different mappers would be sent to the same reducer in
the shuffle step. Then we shift the c-clusters from crowded
𝐾𝑒𝑦 to near unoccupied 𝐾𝑒𝑦 for balancing the workload in

Reduce phase. So our Cludoop achieves a full load balancing
throughout whole Map/Reduce phases.

5.3. Merging-Refinement-Merging Framework on Reducer.
In Reduce phase, each reducer receives the normalized c-
clusters and noises, denoted by {𝐶𝑠,𝑁𝑠}, where 𝐶𝑠 is the
set of c-clusters with cell’s descriptions and 𝑁𝑠 is the set of
assigned noises.We propose aMerging-Refinement-Merging
3-step framework based on following cell-based merging
and refinement principles on reducer to merge the assigned
intermediate c-clusters.

First, we observe that the c-clusters should be merged
when they share certain cells or connected cells. To charac-
terize the merging process we formalize two merging rules.

Merging 1. Given an exclusive cell 𝐺
(𝑥,𝑦)

in a c-cluster 𝐶, all
c-clusters in 𝐶𝑠, which have 𝐺

(𝑥,𝑦)
as an inclusive cell or have

any border point falling in 𝐺
(𝑥,𝑦)

, can be merged into 𝐶.

Merging 1 is intuitive. First, since 𝐺
(𝑥,𝑦)

is an exclusive
cell of 𝐶, there must exist at least one core point in 𝐺

(𝑥,𝑦)
.

The core point also must be a core point of any c-clusters
covering 𝐺

(𝑥,𝑦)
on the overlay of {𝐶𝑠,𝑁𝑠}. The 𝐺

(𝑥,𝑦)
also is

an exclusive cell of the c-clusters; thus the c-clusters can be
merged by Lemma 18. Second, if one border point 𝑝 of c-
cluster 𝐶󸀠 falls in 𝐺

(𝑥,𝑦)
on the overlay, then 𝑝 also belongs

to 𝐶, and 𝑝 also would be changed to be a core point by the
definition of exclusive cell. Therefore, the 𝐶 and 𝐶󸀠 should be
merged by Lemma 10.

Merging 2. Given an exclusive cell 𝐺
(𝑥,𝑦)

in a c-cluster 𝐶,
all c-clusters in 𝐶𝑠, which have any exclusive cell in the
(𝑖𝑛𝑛𝑒𝑟𝐶𝑒𝑙𝑙𝑠(𝐺

(𝑥,𝑦)
) − 𝐺
(𝑥,𝑦)

), can be merged into 𝐶.
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Merging 2 implies that two c-clusters covering one of two
connected exclusive cells, respectively, should bemerged into
one cluster. This is obvious, because any core points in these
two cells are neighbors; thus the density reachable core points
would be classified into one cluster.Therefore, they should be
merged.

Actually, Merging 1 already contains the same cases of
Merging 2. For example, given two connected cells𝐺

1
and𝐺

2
,

𝐺
1
is an exclusive cell of c-cluster 𝐶

1
, and 𝐺

2
is an exclusive

cell of c-cluster 𝐶
2
. Obviously, 𝐺

2
must be an inclusive cell of

𝐶
1
, and𝐺

1
also is an inclusive cell of𝐶

2
.Therefore, the two c-

clusters would be merged by Merging 1. However, Merging 2
supplies the processing method for the special case of vacant
cells, such as the cell𝐺

2
which is null in the c-cluster 𝐶

1
from

one mapper, and the cell 𝐺
1
is also null in 𝐶

2
from another

mapper in the above example. In this case, Merging 1 can not
work, whileMerging 2 complementally handles the situation.

Next, we analyse the refinement process for the nonexclu-
sive inclusive cells, border points, and noises on the overlay
of {𝐶𝑠,𝑁𝑠} in one reducer and propose three refinement rules
for these three situations, respectively.

Refinement 1. For an inclusive cell 𝐺
(𝑥,𝑦)

of a c-cluster 𝐶, if
|𝐺
(𝑥,𝑦)

| ≥ 𝑀𝑖𝑛𝑃𝑡𝑠 or ∑1,1
𝑖=−1,𝑗=−1

|𝐺
(𝑥+𝑖,𝑦+𝑗)

| ≥ 𝑀𝑖𝑛𝑃𝑡𝑠 on
the overlay of {𝐶𝑠,𝑁𝑠}, then 𝐺

(𝑥,𝑦)
can be changed to be an

exclusive cell of 𝐶.

Refinement 1 can be easily shown. On the overlay of
{𝐶𝑠,𝑁𝑠}, some inclusive cells’ exclusivity can be directly
determined according to the updated number of points in
each cell.

Refinement 2. Given a c-cluster 𝐶, for a border point 𝑝 ∈

𝐶.𝑃𝑠, if |𝐺(𝑝)| ≥ 𝑀𝑖𝑛𝑃𝑡𝑠, ∑ |𝑖𝑛𝑛𝑒𝑟𝐶𝑒𝑙𝑙𝑠(𝑝)| ≥ 𝑀𝑖𝑛𝑃𝑡𝑠, or
𝑁
𝐸𝑝𝑠
(𝑝) ≥ 𝑀𝑖𝑛𝑃𝑡𝑠 on the overlay of {𝐶𝑠,𝑁𝑠}, then 𝐺(𝑝) can

be marked to be an exclusive cell of 𝐶.

Similarly Refinements 1 and 2 depict the update case for
the border points not in inclusive cells on the overlay of
{𝐶𝑠,𝑁𝑠}. Note that we can not compute the exact number of
neighbors for point 𝑝, because we use the cell’s description
instead of the points in the inclusive cell. In refinement phase,
we employ an approximate method to get 𝑁

𝐸𝑝𝑠
(𝑝) when

checking if 𝑝 is a core point. If all vertexes of a cell are in
𝑜𝑢𝑡𝐶𝑒𝑙𝑙𝑠(𝑝) whose distance to 𝑝 is no large than 𝐸𝑝𝑠, then
the points in the cell are neighbors of 𝑝; also if there exist
vertexes whose distance to 𝑝 is larger than 𝐸𝑝𝑠, we calculate
the approximate rate 𝛽 of area covered in the 𝐸𝑝𝑠-𝑟𝑎𝑛𝑔𝑒 of
𝑝 in the cell and use the 𝛽 ∗ 𝑛 to estimate approximately the
number of neighbors for 𝑝 in the cell.

Refinement 3. Given a noise 𝑝 ∈ 𝑁𝑠, if |𝐺(𝑝)| ≥ 𝑀𝑖𝑛𝑃𝑡𝑠,
∑ |𝑖𝑛𝑛𝑒𝑟𝐶𝑒𝑙𝑙𝑠(𝑝)| ≥ 𝑀𝑖𝑛𝑃𝑡𝑠, or 𝑁

𝐸𝑝𝑠
(𝑝) ≥ 𝑀𝑖𝑛𝑃𝑡𝑠 on

the overlay of {𝐶𝑠,𝑁𝑠}, then 𝐺(𝑝) can be marked to be an
exclusive cell of a new c-cluster.

Refinement 3 indicates the update process for noise on
the overlay of assigned preclustering results after first-round
merging.

Based on the above merging and refinement rules, we
describe the Merging-Refinement-Merging framework to
merge the preclustering in Reduce phase. The pseudocode
of the framework is shown in Algorithm 2. First, we exe-
cute directly the first-round merging using the proposed
two merging rules (lines 2–10). This step would merge the
overlapping c-clusters and noise in {𝐶𝑠,𝑁𝑠} to fast reduce
the number of c-clusters and noise and update the sharing
cells’ point number 𝑛 at the same time. Next, the status of
nonexclusive cells, unchecked border points, and noise is
further refined on the overlay of {𝐶𝑠,𝑁𝑠} (lines 12–40). As
shown in Algorithm 2, Refinement 1 is employed first for the
nonexclusive cells. 𝐺{𝐶𝑠,𝑁𝑠} denotes the updated cell 𝐺 on the
overlay of {𝐶𝑠,𝑁𝑠}. Then Refinements 2 and 3 are performed
in turn for unchecked border points and noise. In process
of Refinement 1, most border points and noise candidates
falling in the cells also are processed; this greatly reduces the
number of points that need to be handled in Refinements 2
and 3. This is also why we first perform Refinement 1. More
specifically we also first utilize Lemma 12 to check whether a
cell is an exclusive cell or a point is a core point to reduce a
large amount of distance calculation for most cases. Finally,
second-round merging is performed to reexamine the c-
clusters on the updated cells and border points and get the
final c-clusters over {𝐶𝑠,𝑁𝑠}.

In the phase, 𝑟 reducers execute theMerging-Refinement-
Merging process in parallel. However we still need to perform
one reducer to return final clusters on one machine in final
phase as shown in Figure 3.

6. Experimental Study

6.1. Experimental Setup andMethodologies. Acomprehensive
performance study has been conducted on 10 network-
connected commodity computers that deployed Hadoop
platform to evaluate the effectiveness and efficiency of the
proposed Cludoop algorithm. Each PC/node is equipped
with an Intel Core 2Duo P8600 processor with 8GBmemory
and runs a Ubuntu 11.4 operating system. One node is
configured as both NameNode and JobTracker. Other nodes
are configured as DataNode and TaskTracker.

Real Datasets. We use two real datasets in our experiments.
The first real dataset is a trajectory database from 𝐺𝑒𝑜𝑙𝑖𝑓𝑒

project [19] executed byMicrosoftResearchAsia.This dataset
includes 178 users’ 164,789 location points fromMay 7 toMay
16, 2007. The second real dataset is 𝑇𝑎𝑥𝑖 data, a real GPS
trajectory data generated by 10,357 taxis in a period from
February 2 to February 8, 2008, in Beijing [20]. The total
number of points in this dataset is about 15 million, reaching
1.46GB size.

Synthetic Datasets. We also generate two synthetic datasets by
our developed data generator usingMatlab.Thefirst synthetic
dataset, denoted by 𝑆𝑠𝑦𝑛, is generated to test the effectiveness
of clustering, which includes multiple clusters of arbitrary
shape comprised of 4413 points and 300 noises in 1000×1000
square.
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Input: assigned {𝐶𝑠,𝑁𝑠}, parameters: 𝐸𝑝𝑠 and𝑀𝑖𝑛𝑃𝑡𝑠.
Output: c-clusters
(1) //First-round Merging
(2) for each c-cluster 𝐶 ∈ 𝐶𝑠 do
(3) for each cell 𝐺 ∈ 𝐶.𝐼𝐺𝑠 do
(4) if 𝐺.𝑖𝑠𝐸𝑥𝑐𝑙𝑢𝑠𝑖V𝑒 == 𝑡𝑟𝑢𝑒 then
(5) Merge all c-clusters by Merging 1;
(6) //update the number of point in sharing inclusive cells and border points
(7) Merge all c-clusters by Merging 2;
(8) end if
(9) end for
(10) end for
(11) //Refinement
(12) for each c-cluster 𝐶 ∈ 𝐶𝑠 do
(13) for each cell 𝐺 ∈ 𝐶.𝐼𝐺𝑠 do
(14) if 𝐺.𝑖𝑠𝐸𝑥𝑐𝑙𝑢𝑠𝑖V𝑒 == 𝐹𝑎𝑙𝑠𝑒 then
(15) if |𝐺{𝐶𝑠,𝑁𝑠}| ≥ 𝑀𝑖𝑛𝑃𝑡𝑠 || ∑ |𝑖𝑛𝑛𝑒𝑟𝐶𝑒𝑙𝑙𝑠(𝐺)

{𝐶𝑠,𝑁𝑠}
| ≥ 𝑀𝑖𝑛𝑃𝑡𝑠 then

(16) 𝐺.𝑖𝑠𝐸𝑥𝑐𝑙𝑢𝑠𝑖V𝑒 ← 𝑡𝑟𝑢𝑒; 𝑠𝑒𝑒𝑑𝑠.𝑎𝑑𝑑(𝐺);
(17) 𝐶.𝐼𝐺𝑠.𝑎𝑑𝑑(𝑖𝑛𝑛𝑒𝑟𝐶𝑒𝑙𝑙𝑠(𝐺));
(18) end if
(19) end if
(20) end for
(21) for each point 𝑝 ∈ 𝐶.𝑃𝑠 do
(22) if |𝑐𝑒𝑙𝑙(𝑝){𝐶𝑠,𝑁𝑠}| ≥ 𝑀𝑖𝑛𝑃𝑡𝑠 || ∑ |𝑖𝑛𝑛𝑒𝑟𝐶𝑒𝑙𝑙𝑠(𝑝)

{𝐶𝑠,𝑁𝑠}
| ≥ 𝑀𝑖𝑛𝑃𝑡𝑠 ||𝑁

𝐸𝑝𝑠
(𝑝) ≥ 𝑀𝑖𝑛𝑃𝑡𝑠 then

(23) 𝑐𝑒𝑙𝑙(𝑝).𝑖𝑠𝐸𝑥𝑐𝑙𝑢𝑠𝑖V𝑒 ← 𝑡𝑟𝑢𝑒; 𝑠𝑒𝑒𝑑𝑠.𝑎𝑑𝑑(𝑐𝑒𝑙𝑙(𝑝));
(24) 𝐶.𝐼𝐺𝑠.𝑎𝑑𝑑(𝑖𝑛𝑛𝑒𝑟𝐶𝑒𝑙𝑙𝑠(𝑝));
(25) end if
(26) end for
(27) end for
(28) for each noise 𝑝 ∈ 𝑁𝑠 do
(29) get cell 𝐺 ← 𝑝.𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒;
(30) if |𝐺{𝐶𝑠,𝑁𝑠}| ≥ 𝑀𝑖𝑛𝑃𝑡𝑠 || ∑ |𝑖𝑛𝑛𝑒𝑟𝐶𝑒𝑙𝑙𝑠(𝐺)

{𝐶𝑠,𝑁𝑠}
| ≥ 𝑀𝑖𝑛𝑃𝑡𝑠 ||𝑁

𝐸𝑝𝑠
(𝑝) ≥ 𝑀𝑖𝑛𝑃𝑡𝑠

then
(31) 𝐺.𝑖𝑠𝐸𝑥𝑐𝑙𝑢𝑠𝑖V𝑒 ← 𝑡𝑟𝑢𝑒; 𝑠𝑒𝑒𝑑𝑠.𝑎𝑑𝑑(𝐺);
(32) if 𝐺 is an existing inclusive cell of 𝐶𝑠 then
(33) 𝑔𝑒𝑡𝐶𝑙𝑢𝑠𝑡𝑒𝑟(𝐺).𝐼𝐺𝑠.𝑎𝑑𝑑(𝑖𝑛𝑛𝑒𝑟𝐶𝑒𝑙𝑙𝑠(𝑝));
(34) else
(35) create new c-cluster 𝐶; 𝐶.𝐼𝐺𝑠.𝑎𝑑𝑑(𝑖𝑛𝑛𝑒𝑟𝐶𝑒𝑙𝑙𝑠(𝑝));
(36) end if
(37) else if 𝑝 falls in an existing inclusive cell on {𝐶𝑠,𝑁𝑠} then
(38) update the cell; delete 𝑝 from𝑁𝑠;
(39) end if
(40) end for
(41) //Second-round Merging
(42) for each cell 𝐺 ∈ 𝑠𝑒𝑒𝑑𝑠 do
(43) Merge all c-clusters by Merging 1;
(44) Merge all c-clusters by Merging 2;
(45) end for

Algorithm 2: Merging-Refinement-Merging framework on reducer.

The second large-scale dataset 𝐿𝑠𝑦𝑛 is generated to eval-
uate performance of algorithm on processing big data, which
contains about 2 billion data points in 2D space, reaching
53.6GB size. For generality, we normalize all coordinates into
range [0, 1].

Alternative Algorithms. Our experiments focus on evaluating
the effectiveness and efficiency of proposed Cludoop. For
the effectiveness evaluation, we compare directly clustering

results of our algorithm against the most wildly used method
DBSCAN. For the efficiency evaluation, we compare the CPU
time utilized by our algorithm against the state-of-the-art
method MR-DBSCAN as introduced in Section 2.

Metrics and Methodology. We measure the quality of clus-
ters for effectiveness by Precision and Recall as follows:
Precision = (𝑅

𝑐
∩ 𝐷
𝑐
)/𝑅
𝑐
, Recall = (𝑅

𝑐
∩ 𝐷
𝑐
)/𝐷
𝑐
, where

𝐷
𝑐
denotes the set of points labelled cluster ID or clusters
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(a) Cludoop (b) DBSCAN

Figure 4: Visualization comparison on Ssyn data.

(a) Cludoop (b) DBSCAN

Figure 5: Visualization comparison on GeoLife data.

obtained by DBSCAN and 𝑅
𝑐
is the clustering result of our

algorithm.
We also evaluate the performance of Cludoop method

by varying the most important parameters. In particular, we
measure the scalability of methods by varying the volume of
dataset and the number of work nodes. Moreover, we also
measure sensitivity of our Cludoop algorithm on efficiency
by varying the input parameter 𝐸𝑝𝑠 in a large range.

6.2. Effectiveness Evaluation. First, we evaluate the effec-
tiveness of our proposed algorithm compared to DBSCAN
using two evaluation metrics (visualization comparison, Pre-
cision/Recall) on Ssyn and GeoLife data.

Figure 4 shows the clustering result comparison of two
algorithms on Ssyn data when 𝐸𝑝𝑠 is fixed to 20 and𝑀𝑖𝑛𝑃𝑡𝑠

to 4. The black points are classified as noise. We can see that
Cludoop can find almost the same clusters as DBSCAN with
respect to the same parameter setting. Only a very few of
marginal border points aremisclassified due to the proximate
strategy employed for some border points in Reduce phase.
Figure 5 depicts the results of two algorithms on GeoLife

data, setting 𝐸𝑝𝑠 to 100 meters and 𝑀𝑖𝑛𝑃𝑡𝑠 to 10. Again,
our algorithm shows an excellent clustering ability, even
better than that on Ssyn data. This is because the locations
of GeoLife are on or close to road networks, and only the
location crowds at hot regions or crossings are classified as
clusters; thus the ratio of border points not in inclusive cells
is far below that of arbitrary distributed dataset.

The Precision and Recall of Cludoop on Ssyn data are
shown in Figure 6. For Ssyn data, the Precision and Recall
are computed based on labelled points. From Figure 6(a),
the Precision is nearly 100% once the parameter 𝐸𝑝𝑠 falls
in a rather large range. Figure 6(b) shows the Recall of our
algorithm is also good in certain parameters space. For the
real GeoLife data, we compute the Precision and Recall of
Cludoop algorithmbased on the clustering result ofDBSCAN
with respect to the same parameters, excluding the noise.
FromFigure 7, the Precision andRecall of clusters of Cludoop
achieve on average 97% and 96% compared toDBSCAN in all
test cases, respectively. In particular, Cludoop shows nearly
100% Precision when 𝐸𝑝𝑠 ≤ 100 and𝑀𝑖𝑛𝑃𝑡𝑠 varies from 5 to
20.
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Figure 6: Effectiveness evaluation on Ssyn data.
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Figure 7: Effectiveness evaluation on GeoLife data.

In summary the effectiveness study confirms that our
distributed algorithm can obtain the correct clusters with
noise under a loose parameter setting.

6.3. Efficiency Evaluation. Next we evaluate the efficiency of
our algorithm compared to MR-DBSCAN algorithm using
the Taxi and Lsyn data. We vary the most important param-
eters, to (1) assess the scalability of Cludoop versus MR-
DBSCAN in terms of efficiency and (2) evaluate sensitivity
of parameter variation on our method.

6.3.1. Varying Volume of Dataset 𝐷. We first evaluate the
scalability of our algorithm in terms of the volume of dataset
using Lsyn data. In this experiment we randomly extract four
subsets from the Lsyn data from 20% to 80%. We fix the 𝐸𝑝𝑠
to 0.001 and𝑀𝑖𝑛𝑃𝑡𝑠 to 200. Figure 8 shows the total running
time of our algorithm andMR-DBSCAN on the five datasets.
Cludoop algorithm exhibits much better scalability thanMR-
DBSCAN in terms of CPU time. In particular, Cludoop saves

on average 42% time compared toMR-DBSCAN on all tested
cases. As the volume of dataset increases, both algorithms
require more time to process these increased data points.
However, our Cludoop algorithm saves more time with the
rising of the number of data points.This is because more cells
could be determined directly to be inclusive cells to reduce
more distance calculations as the volume of 𝐷 increases at
fixed 𝐸𝑝𝑠 and𝑀𝑖𝑛𝑃𝑡𝑠.

6.3.2. Varying Number of Nodes 𝑛𝑑. Next, we valuate the
speedup of our algorithm as the number of nodes increases
by varying work node from 2 to 9 on the Taxi data when
𝐸𝑝𝑠 is fixed to 100 meters and 𝑀𝑖𝑛𝑃𝑡𝑠 to 4. As shown in
Figure 9, Cludoop algorithm also clearly outperforms MR-
DBSCAN in terms of running time in all tested cases. In
particular, the speedup of our algorithm achieves at 6 times
while that of MR-DBSCAN just achieves at 4 times when the
number of nodes increases from 2 to 9. However, the speedup
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Figure 8: Varying volume of dataset𝐷 on Lsyn data.
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Figure 9: Varying number of nodes 𝑛𝑑 on Taxi data.

of our Cludoop also decreases as 𝑛𝑑 increases similar to MR-
DBSCAN. This may be because more border points or noise
would be sent to reducers in shuffle phase when launching
more mappers, spending more network cost, and merging
time on reducers, although the increased parallel mappers
reduce the preclustering time.

6.3.3. Varying Neighbor Range Threshold 𝐸𝑝𝑠. Finally, we
analyze the sensitivity of our algorithm with respect to the
important parameter 𝐸𝑝𝑠 on both 10% ∗ Lsyn and Taxi
datasets. We vary 𝐸𝑝𝑠 from 0.0005 to 0.003 on the 10% ∗

Lsyn data when 𝑀𝑖𝑛𝑃𝑡𝑠 is fixed to 200 and vary 𝐸𝑝𝑠 from
100 to 300 meters on Taxi data at fixed 𝑀𝑖𝑛𝑃𝑡𝑠 = 4. From
Figures 10 and 11, our proposed Cludoop shows outstanding
superiority on time consumption compared toMR-DBSCAN
with respect to 𝐸𝑝𝑠. This is because (1) our algorithm reduces
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Figure 10: Varying neighbor range 𝐸𝑝𝑠 on 10% ∗ Lsyn data.
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Figure 11: Varying neighbor range 𝐸𝑝𝑠 on Taxi data.

the cost of maintaining cell index as 𝐸𝑝𝑠 increases and (2)
more cells could be directly determined to be inclusive cells
at a larger 𝐸𝑝𝑠 value when 𝑀𝑖𝑛𝑃𝑡𝑠 is fixed, saving much
network cost in shuffle andmerging time in reducer.Whereas
larger 𝐸𝑝𝑠 value leads to more duplicate points, costing more
time in Shuffle and Reduce phase for MR-DBSCAN, larger
𝐸𝑝𝑠 is more likely to lead to imbalance workload in reducer
due to its data partition being based on 𝐸𝑝𝑠. However, very
large 𝐸𝑝𝑠 value actually is meaningless for density-based
clustering when𝑀𝑖𝑛𝑃𝑡𝑠 is fixed, since it can not return the
meaningful clusters.

7. Conclusion

Density-based clustering for increasing big data applications
is very important yet difficult task. This paper proposes
an efficiency and load-balanced distributed density-based
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clustering for big data using existing data partition on
Hadoop platform. Our algorithm incorporates a proposed
serial clustering with c-cluster as plug-in on mapper and
a Merging-Refinement-Merging 3-step framework to fast
merge c-cluster on reducer.The empirical study on large-scale
real and synthetic data shows that our Cludoop algorithm
effectively finds the correct clusters and exhibits better scala-
bility and efficiency than the state-of-the-art. An interesting
direction for future work is to leverage optimized shuffle
mechanism for further improving the workload balancing
problem of clustering on Hadoop platform.
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[6] X. Xu, J. Jäger, and H. P. Kriegel, “A fast parallel clustering algo-
rithm for large spatial databases,” Data Mining and Knowledge
Discovery, vol. 3, no. 3, pp. 263–290, 1999.

[7] E. Januzaj, H.-P. Kriegel, and M. Pfeifle, “DBDC: density
based distributed clustering,” in Proceedings of the International
Conference on Extending Database Technology (EDBT ’04), pp.
88–105, Heraklion, Greece, March 2004.

[8] E. Januzaj, H.-P. Kriegel, and M. Pfeifle, “Scalable density-
based distributed clustering,” in Proceedings of the 8th European
Conference on Principles and Practice of Knowledge Discovery in
Databases (PKDD '04), pp. 88–105, Heraklion, Greece, 2004.

[9] M. Dash, S. Petrutiu, and P. Scheuermann, “Ecient parallel
hierarchical clustering,” in Euro-Par 2004 Parallel Processing,
vol. 3149 of Lecture Notes in Computer Science, pp. 363–371,
Springer, Berlin, Germany, 2004.

[10] S. Brecheisen, H.-P. Kriegel, and M. Pfeifle, “Parallel density-
based clustering of complex objects,” in Advances in Knowl-
edge Discovery and Data Mining: 10th Pacific-Asia Conference,
PAKDD 2006, Singapore, April 9-12, 2006. Proceedings, vol. 3918
of Lecture Notes in Computer Science, pp. 179–188, Springer,
Berlin, Germany, 2006.
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