
MR-Swarm: Mining Swarms from Big
Spatio-Temporal Trajectories Using MapReduce

Yanwei Yu1(B), Jianpeng Qi1, Yunhui Lu2, Yonggang Zhang2,
and Zhaowei Liu1

1 School of Computer and Control Engineering, Yantai University, Yantai, China
yuyanwei@ytu.edu.cn

2 SCKE Key Laboratory of Ministry of Education,

Jilin University, Changchun, China

Abstract. The increasing pervasiveness of object tracking technologies
has enabled collection of huge amount of spatio-temporal trajectories.
Discovering the useful movement patterns from such big data is gaining in
importance and challenging. In this paper we propose an distributed min-
ing framework on Hadoop for efficiently discovering swarm patterns from
big spatio-temporal trajectories in parallel. We first define the notion
of maximal objectset that captures swarms by recombining clusters in
timeset domain. Second, we propose a parallel model based on timeset
independent property of swarm pattern to parallel the mining process.
Furthermore we propose a distributed algorithm using MapReduce chain
architecture based on the proposed parallel model, which features two
optimization pruning strategies designed to minimize the computation
costs. Our empirical study on the real Taxi dataset demonstrates its
effectiveness in finding object-closed swarms. Extensive experiments on
5 network-connected workstations also validate that our proposed algo-
rithm nearly achieves 5-fold speedups against the serial solution.

1 Introduction

The increasing availability of location-acquisition technologies including all kinds
of GPS, RFID, WLAN networks, mobile phones, and the emerging location-
based APPs have enabled tracking almost any kind of moving objects, which
results in huge volumes of spatio-temporal trajectory data that records a variety
of action features, including location, time, and velocity. Such big data provides
the huge opportunity of discovering usable knowledge about movement behav-
iour, which fosters novel many applications and services ranging from intelligent
traffic management, urban computing to location-based services [1,2].

Patrick Laube et al. [4] first propose flock, leadership, and aggregation pat-
terns in geospatial lifelines. Jeung et al. [5] define the notion of convoy pattern,
in which a set of objects that move together in a density-based cluster for at
least k continuous time points, instead of the strick size and shape of group
by specifying the disk radius in flock. A recent study by Zhenhui Li et al. [6]
proposes the swarm pattern, which also employs the density-connected clusters
c© Springer International Publishing AG 2016
H. Yin et al. (Eds.): IDEAL 2016, LNCS 9937, pp. 568–575, 2016.
DOI: 10.1007/978-3-319-46257-8 61

MR-Swarm: Mining Swarms from Big Spatio-Temporal Trajectories 569

and relax the requirement that objects must form group for consecutive time
points. In contrast to above mentioned patterns, swarm permit patterns where
moving objects travel together for a number of nonconsecutive time points. In
other words, moving objects could leave from the group transitorily, and then
come back in swarm. Therefore, swarm is a more general and relaxed pattern
that does not require k consecutive time points, also is more inline with the
practical situations.

In our previous works [7,8], we propose online solutions of discovery of swarms
and trajectory clusters to improve both efficiency and scalability. However the
works are just suitable for trajectory data mining under streaming environment
with normal rate. For the huge amounts of spatio-temporal trajectory data,
the traditional serial solution is difficult to satisfy requirements of big trajec-
tory pattern mining, which is a key issue addressed in this work. This paper
focuses on efficient discovery of swarm pattern, one of useful group pattern,
from high-volume moving object trajectories. We propose a distributed swarm
pattern mining algorithm employing Hadoop platform, which incorporates three
principles. First, we propose a notion of maximal objectset, and optimize serial
method using minimal time support optimization. Second, we propose a par-
allel model based on timeset independent of swarm pattern, which parallelizes
clustering and local swarm discovery in sub-time domain. Third, we implement
an efficient distributed solution using MapReduce chain architecture on Hadoop
platform. Finally, We conduct an extensive empirical study on real trajectory
data to evaluate the proposed distributed framework. Our results offer insight
into the effectiveness and efficiency of the proposed framework.

2 Preliminary Definition

We denote the set of trajectories TD. Let OTD = {o1, o2, . . . , om} be the set
of all moving objects and TTD = {t1, t2, . . . , tn} be the set of all time points
in TD. We denote a subset of OTD objectset O and a subset of TTD timeset
T . The size, |O| and |T |, is the number of objects and time points in O and T
respectively. A set of clusters, obtained by DBSCAN at each time point ti, is
denoted Cti = {C1

ti , C
2
ti , . . . , C

k
ti}, where Cj

ti(1 ≤ j ≤ k) is a cluster at ti.

Definition 1 (Swarm). Given minimal thresholds mino and mint, a set pair
< O,T > is called a swarm pattern if |O| ≥ mino, |T | ≥ mint, and ∀t ∈ T ,
there exists a cluster C ∈ Ct such that O ⊆ C.

By Definition 1, all pairs < O,T > that satisfy the minimal thresholds and
all objects of O belong to a cluster at any time point in T are swarms. To avoid
mining redundant swarms, Li et al. [6] further give the notion of closed swarm.

Definition 2 (Maximal Objectset or MO). Given minimal threshold mino

and a timeset T , the objectset O is called a maximal objectset with respect to T
iff O =

⋂
ti∈T Cki

ti (Cki
ti ∈ Cti) and |O| ≥ mino.

570 Y. Yu et al.

By Definition 2, the maximal objectset can be identified by clusters of each
time point in T .

Lemma 1. Given a set pair < O,T >, if objectset O is a maximal objectset
w.r.t. timeset T and |T | ≥ mint, then < O,T > is an object-closed swarm
(OSm).

Lemma 1 is intuitive and easily proved by Definitions 1 and 2.

Definition 3 (Minimal Time Support). Given minimal threshold mint and
a set pair < O,T >, if the objectset O is a maximal objectset w.r.t. T and
|T | = mint, then T is a minimal time support of < O,T > to be a swarm.

The minimal time support provides us a minimal amount of timeset for find-
ing a swarm. Therefore, this concept of minimal time support guides us to pro-
pose the minimal time support optimization to reduce time points examination
and lookup costs related to intersection operation of clusters of moving objects.

Definition 4 (Potential Swarm or PSm). Given a set pair < O,T >, if
the objectset O is a maximal objectset w.r.t. T and |T | < mint, then we call
< O,T > a potential swarm.

3 Optimization Principles

Minimal Time Support Optimization. By Definition 3, if timeset T corre-
sponding to the maximal objectset O satisfies the condition of |T | ≥ mint, the
we confirm that < O,T > is a OSm. Next, we optimize CLUR [7] algorithm
by using minimal time support instead of completed timeset (closed timeset),
named CLIP for distinguishing from CLUR.

We also employ DBSCAN to get clusters Ct at each time point t. CLIP
maintains two lists L and Lsm, which store potential swarms PSms and object-
closed swarms OSms with minimal time support, respectively. PSm or OSm
are stored in L and Lsm in form of key-value pairs. key correspond to objectset
O of patterns, and value to timeset T .

Parallel Model. We observe the combination property of timeset corresponding
to MO by Definition 2, as depicted in following Property.

Property 1. Given a maximal objectset O and its corresponding timeset T , for
∀T1, T2 (T1 ∩ T2 = φ, T1 ∪ T2 = T), there must exist O1 (O1 is a MO w.r.t. T1)
and O2 (O2 is a MO w.r.t. T2) such that O = O1 ∩ O2.

From Property 1, we observe that it is independent of the order of time points
when examine maximal objectset by using cluster recombinant method. Thus we
can adjust the order of time points or re-group time points of timeset arbitrarily.
Therefore, we further conclude the parallel model based on timeset-independent
for mining swarm pattern.

MR-Swarm: Mining Swarms from Big Spatio-Temporal Trajectories 571

4 Distributed Algorithm

4.1 Framework of Distributed Mining Algorithm

In this section, we introduce our distributed algorithm called MR-Swarm, capa-
ble of mining swarm using MapReduce chain architecture based on proposed
CLIP as a plug-in parallel method. The overall framework of our MR-Swarm is
depicted in Fig. 1. The framework can be dived into four stages:

Stage 1: Preprocessing in Map1 phase. This phase reads trajectory data in
parallel, and then partition data according to the attribute of time point, which
provides Stage 2 load-balanced data partitions.

Stage 2: Distributed mining phase in Reducer1 phase. Stage 2 performs
Reduce1 process on each reducer for mining local swarm patterns in independent
timeset Ti.

Stage 3: Parallel merge phase in Map2 phase. The stage merges the local
swarms from stage 2 in parallel, and generate intermediate patterns.

Stage 4: Final merge phase in Reduce2 phase. Stage 4 is executed on single
machine to merge all intermediate patterns into expected swarm patterns.

Fig. 1. Overall architecture of MR-Swarm framework

4.2 Preprocessing and Local Swarm Mining

The main task of preprocessing is load trajectory data of massive moving objects,
map location points of same timestamp to same key, and output data partition
to reducers. Therefore, the main challenges for an efficient partition are load
balancing, minimized communication or shuffling cost.

To minimize traffic and shuffling cost, we employ combiner in preprocessing.
In Mappers, trajectory data are mapped to key-value pairs according the infor-
mation of time point, and then the values of same key are merged in combiner,
namely, trajectory points at same time point are merged into a pair of key-value.
This would significantly reduce the number of shuffle in Shuffle phase. Finally,
we mod key by the number of reducers r, and output the data partition into
specified reducers grouped by time point.

As shown in Fig. 1, Stage 2 performs CLIP to mine local swarm candidates
in subset of TTD on each reducer. Each reducer receives the trajectory points of
all moving objects at specified time points, So all reducers can work in parallel by
the proposed parallel model. For reducer Ri, it first performs DBSCAN clustering
to get density-connected clusters at each time point, and then executes CLIP in
any order of time points to find local swarm candidates in local timeset.

572 Y. Yu et al.

4.3 Parallel Merge Phase

Stage 3 that runs on second Map phase aims to merge the local candidates on
two or more timesets. Taking two timesets as an example, pseudocode of merge
process is shown in Algorithm 1. mino, mint and TTD are global parameters.

Stage 3 first reads distributed intermediate files from reducers of Stage 2,
and distributes evenly them to Mappers. So each Mapper should first merge the
assigned OSms stored in Lsm as line 1. Then, examining whether the PSms in
T1 or T2 construct OSm in T1∪T2. As shown on lines 2–14, the examination also
employs the strategy of minimal time support optimization to identify OSm in
advance. Furthermore, we also utilize predicted timeset pruning rule to prune
the PSms that could not become swarms in future, given as following lemma.

Lemma 2. Given the set of all time points TTD and threshold mint, for a poten-
tial swarm < O,T > in T1(T1 ⊂ TTD), if |T | < mint + |T1| − |TTD|, then
< O,T ∪ (TTD − T1) > is certainly not a (closed) swarm.

Algorithm 1. Merge: Merge Local Swarms on Two Timesets
Require: L1, Lsm1 , T1, L2, Lsm2 , T2
Ensure: L1 and Lsm1
1: Lsm1 ← Lsm1 ∪ Lsm2 ;

2: for each candidate v2 ∈ L2 do
3: for each candidate v1 ∈ L1 do
4: O ← v1.O ∩ v2.O; T ← v1.T ∪ v2.T ;
5: if |O| ≥ mino then
6: if !MTS(O, T, Lsm1) then

7: if |T | ≥ |T1| + |T2| + mint − |TTD| then
8: L1.put(O, T);
9: end if
10: else
11: if O == v1.O then
12: L1.remove(v1);
13: end if
14: if O == v2.O then
15: v2.exist ← TRUE;
16: end if
17: end if
18: end if
19: end for
20: if (!v2.exist)&&|v2.T | ≥ |T1| + |T2| + mint − |TTD| then
21: L1.put(v2.O, v2.T);
22: end if
23: end for
24: for each candidate v1 ∈ L1 do
25: if |v1.T | < |T1| + |T2| + mint − |TTD| then
26: L1.remove(v1);
27: end if
28: end for
29: T1 ← T1 ∪ T2;

k mappers merge the local swarms on multiple subsets of time domain in
parallel, however, we still need to perform State 4 on one machine to merge all
intermediate swarms and output final swarms in final reduce phase.

MR-Swarm: Mining Swarms from Big Spatio-Temporal Trajectories 573

5 Experiments

5.1 Experimental Setup

A comprehensive performance study has been conducted on 5 network connected
workstations that deployed Hadoop platform of version 2.4.0 to evaluate the
effectiveness and efficiency of the proposed algorithm. Each node is equipped
with an Intel Core 2 Duo i5-3470 processor with 4 GB memory and runs a Centos
release 6.6 operating system.

Real Dataset. We use a real spatio-temporal trajectory data Taxi in our experi-
ments. The dataset is from T-drive project [3,9] developed by Microsoft Research
Asia. We divide a day into four time periods, morning and evening peak time
(7 am to 10 am and 5 pm to 8 pm), work time (10 am to 4 pm) and casual time
(8 pm to 2 am). We interpolate the time domain into the granularity of minute,
and get 7,560 time points in TTD.

Metrics. We measure the correctness of MR-Swarm by Precision and Recall as
follows: Precision = (R∩D)/R, Recall = (R∩D)/D, where D denotes swarms
obtained by the serial CLUR [7] and R is discovered swarms of MR-Swarm
algorithm.

5.2 Effectiveness Evaluation

First, we evaluate the correctness of MR-Swarm algorithm by measuring the
Precision and Recall on the real Taxi dataset. To demonstrate generality, we
use the data of Monday, Friday and Sunday, three representative days. From
Fig. 2(a), We can see that the Precision of most time is nearly 100 % except
Monday work time and Friday casual time, and Precisions of Monday work
time and Friday casual time also reach at 93.5 %, 94.5 % respectively. Figure 2(b)
shows the Recall of MR-Swarm is also good and robust. The average Recall of
all time intervals reaches at 97.5 %.

morning peak work time evening peak casual time
0

10

20

30

40

50

60

70

80

90

100

Pr
ec

isi
on

 (%
)

Monday
Friday
Sunday

(a) Precision

morning peak work time evening peak casual time
0

10

20

30

40

50

60

70

80

90

100

Re
ca

ll (
%

)

Monday
Friday
Sunday

(b) Recall

Fig. 2. Effectiveness evaluation on Taxi

574 Y. Yu et al.

5.3 Efficiency Evaluation

We also measure the CPU time of two MapReduce phase in MR-Swarm
referred as MR-1 and MR-2 respectively. The default setting follows: Eps =
0.002,MinPts = 10, thresholds mino = 30,mint = 10 and Taxi data on Sun-
day.

We first evaluate the scalability of MR-Swarm algorithm in terms of the vol-
ume of trajectories. In this experiment we randomly extract four subsets from the
Taxi data from 6k to 9k trajectories. Figure 3(a) shows the total running time of
MR-SWARM, MR-1, MR-2 and CLUR on the five datasets. MR-Swarm exhibits
much better scalability than CLUR in terms of CPU time. From the CPU time
utilized by MR-1 and MR-2, we observe that the number of trajectories less
affects parallel clustering and local swarm mining on subset of time domain but
greatly affects the phase of merging local PSms. In particular, MR-Swarm nearly
achieves 5-fold speedup compared against CLUR when TD = 10 k.

6k 7k 8k 9k 10k
0

500

1000

1500

2000

2500

3000

Number of Trajectroy TD

CP
U

Ti
m

e(
Se

co
nd

)

MR−Swarm
MR−1
MR−2
CLUR

(a) Varying TD

4 6 8 10 12
50

100

150

200

250

300

350

400

Number of Reducer r

CP
U

Ti
m

e(
Se

co
nd

)

MR−Swarm
MR−1
MR−2

(b) Varying r

Fig. 3. Efficiency evaluation on Taxi

Next, we evaluate the effect of varying the number of reducers r from 4
to 12 in MR-1 phase, when the number of Mapper in MR-2 phase is fixed
to the number of nodes. As shown in Fig. 3(b), the CPU cost of MR-Swarm
algorithm decreases as the number of reducers r increases. This is expected,
MR-1 performs parallel clustering and local swarm discovery in sub timeset,
thus the more reducers, the less time points assigned to each reducer, hence
the average time consumption is also less. However since the number of node
in our platform is limited, too many reducers does not further reducer the time
consumption.

6 Conclusion

In this paper, we study the problem of discovering object-closed swarm patterns
from big spatio-temporal trajectories. We propose distributed mining framework

MR-Swarm: Mining Swarms from Big Spatio-Temporal Trajectories 575

using MapReduce chain architecture scalable to big trajectories to efficiently
discover swarms. At last we demonstrate the effectiveness and efficiency of pro-
posed distributed solution by conducting comprehensive evaluations on a real
large scale taxi trajectory data.

Acknowledgment. This work is partially supported by the National Natural Sci-
ence Foundation of China (nos. 61403328 and 61572419), the open project program
of Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry
of Education, Jilin University (no. 93K172014K13), the Key Research & Development
Project of Shandong Province (no. 2015GSF115009), and the Shandong Provincial
Natural Science Foundation (nos. ZR2013FQ023 and ZR2013FM011).

References

1. Zheng, Y.: Trajectory data mining: an overview. ACM Trans. Intell. Syst. Technol.
6, 1–41 (2015)

2. Yu, Y., Cao, L., Rundensteiner, E.A., et al.: Detecting moving object outliers in
massive-scale trajectory streams. In: Proceedings of the 20th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, pp. 422–431. ACM
(2014)

3. Yuan, J., Zheng, Y., Xie, X., et al.: T-Drive: Enhancing driving directions with taxi
drivers’ intelligence. IEEE Trans. Knowl. Data Eng. 25(1), 220–232 (2013)

4. Laube, P., Imfeld, S.: Analyzing relative motion within groups oftrackable moving
point objects. In: Egenhofer, M.J., Mark, D.M. (eds.) GIScience 2002. LNCS, vol.
2478, pp. 132–144. Springer, Heidelberg (2002). doi:10.1007/3-540-45799-2 10

5. Jeung, H., Yiu, M.L., Zhou, X., et al.: Discovery of convoys in trajectory databases.
In: Proceedings of The 34th Very Large Databases Conference, Auckland, New
Zealand, 23–28 August, pp. 1068–1080 (2008)

6. Li, Z., Ding, B., Han, J., et al.: Swarm: mining relaxed temporal moving object
clusters. In: Proceedings of the 36th Very Large Databases Conference, Singapore,
pp. 13–17 (2010)

7. Qi, Y., Yu, Y., Kuang, J., et al.: Efficient algorithm for real time mining swarm
patterns. J. Univ. Sci. Technol. Beijing 34(1), 32–37 (2012)

8. Yu, Y., Wang, Q., Wang, X., Wang, H.: On-line clustering for trajectory data stream
of moving objects. Comput. Sci. Inf. Syst. 10(3), 1319–1342 (2013)

9. Yuan, J., Zheng, Y., C. Zhang, et al.: T-drive: driving directions based on taxi
trajectories. In: ACM SigSpatial Geographic Information Science, pp. 99–108. ACM
(2010)

http://dx.doi.org/10.1007/3-540-45799-2_10

	MR-Swarm: Mining Swarms from Big Spatio-Temporal Trajectories Using MapReduce
	1 Introduction
	2 Preliminary Definition
	3 Optimization Principles
	4 Distributed Algorithm
	4.1 Framework of Distributed Mining Algorithm
	4.2 Preprocessing and Local Swarm Mining
	4.3 Parallel Merge Phase

	5 Experiments
	5.1 Experimental Setup
	5.2 Effectiveness Evaluation
	5.3 Efficiency Evaluation

	6 Conclusion
	References

