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ABSTRACT In diverse applications ranging from social networks to location-based online services to traffic
monitoring, data streams are continuously monitored by multiple outlier analysts customized with different
parameter settings. Real-time response to such complex outlier analytics in high-speed streaming data has
been recognized as critical for many domains. In this paper, we propose a parameter space framework, called
PSOD, for online outlier detection over sliding window streams to support a large variety of query requests
in parameter space with both diverse pattern and window parameter settings. First, we design an ingenious
neighbor table that records the neighbors for each point in different distance intervals and different slides,
which enables us to maximally reuse the already acquired neighbor information across the entire parameter
space. In addition, we propose a series of shared strategies in sliding window environment to minimize
processing cost by eliminating the redundant query requests. Moreover, the PSOD effectively transforms
the query group in 4-D parameter space into a periodic query group in 3-D parameter space to minimize
the number of queries. Our experimental study on three real-world steaming data demonstrates that our
PSOD successfully drives down the CPU costs by more than 100 folds compared with the state-of-the-art
method.

INDEX TERMS Outlier detection, data streams, multi-query, parameter space.

I. INTRODUCTION
Nowadays, diverse high-speed huge-volume data streams are
being generated from a variety of sources including social
networks (e.g., Facebook and Twitter), location-based online
services (e.g., DiDi and Uber), online shopping systems
(e.g., Taobao and Amazon), mobile payments (e.g., Alipay
and Apply pay), stock-trading systems (e.g., Robinhood and
Acorns), and other smartphone applications. The discovery of
abnormal patterns (i.e., outliers) from such high-speed huge-
volume streaming data in a near real-time fashion has been
recognized as critical for many domains [1]–[6].

In recent years, distance-based outlier detection [7], [8]
have been widely applied in many applications due to their
simplicity and insensitivity to concept drift [2]. The basic
notion of anomaly detection in data can be traced back to
the initial work by Hawkins [9]. The distance-based outlier
model is initially proposed in [7] to capture outliers from

multidimensional datasets.More specifically, an object owith
fewer than k neighbors in the dataset D is defined as an
outlier, where a neighbor of object o can be defined to be
any other object in D that lies less than distance r from
o. The model is consistent with Hawkins’ definition and
suitable for any situations where the distribution does not
fit any standard distribution. As described above, to detect
the outliers from streaming data using the distance-based
outlier model, we need to first determine a set of input pattern
parameters (i.e., neighbor count threshold k and distance
threshold r) for processing system. For example, in credit
card fraud monitoring system, analyst would continuously
monitor the credit card transactions to find the unusual
records that significantly differ from the majority of previous
transactions made by card-holder or persons with similar
income levels. Therefore, how to set the r that measures the
notion of significant difference in transaction values and the k
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that determine the majority of normal transaction records. In
addition, for streaming data applications, sliding window are
widely adopted to continuously detect the outliers on themost
recent portion of data stream where people is more interested
in. Therefore, the sliding window parameters, i.e., window
size and slide size, also need to be provided using priori
knowledge.

However, determining appropriate parameters is a criti-
cal challenge for many real-time data applications. This is
because 1) data distribution may rapidly change with time,
resulting in selected parameters in historical data may not fit,
and 2) it is difficult to predict the data distribution in advance
in streaming environment. Therefore, we may need to con-
duct multiple outlier detection queries with different param-
eter settings on a same data stream to discover outliers under
different settings, which is utilized to understand the meaning
of each parameter value in measuring the anomaly situation.
For example, in credit card fraud monitoring system, how
many neighbors being considered for each transaction record
can define 80% of the majority. Moreover, outlier conditions
for different situations on the same data stream may be con-
sidered by different user requirements in many applications.
Since the continuous nature of streaming data and real-time
response requirement, we have to handle a large number
of outlier detection queries with various parameter settings
within a large range on a data stream simultaneously. Namely,
for an effective and efficient streaming outlier detection sys-
tem, fast processing capacity to answer thousands or more
of outlier queries covering a large space simultaneously is
very necessary. However, to answer such a large number of
query requests on a same data stream in real time, designing
effective and tactfully shared processing strategies for outlier
detection is very challenging.

In literature, several studies [10]–[13] have been done to
discover distance-based outliers from data streams. Although
these methods are efficient for handing a single outlier detec-
tion query, they fail to answer a large number of outlier
detection queries simultaneously in real time because they
only process each query independently. The most recent
work [14] focuses on distance-based outlier analytics for
multiple query requests with different parameter settings.
They aim to transform the multi-query outlier problem into
a single-query skyband problem. Although their proposed
framework can support multiple queries with varying pattern-
related parameters and window-related parameters, they only
consider shared execution strategies when varying one spe-
cific parameter, ignoring the opportunities of reuse already
acquired information across the parameter space.

In this work, we study shared execution strategies for sup-
porting multiple outlier detection queries in parameter space
to further improve the efficiency of outlier detection. First,
we formally define the problem of distance-based outlier
detection queries in parameter space with both pattern and
window parameters in the stream contexts. Second, we pro-
pose an unified detection framework to support distance-
based outlier queries in various dimensional parameter spaces

over data streams. Specifically, we design an ingenious neigh-
bor table that records the neighbors for each object in different
distance intervals and different slides, which enable us to
maximumly reuse the already acquired neighbor information
across entire parameter space. We also propose a series of
shared strategies in sliding window environment to minimize
processing cost by eliminating the redundant query requests.
Third, to minimize processing cost for supporting varying
slide sizes, we propose a novel method that effectively trans-
forms a outlier query group in four-dimensional parame-
ter space into a periodic query group in three-dimensional
parameter space. Finally, we conduct extensive experiments
on three real-world datasets to demonstrate the efficiency of
our proposed framework to answer huge numbers of query
requests in parameter space.

To summarize, we make the following contributions:

• We propose a unified detection framework to sup-
port multiple distance-based outlier queries in various
dimensional parameter spaces with both pattern and
window parameters over data streams.

• we design an ingenious neighbor table that records the
neighbors for each data point in different distance inter-
vals and different slides, which enable us to maximumly
reuse the already acquired neighbor information across
entire parameter space.

• We propose a novel method that effectively transforms
a group of outlier queries in four-dimensional parameter
space into a group of queries with a periodically variable
slide size in three-dimensional parameter space.

• Our experimental studies on three real-world datasets
demonstrate that our framework significantly outper-
forms the state-of-the-art method by over 100-fold in
CPU time.

II. RELATED WORK
In this section, we briefly review the related work in three
areas: distance-based outlier detection in static datasets,
in streaming data, andmulti-query outlier detection optimiza-
tion.

A. DISTANCE-BASED OUTLIERS IN STATIC DATASETS
Knorr and Ng [7] first propose the definition of distance-
based outlier detection. In a follow-up work, Knorr et al. [8]
apply the distance-based outlier model into outlier detection
on spatiotemporal data. Ramaswamy et al. [15] propose an
anomaly definition based on k-nearest neighbors. Accord-
ing to the distance from each data point to its k-th nearest
neighbor, the top-n data points with the largest kNN distance
are detected as the outliers. Subsequently, there have been
many studies on outlier detection based on the distance-based
outlier model [16], [17].

B. DISTANCE-BASED OUTLIERS OVER DATA STREAMS
Several methods have been proposed to detect distance-
based outliers on streaming data [11], [12], [18]–[20].
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Yang et al. [20] adopt a sliding window method to mine
neighbor-based patterns on data streams, including density-
based clustering and distance-based outlier detection. Specif-
ically, they pre-compute the number of neighbors for each
data point for each future window that the data points will
participate in, which improves processing performance at
the expense of a huge memory consumption. Angiulli and
Fassetti [13], [19] optimize the detection method by analyz-
ing whether data points are safe inlier on the data streams.
If the number of neighbors that enter the sliding window
after p is not less than k , then p is defined as safe inlier.
Kontaki et al. [11] further improve the concept of safe inlier
in [19]. More specifically, they employ the safe inlier concept
to design a time-triggered event detection by scheduling the
necessary checks according to the expiration time of pre-
ceding neighbors of unsafe inliers when the window slides.
Cao et al. [14] propose an outlier detection framework over
data streams, which supports two types of outlier detection
models based on distance and kNN. They aim to find safe
inliers as early as possible during the detection process by
leveraging the temporal relationships among streaming data
points to avoid full range query searches. Bu et al. [21]
combine sliding window technology with a distance-based
outlier definition to process outlier detection for trajectory
data streams. The distance calculation between the sub-
track is transformed into the cluster connection operation
between local clusters, reducing a large amount of distance
calculations. Yu et al. [22], [23] extend the distance-based
outlier model to neighbor-based outlier detection in spa-
tiotemporal trajectory streams by considering both spatial
and temporal constrains. However, all these streaming outlier
detection methods do not support multiple outlier detection
requests.

C. MULTI-QUERY OUTLIER DETECTION
Recently, a line of research work focuses on multiple outlier
detection queries over data streams. This line of research is
the most relevant to ours. Multiple query sharing has been
widely studied as a general optimization problem in stream-
ing environments. Yang et al. [24], [25] propose a shared
execution strategy based on predictive view growth theory
and hierarchical clustering structure for multiple neighbor-
based pattern mining requests with varying input parameters
in a sliding window environment. In addition to focusing on
distance-based outlier detection for a singe query request,
[19] also discusses multiple-query outlier detection prob-
lem. However, they only consider outlier queries with dif-
ferent pattern parameter in the same sliding window. More
recently, Cao et al. [14] present a solution for efficient
shared processing of a large number of distance-based out-
lier detection requests with diverse parameter instantiations
over sliding window streams. The method transforms mul-
tiple outlier detection queries into a single-query skyline by
leveraging the domination relationships among the streaming
data points. Although the method supports multiple outlier
requests on data streams, it neglects the opportunities of

sharing execution across the parameter space of both pattern
and window parameters varying within a large range.

III. PROBLEM DEFINITION
In this section, we first define the key data structures and
notations used in the paper. Then we formally state the focal
problem to be solved. We now first review the notion of
distance-based outliers [7], [8], [12]. In this work, we use the
term data point to refer to a multi-dimensional tuple in a data
stream, which is defined as follows:
Definition 1 (Data Point): A data point pi is a triple
〈i, t, atts〉 that represents tuple pi arriving at time t in the data
stream, where atts denotes the multi-dimensional attributes
of pi.
A data stream DS is defined as an infinite sequence of

data points ordered by time with DS = {p1, p2, . . . , pi, . . . }
(pi.t ≤ pi+1.t, i = 1, 2, . . . ).
We use the function dist(pi, pj) to denote the distance

between two data points pi and pj. Without loss of generality,
we utilize Euclidean distance as the distance measure, though
any other distance measure could equally be plugged in.

We next define the notion of neighbor between any pairs
of data points as follows:
Definition 2 (Neighbor): Given a distance threshold r, for

two data points pi and pj, if dist(pi, pj) ≤ r, then pi and pj are
neighbors to each other.

For point pi, all neighbors of pi with regard to the dis-
tance threshold r comprise the neighbor set of pi, denoted
as N (pi, r).
Definition 3 (Distance-based Outlier): Given a distance

threshold r and a neighbor count threshold k, for any data
point pi, if |N (pi, r)| < k, then pi is regarded as a distance-
based outlier.

To capture the distance-based outliers in data streams,
we use the periodic sliding window semantics as proposed
by [26] for defining the sub-stream of the infinite data stream.
The sliding window can be either time or count-based. In
both cases, each sliding window has a window size w and
a slide size s. For time-based sliding windows, each win-
dow W has an starting time W .Tstart and an ending time
W .Tend = W .Tstart +w. Periodically, the current windowWc
slides, causing Wc.Tstart and Wc.Tend to increase by s time
points. For count-based sliding windows, the window size w
corresponds to a fixed number of data points, which means
each window contains w data points. Periodically the current
window Wc slides s new data points, and Wc.Tstart ≤ pi.t <

Wc.Tend for all pi ∈ Wc.
We use N (p, r,Wc) to denote the set of neighbors of p in

the current windowWc, i.e.,N (p, r,Wc) = {q|q ∈ N (pi, r)∧
Wc.Tstart ≤ q.t < Wc.Tend }. We now define the distance-
based outliers in sliding windows as follows:
Definition 4 (Distance-Based Outlier in Sliding Win-

dows): Given a data stream DS, a distance threshold r,
a neighbor count threshold k, for any data point pi in the
current window Wc, if |N (p, r,Wc)| < k, then pi is regarded
as a distance-based outlier in window Wc.
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Outliers in the current window Wc will be detected by
Definition 4. However, the points inWc may have a different
status in the next windows over the data stream if it is still
alive. Therefore, we need to continuously detect the statuses
of data points as window slides.
Definition 5 (Outlier Detection Query in Sliding Win-

dows): Given a data stream DS, a distance threshold r,
a neighbor count threshold k, and the sliding window with
window size w and slide size s, the outlier detection query
Q(r, k,w, s) continuously detects and outputs the distance-
based outliers in each window in stream DS as the window
slides.

Next we define the parameter space as a model for man-
aging, exploring and optimizing multiple outlier detection
queries on the same data stream as follows:
Definition 6 (Parameter Space): Given a data stream DS,

a distance threshold set R, a neighbor count threshold set K ,
sliding window size set W , and slide size set S, we use a four-
dimensional parameter space R×K ×W ×S to organize the
parameter settings for the outlier query groupQ that includes
Q(r, k,w, s) for all (r, k,w, s) ∈ R×K×W×S on streamDS.
Finally, we formally state our problem solved in this work

as follows:
Problem 1 (Outlier Detection Queries in Parameter

Space): Given a data stream DS, and a parameter space
R × K × W × S, our goal is to answer all outlier detection
queries in Q for parameter space R × K × W × S using
minimum processing time and memory consumption.

IV. OUTLIER DETECTION FRAMEWORK
In this section, we present our proposed parameter space
framework for online outlier detection over data streams.
We first introduce our shared execution strategy for detecting
outliers in the two-dimensional parameter space R×K . Then
we present how our method works in the three-dimensional
parameter spaces R×K ×W . Next we introduce our method
that transforms query group in the four-dimensional parame-
ter space R× K ×W × S into a periodic query group in the
three-dimensional parameter spaces R× K ×W . Finally we
show our parameter space framework to handle outlier query
group in R× K ×W × S.

A. OUTLIER DETECTION IN PARAMETER SPACE R × K
We first explore the sharing-aware outlier detection scheme
in the two-dimensional parameter space R × K , namely,
we assume all queries share the same sliding window param-
eter w and s. So we omit w and s in this section. We can easily
get the following two lemmas.
Lemma 1: Given a parameter space R × K, R =

{r1, r2, . . . , rm} (r1 < r2 < · · · < rm), K = {k1, k2, . . . , kn}
(k1 < k2 < · · · < kn), for any data point p and k ∈ K,
if |N (p, ri)| ≥ k, p is a distance-based inlier w.r.t. parameter
setting (rj, k) in R× K for all j ≥ i.
Lemma 2: Given a parameter space R × K, R =

{r1, r2, . . . , rm} (r1 < r2 < · · · < rm), K = {k1, k2, . . . , kn}
(k1 < k2 < · · · < kn), for any data point p and r ∈ R,

if |N (p, r)| < ki, then p is a distance-based outlier w.r.t.
parameter setting (r, kj) ∈ R× K for all j ≥ i.
Lemma 1 and Lemma 2 are intuitive. Next we illustrate

these two observations with an example.
Example 1: Given a query group Q in parameter space
{r1, r2, r3} × {k1, k2, k3} as shown in Fig. 1, here we set
k1 = 2, k2 = 4, and k3 = 8.

FIGURE 1. p0 and its neighbor points.

We now describe how our shared execution strategy detects
the statuses of p0 in parameter space {r1, r2, r3}×{k1, k2, k3}.
We first introduce the data structure that enable our strategy
to reuse the already found neighbors. We use a neighbor
table, denoted as p.NT , to record the neighbor information in
different distance intervals. As show in Fig 1, there are three
distance intervals, i.e., [0, r1], (r1, r2], (r2, r3], for each data
point according to the set of distance thresholds {r1, r2, r3}.
We first use a range query operation to search neigh-

bors for data point p0 in the current window, and record
the neighbor information in p0.NT according to the dis-
tance ranges. Thus the status of p0 for parameter setting
(r1, k1) can be determined. Since N (p0, r1) = {p1, p2, p3},
i.e., |N (p0, r1)| > k1(2), p0 is an inlier w.r.t. (r1, k1). By
Lemma 1, we now directly get the statuses of p0 for parameter
settings (r2, k1) and (r3, k1) as shown in Table 1. Then we can
quickly determine the status of p0 w.r.t. (r1, k2). According
to N (p0, r1), p0 is an outlier for parameter setting (r1, k2)
because |N (p0, r1)| < k2(4). Therefore, the status of p0 in
the case of (r1, k3) can be directly detected by Lemma 2.

Next we examine the status of p0 for (r2, k2). Obviously,
N (p0, r2) is sum of neighbors in distance interval [0, r1] and
(r1, r2]. So p0 is an inlier w.r.t. (r2, k2) because |N (p0, r2)| >
k2(4). Similarly, p0 is also an inlier for (r3, k2) by Lemma 1.
Since N (p0, r2) is already recognized, the status of p0 for
(r1, k1) is also quickly detected.

For parameter setting (r3, k3), we only need to find out
N (p0, r3) through N (p0, r2) plus the neighbors in distance
interval (r2, r3]. Thus p0 is an outlier in the case of (r3, k3)
because N (p0, r3) < k3(8).
In Table 1, we use the orange font to indicate the cases

that can be directly determined without examination, the cyan
font to the cases that can be quickly detected via checking
on already recognized neighbor information, and the black
font to the cases that need to look-up p.NT and examine
the neighbor condition. Therefore, our shared execution can
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TABLE 1. The status of p0 in parameter space (R, K ).

detect the statuses for each data points in parameter space
R × K only performing a range query operation and limited
number of table look-up operations.

However, to minimize the computation cost, we do not
perform complete range query for searching neighbors of
each data point in our method. nimum neighbor searching
mechanism in Section IV-B and Section IV-D.

B. OUTLIER DETECTION IN PARAMETER SPACE R × K × W
Next we discuss the case that all detection queries in the three-
dimensional parameter space R×K ×W have the same slide
size s. All queries require to output the statuses of all data
points in the windows that end with the current time. Namely,
all queries share the same ending time Wc.Tend . This case is
more complicated than the previous R×K because the status
of each data point need to be considered in streaming context.

We now first introduce the status of data point in the
context of streaming data. Traditional detection methods only
divide a data point into two statuses: ‘‘inlier’’ and ‘‘outlier’’.
However, in sliding window, the status of the data points can
be further subdivided to reduce the distance calculation. To
quickly determine the status of data points, we divide the
neighbors of a data point p in the current windowN (p, r,Wc)
into two parts: neighbors before p and neighbors after p,
denoted asNbefore(p, r,Wc) andNafter (p, r,Wc) respectively.
That is, N (p, r,Wc) = Nbefore(p, r,Wc) ∪ Nafter (p, r,Wc).
Therefore, the status of point p in the current windowWc can
be subdivided into:

• Safe inlier (s-inlier). If |Nafter (p, r,Wc)| ≥ k , no matter
how Wc slides, the number of neighbors in the sliding
window for p must be greater than or equal to k before
p expires. Thus the status of p can be determined as an
inlier in the current window and subsequent windows
before it expires, denoted as s-inlier.

• Unsafe inlier (u-inlier). If |N (p, r,w)| ≥ k , but
the number of neighbors after p is less than k ,
i.e., |Nafter (p, r,Wc)| < k , then p is an inlier in the
current window. However, the neighbors before p may
slide out of the window as the window slides, so the
status of p may become an outlier in the subsequent
windows. Therefore, we consider p as an unsafe inlier
in the current window, denoted as u-inlier.

• Outlier. If |N (p, r,w)| < k , i.e., |Nbefore(p, r,Wc)| +
|Nafter (p, r,Wc)| < k , then p is regarded as an outlier in

the current window, denoted as outlier. However, as the
window slides, p may acquire k neighbors in the new
window, thus the state of p may become u-inlier or
s-inlier.

As the window slides, the neighbors in Nbefore(p, r,Wc)
gradually slides out of the window, and the neighbors in
Nafter (p, r,Wc) would stay in the window until p slides out of
the window. Therefore, the longer the effective lifetime of the
later neighbor is, while for the previous neighbors, the closer
to p, the longer survival period is. When searching for a
neighbor of p, the neighbors behind it can be preferentially
searched for. Based on this observation, in the window slides,
the neighbors are searched in order from the last timestamp
to previous ones, in this way, it can satisfy the priority search
Nafter (p, r,Wc), and at the same time, realizing the result that
to search Nbefore(p, r,Wc) from the nearest to the farthest.
When detecting the point p, it is not necessary to search

out all the neighbors. When k neighbor is acquired, the sta-
tus of the p can be determined, so we use a minimum
neighbor search mechanism to minimize the processing time.
Given p and a new point pnew that just enters the window,
if |Nafter (p, r,Wc)| ≥ k and also |Nbefore(pnew, r,Wc)| ≥ k ,
then there is no need to calculate the distance between p and
pnew. At this point, p has been determined to be a s-inlier, and
pnew has also been determined to be an u-inlier. Otherwise,
it will continue to calculate the distance between pnew and
other points in the current window till to determine that pnew
is an u-inlier or an outlier. This mechanism not only satisfies
the detection for all points but also achieves the minimum
distance calculation.
Lemma 3: Given a parameter space R × K × W, R =
{r1, r2, . . . , rm} (r1 < r2 < · · · < rm), K = {k1, k2, . . . , kn}
(k1 < k2 < · · · < kn), W = {w1,w2, . . . ,wx} (w1 <

w2 < · · · < wx), for any data point p, r ∈ R and k ∈ K,
if |Nafter (p, r,Wi)| ≥ k (the window size of Wi corresponds
to wi), p is a s-inlier w.r.t. parameter setting (r, k,wj) ∈
R× K ×W for all j >= i.
Lemma 4: Given a parameter space R × K × W, R =
{r1, r2, . . . , rm} (r1 < r2 < · · · < rm), K = {k1, k2, . . . , kn}
(k1 < k2 < · · · < kn), W = {w1,w2, . . . ,wx} (w1 <

w2 < · · · < wx), for any data point p, r ∈ R and k ∈ K,
if |N (p, r,Wi)| ≥ k but |Nafter (p, r,Wi)| < k (the window
size of Wi corresponds to wi), p is an u-inlier w.r.t. parameter
setting (r, k,wj) ∈ R× K ×W for all j >= i.
Lemma 3 and Lemma 4 are easily proved. We omit the

proofs due to the limited space.
Next, we use an example to illustrate our shared execution

strategy for outlier detection in parameter space R×K ×W .
Example 2: Given a query group Q in parameter space
{r1, r2, r3} × {k1, k2, k3} × {w1,w2,w3} as shown in Fig. 2.
si (i = 1, 2, . . . , 7) denotes a slide with size s. We set k1 = 2,
k2 = 4, k3 = 8. For window size, we set w1 = 3∗s, w2 = 5∗s
and w3 = 6∗ s. Wi corresponds to parameter wi (i = 1, 2, 3),
and all windows share ending time and slide size s.

Similar to Example 1, we first introduce our designed
neighbor table p0.NT that enables our strategy to reuse
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FIGURE 2. p0 and its neighbor points in different windows.

the already found neighbors. To support neighbor reuse in
sliding window, we extend our neighbor table to record
the neighbor information in different distance ranges for
each slide. As shown in Table 2, each column records the
neighbors of p0 in each slide for three distance intervals,
i.e., [0, r1], (r1, r2], (r2, r3].
Suppose that the current time is t6, namely, W1.Tend =

W2.Tend = W3.Tend = t6. We first detect the statuses
of p0 in the current time for parameter space {r1, r2, r3} ×
{k1, k2, k3} × {w1,w2,w3}. To obtain the neighbors of p0,
we first search neighbors for data point p0 in each slide, and
record the neighbor information in p0.NT , shown as columns
s1 – s6 in Table 2.

TABLE 2. Neighbor table of p0.

Since Nafter (p0, r1,W1) = {p8, p9, p12, p13}, i.e., |Nafter
(p0, r1,W1)| > k1(2), thus p0 is a s-inlier for parameter
setting (r1, k1,w1). By Lemma 1, we now directly determine
that p0 is also a s-inlier for parameter settings (r2, k1,w1),
(r3, k1,w1), (r1, k2,w1), (r2, k2,w1) and (r3, k2,w1). We can
also quickly detect that p0 is a outlier for (r1, k3,w1). By
Lemma 3, we can know that the statuses of p0 are all s-inliers
for parameter settings (r1, k1,w2), (r1, k1,w3), (r2, k1,w2),
(r2, k1,w3), (r3, k1,w2), (r3, k1,w3), (r1, k2,w2), (r1, k2,w3),
(r2, k2,w2), (r2, k2,w3), (r3, k2,w2) and (r3, k2,w3).
For parameter setting (r1, k3,w2), we only need to find

N (p0, r1,W2) through N (p0, r1,W1) plus the neighbors in
slides s2 and s3, thusN (p0, r1,W2) = {p3, p6, p7, p8, p9, p12,
p13}, i.e., |N (p0, r1,W2)| < k3(8). Therefore, p0 is
an outlier for (r1, k3,w2). Similarly, p0 is an u-inlier
for (r1, k3,w3) because |N (p0, r1,W3)| > k3(8) but
|Nafter (p0, r1,W3)| < k3(8).

Next we examine the status of p0 for (r2, k3,w1). Since
|N (p0, r2,W1)| = |{p7, p8, p9, p10, p12, p13}| < k3(8), thus
p0 is an outlier. Then we can determine the status of p0
w.r.t. (r2, k3,w2) by querying the neighbors in s2 and s3.
p0 is an u-inlier for parameter setting (r2, k3,w2) because
|N (p0, r2,W2)| > k3(8) but |Nafter (p0, r2,W2)| < k3(8).
Therefore, p0 can be directly detected as an u-inlier in the
case of (r1, k3,w3) by Lemma 4.

Similarly, we can further detect the status of p0 by explor-
ing the neighbors in slides [s4, s6] of distance interval (r2, r3]
in the basis of N (p0, r2,W1). Since |N (p0, r3,W1)| =
|{p7, p8, p9, p10, p11, p12, p13}| < k3(8), p0 is an outlier
for parameter setting (r3, k3,w1). For parameter setting
(r3, k3,w2), we can quickly get the status of p0, i.e., u-inlier,
because |N (p0, r2,W2)| > k3 and |Nafter (p0, r3,W1)| < k3.
Finally, p0 is directly regraded as an u-inlier for (r3, k3,w3)
by Lemma 4.

Like Table 1, we use the orange font to indicate the cases
that can be directly determined without examination, the cyan
font to the cases that can be quickly detected via checking
on already recognized neighbor information, and the black
font to the cases that need to look-up p.NT and examine the
neighbor condition in Table 3.

TABLE 3. The status of p0 in parameter space (R, K , W ).

Next, we illustrate how our strategy updates the statuses of
data points with windows slide. We now suppose all windows
slide to s7. According to our previous analysis, we know that
if the status of p0 is a s-inlier, the status of p0 will not change
as windows slides until data point p0 expires. As shown
in Table 3, we only need to re-detect the statuses for p0 in
the cases of u-inlier and outlier.

For parameter setting (r1, k3,w1), we only need to com-
pare the number of neighbors in new slide s7 with that
in expired slide s4 w.r.t distance interval [0, r1]. Because
|N new(p0, r1,W1)| = |N old (p0, r1,W1)| − |s4([0, r1])| +
|s7([0, r1])| = |{p8, p9, p12, p13, p16}| < k3(8), p0 is still an
outlier w.r.t. (r1, k3,w1) in the current time. Similarly, we can
update the statuses of p0 for parameter settings (r1, k3,w2)
and (r1, k3,w3).
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TABLE 4. The updated status for p0 in new sliding windows.

Then we examine the new status of p0 for (r2, k3,w1).
p0 is till an outlier because N new(p0, r2,W1) =

{p8, p9, p10, p12, p13, p15, p16}, i.e., |N new(p0, r2,W1)| <

k3(8). For parameter setting (r2, k3,w2), although |N new(p0,
r2,W2)| > k3(8), |N new

after (p0, r2,W2)| < k3(8). Thus p0 is still
an u-inlier. By Lemma 4, we can know p0 is an u-inlier for
parameter setting (r2, k3,w3) in the current time.
At last, we update the status of p0 w.r.t. (r3, k3,w1). Due

to |N new
after (p0, r3,W1)| = |{p8, p9, p10, p11, p12, p13, p14, p15,

p16}| > k3(8), p0 becomes a s-inlier. By Lemma 3,
we directly update the status of p0 to s-inlier for parameter
settings (r3, k3,w2) and (r3, k3,w3).
In Example 2, the sizes of all windows are set to integer

multiples of slide size s. However, in reality, the sizes of some
windows in W may not be divisible by the slide size, e.g.,
w = 5, s = 2. To support the outlier examination for such
queries using above method, we set a minimum slide size smin
to the greatest common divisor on all windows sizes inW and
slide size s. We can record the neighbors for each data point in
each minimum slide, and each time all windows slide s/smin
minimum slides.

C. OUTLIER DETECTION IN PARAMETER SPACE R × K × S
In this section, we present our shared execution strategy for
examining outliers in the three-dimensional parameter spaces
R × K × S. In this case, all detection queries have the same
window size w in streaming context.

Similar to Section IV-B, for all slide sizes in S, to share
the acquired neighbors in the sliding window, we need to
find the greatest common divisor smin on all slide sizes and
the window size. We divide the sliding window into the
minimum slides with length smin. For example, in Fig. 3,
sim(i = 1, 2, . . . , 9) is a minimum slide with length smin.
Example 3: Given a query group Q in parameter space
{r1, r2, r3} × {k1, k2, k3} × {s1, s2, s3} as shown in Fig. 3.
We set k1 = 2, k2 = 4, k3 = 8. Window size is set to 5,
i.e., w = 5. Suppose s1 = 2, s2 = 3, s3 = 4. We find the
greatest common divisor of the window size w and all slide
sizes is 1. Thus we divide the sliding window into five equal

FIGURE 3. p0 and its neighbor points in sliding window with different
slides.

parts with length 1. Since s3 = 2∗s1, as for s3, it is equivalent
to the window sliding s1 twice. We can reuse the query results
of s1 for s3 thus omit the queries for parameter s3.
As shown in Fig. 3, the query group Q in {r1, r2, r3} ×
{k1, k2, k3} × {s1, s2, s3} is reduced to Q′ in {r1, r2, r3} ×
{k1, k2, k3}×{s1, s2}. Next we discuss how our method reuse
the execution for slide sizes s1 and s2 to each other.

First, we can examine the statuses of p0 for parameter
settings {r1, r2, r3}× {k1, k2, k3}× {s1}. Using the method in
last section, we determine the statuses of p0 shown as column
s1 in Table 5.

TABLE 5. The status of p0 in parameter space (R, K , S).

Then we detect the statuses of p0 for parameter settings
{r1, r2, r3} × {k1, k2, k3} × {s2}. Obviously, we can reuse
the execution of s1 for s2. Namely, we can get the detec-
tion result for s2 by sliding the current window a minimum
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slide. Therefore, we can quickly obtain the statuses of p0 in
{r1, r2, r3} × {k1, k2, k3} × {s2} by checking the neighbors in
the new minimum slide s8min.
Next we again consider the question that how to reuse

the current examination for next queries in {r1, r2, r3} ×
{k1, k2, k3} × {s1}. Therefore, we can transform the query
group in {r1, r2, r3}×{k1, k2, k3}×{s1, s2} into a query group
in {r1, r2, r3} × {k1, k2, k3} × {svari }, where s

var
i is a variable

slide size.
To resolve the execution reuse for the slide sizes in S,

we first unfold the queriesQ′ w.r.t {r1, r2, r3}×{k1, k2, k3}×
{s1, s2} on the axis of slide size. Obviously, given the current
window Wc, the set of slide sizes is periodic. We can easily
find the first round of slide sizes with respect to the current
window: S = {s1, 2 ∗ s1, . . . , s2 ∗ s1, s2, 2 ∗ s2, . . . , s1 ∗ s2}.
Thus the smallest slide size is s1, and the largest slide size is
the least common multiple on s1 and s2. By removing dupli-
cates and sorting by size, we can determine the periodic slide
sizes, e.g., {s1, s2, 2 ∗ s1, s1 ∗ s2} = {2, 3, 4, 6}. Therefore,
the variable slide size svari follows: svar1 = 2, svar2 = 1, svar3 =

1, svar4 = 2. Namely, the sliding window periodically slides
from svar1 to svar4 to maximally reuse the execution to answer
the detection query group Q.
We call the set of periodic slide sizes for the variable slide

size svari with respect to S periodic slide size series, denoted
as Ps(S).

By the above observation, next we define our slide-sharing
detection optimization based on this transformation.
Principle 1 (Slide-sharing Detection): Given a parameter

space R × K × W × S, R = {r1, r2, . . . , rm} (r1 < r2 <

· · · < rm), K = {k1, k2, . . . , kn} (k1 < k2 < · · · < kn),
W = {w1,w2, . . . ,wx} (w1 < w2 < · · · < wx), S =
{s1, s2, . . . , sy} (s1 < s2 < · · · < sy), the query group Q
in parameter space R×K ×W ×S is equivalent to the query
groupQ′ in parameter space R×K ×W ×{svari }, where s

var
i

periodically follows the periodic slide size series Ps(S).
By the slide-sharing detection principle, the query group

in four-dimensional parameter space R × K × W × S are
effectively transformed into a periodic query group in three-
dimensional parameter space R× K ×W × {svari }.

D. PSOD FRAMEWORK FOR OUTLIER DETECTION
Next we show how our PSOD (Parameter Space Framework
for Outlier Detection) detects the outliers in four-dimensional
parameter space R× K ×W × S. As shown in Algorithm 1,
take data point p for example, PSOD updates the status of p
for each query in parameter space with time. fst (p, rj, kx ,wy)
denotes the status of p with respect to Q(rj, kx ,wy).

First, PSOD transforms the query group in four-
dimensional parameter spaceR×K×W×S into a query group
in three-dimensional parameter space R×K×W by applying
our proposed Principle 1 (line 1). Second, PSOD directly
eliminates the queries Q(r, k,w) for p if p have already been
a s-inlier in last window (lines 5-6). Then, PSODwill explore
the neighbor points for p in the new slide Snew in order
from the last timestamp to previous ones. For any neighbor

Algorithm 1 PSOD Framework
Input: Data Stream DS, Query group Q, R, K , W and S.
Output: The status of p in parameter space R×K ×W × S
1: for svari ∈ Ps(S) do
2: for rj ∈ R do
3: for kx ∈ K do
4: for wy ∈ W do
5: if fst (p, rj, kx ,wy) == s-inlier then
6: break;
7: else if fst (p, rj, kx ,wy) has been updated

then
8: break;
9: else
10: for pl−1new from Snew.Tend to Snew.Tstart

do
11: if dist(p, pnew) ∈ (ra, rb] then
12: p.NT .add(pnew, (ra, rb]);
13: pnew.NT .add(p, (ra, rb]);
14: if Nafter (p, rj,Wc) ≥ kx then
15: fst (p, r≥j, kx ,w≥y)←s-inlier;
16: mark plnew; break;

17: if Nafter (p, rj,Wc) < kx then
18: if N (p, rj,Wc) ≥ kx then
19: fst (p, rj, kx ,w≥y)←u-inlier;
20: else
21: fst (p, rj, k≥x ,wy)←outlier;

points of p in distance interval (ra, rb], we put them into
corresponding row of p.NT . Once enough neighbors in new
slide are acquired (i.e., |Nafter (p, rj,Wc)| ≥ kx), PSOD then
early terminates the searching because the s-inlier status of p
have already been proved in the current window with respect
to Q(rj, kx ,wy). Therefore, as shown in line 15, the status of
p for all queries Q(r≥j, kx ,w≥y) is set to s-inlier by Lemma 1
and Lemma 3. Note that fst (p, r≥j, kx ,w≥y) denotes the status
of p with respect to all queries with parameter settings r ≥
rj, k = kx and w ≥ wy. To avoid double counting the distance
between two points, we mark the location of plnew for p in
the new slide. If p needs more neighbors for larger k , our
PSOD would continue to search neighbors for p starting at
pl−1new. Hence PSOD at most executes a complete range query
to search neighbors of p for supporting different distance
thresholds.

Next, if |Nafter (p, rj,Wc)| < kx but N (p, rj,Wc) ≥
kx , then p is a u-inlier for queries with parameter settings
r = rj, k = kx and w ≥ wy by Lemma 4 (line 19).
If N (p, rj,Wc) ≥ kx , then p is a outlier for queries with
parameter settings r = rj, k ≥ kx and w = wy by Lemma 2
(line 21).

V. EXPERIMENT
In this section, we use three real-world streaming data to
evaluate the efficiency of our framework.
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Datasets. (1) Gowalla dataset. Gowalla1 [27] is a real
location-based social network service. In Gowalla dataset,
the friendship network consists of 196,591 nodes and
950,327 edges, and a total of 6,442,890 check-in records of
these users are collected over the period of February 2009 -
October 2010. (2) YearPredictionMSD (YearMSD) dataset.
YearMSD2 [28] is a subset of the Million Song Dataset,
which is a freely-available collection of audio features and
metadata for a million contemporary popular music tracks.
In YearMSD dataset, there are total 515,345 instances with
90 dimensional attributes. (3) GeoLife Dataset. GeoLife3 [29]
is a location-based social-networking service, which enables
users to share life experiences and build connections among
each other using human location history. This dataset collects
17,621 GPS trajectories of 182 users in a period of over four
years (from April 2007 to October 2012), including a total
of 23,667,828 GPS points.

Baselines. We compare our proposed PSOD framework
with alternative methods LEAP [12] and SOP [14]. SOP is
the state-of-the-art distance-based outlier detection solution
that supports multiple query requests in steaming data. LEAP
is the state-of-the-art single query strategy for distance-based
outlier detection over data streams. Multiple queries are sup-
ported by applying LEAP independently to process each
query in the query group.

Evaluation metrics.Wemeasure two metrics common for
data streams, namely the average processing time (CPU time)
per one thousand data points and the peak memory consump-
tion. The CPU time metric is the total amount of running time
utilized to process the queries on one thousand data points.
The peak consumed memory metric indicates the memory
required to store the information for each active object and the
outliers of all queries over data streams.We report the average
value over all queries processed in the given experiments. All
experiments are conducted using the count-based window.

Experimental Setting. We conduct all experiments on a
computer with 4.0GHz i7-6700k processor and 8GB of mem-
ory, running Windows 7 operating system. All algorithms are
implemented by java.

TABLE 6. Sizes of parameter spaces used in experiment.

We evaluate the scalability of all methods with an increas-
ing parameter space. Table 6 shows the five sizes of parameter
spaces used in our evaluation. |X | denotes the cardinality of
set X .

1http://snap.stanford.edu/data/loc-gowalla.html
2https://archive.ics.uci.edu/ml/datasets/yearpredictionmsd
3https://www.microsoft.com/en-us/download/details.aspx?id=52367

A. PERFORMANCE W.R.T. SIZE OF PARAMETER SPACE
In this experiment, we evaluate the performance of our PSOD
framework compared with SOP and LEAP under different
sizes of parameter space (from size A to E). Specifically,
we randomly select the corresponding number of r from 50
to 2K for Gowalla and GeoLife (4K to 6K for YearMSD), k
from 10 to 500, w from 10K to 100K, and s from 100 to 10K
for each size of parameter space, respectively.

The results on Gowalla, YearMSD, and GeoLife are shown
in Figures 4, 5 and 6, respectively. From Figures 4(a), 5(a)
and 6(a), our PSOD framework is consistently superior to
SOP and LEAP in term of CPU time in all tested cases on
three datasets. More specifically, PSOD significantly out-
performs SOP and LEAP up to two orders and four orders
of magnitude in CPU time, respectively. This is because
LEAP needs to repeatedly detect the statuses of data points
for each query from scratch when any parameter is varied.
As the size of parameter space increases, the number of
queries increases. When the size of parameter space is larger

FIGURE 4. Varying size of parameter space on Gowalla. (a) CPU (log
scale). (b) Memory.

FIGURE 5. Varying size of parameter space on YearMSD. (a) CPU (log
scale). (b) Memory.

FIGURE 6. Varying size of parameter space on GeoLife. (a) CPU (log
scale). (b) Memory.
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than C , the number of query requests in the parameter space
reaches more than ten thousand, thus the utilized CPU time
of LEAP increases quickly. Although SOP collects minimum
information to prove the outlier status of each point with
respect to all queries, and maps the multiple outlier queries to
a single skyband query problem, its shared-execution strategy
only supports varying one parameter each time. Therefore,
SOP equivalently needs to process multiple skyband queries
with respect to different query groups for outlier detection in
parameter space. When the size of parameter space increases,
the number of skyband queries also increases, thus the CPU
time of SOP gradually increases. In our PSOD framework,
we use a flexible neighbor table to store the neighbor infor-
mation for each data point, which can be reused for out-
lier detection queries with different pattern parameters and
window parameters. Namely, the already acquired neighbor
information can be reused across entire parameter space. In
addition, we propose a series of pruning rules to eliminate
the redundant query requests. Although the size of parameter
space increases up to ten thousand, lots of query requests
may be eliminated based on the statuses of data points (e.g.,
s-inlier). More importantly, PSOD successfully transforms
query group in four-dimensional parameter space into a query
group in three-dimensional space by sharing slide, which
significantly reduces the number of queries and maximumly
reuses already acquired resources, resulting in significant
higher CPU efficiency compared to SOP and LEAP.

As shown in Figures 4(b), 5(b) and 6(b), SOP and PSOD
significantly outperform LEAP in term of memory consump-
tion. This is because LEAP does not consider the sharing
opportunities across multiple queries, thus needs to maintain
the neighbor information of each data point for each query
independently. Therefore, the utilized memory resource of
LEAP increases dramatically as the size of parameter space
grows. SOP algorithm consumes the least amount of mem-
ory. This is because SOP only collects minimum neigh-
bor information of each point to verify the status for each
skyband query, which avoids to store the redundant neigh-
bor information. Compared to SOP, PSOD stores detailed
necessary neighbor information in the designed neighbor
table of each data point for supporting different parameter
settings, which benefits the outlier detection in parameter
space. Hence our PSOD uses a litter more memory than SOP.
In particular, our PSODonly uses 21%morememory on three
datasets, on average. However, this extra memory leads to
huge gains in CPU processing resources (at least 90 folds
faster than SOP).

B. PERFORMANCE W.R.T. THE SCALE OF PARAMETERS
In this section, we study the performance of our PSOD with
respect to the scale of parameters in parameter space on three
datasets. We fix the size of parameter space to C , i.e., |R| ×
|K |×|W |×|S| = 10×10×10×10. Except for the specified
parameter, other parameters vary in the same range with last
experiment by default.

1) VARYING THE SCALE OF PARAMETER r
First, we evaluate the impact of the scale of distance threshold
r in parameter space on our framework. We vary r from 50 to
200 for case C1, 50 to 1K for case C2, and 50 to 2K for case
C3 on Gowalla and GeoLife data (4K to 4.5K for case C1, 4K
to 5K for case C2, and 4K to 6K for case C3 on YearMSD
data).

FIGURE 7. Varying the scale of distance parameter r . (a) CPU. (b) Memory.

Figure 7 shows the results of three cases on the three
datasets. As shown in Figure 7(a), the CPU time utilized
by our PSOD slightly increases with the scale of parameter r
in the parameter space. This is expected. In parameter space,
if we only increase the scale of parameter r , for the majority
inliers in C1, same computation time would be used in C2
and C3, because our PSOD also only acquires the minimum
neighbor information to verify the s-inlier or u-inlier status
for each point. For the outliers in C1, more neighbors may
be explored in the larger distance range until to determine
their status. However, the general ratio of outliers in the real
scenario is very small. Therefore, the impact of the scale of
parameter r on the CPU time is small.
From Figure 7(a), PSOD nearly keeps stable in term of

memory consumption. As explained above, the inliers nearly
store the same neighbor information in their neighbor table
in the three cases. Only very few outliers in the case C1 need
more memory to record their newly collected neighbors in the
cases C2 and C3.

2) VARYING THE SCALE OF PARAMETER k
In this experiment, we vary the scale of neighbor parameter k
in parameter space to analyze the performance of our PSOD.
Specifically, we randomly select ten values of k from 10 to
50 for case C1, 10 to 200 for case C2, and 10 to 500 for case
C3 on three datasets.
As shown in Figure 8, the CPU time of our PSOD linearly

increases as the scale of parameter k in parameter space
increases. This is because PSOD needs to explore more
neighbors for each data point to prove their outlier statuses
as the requirements of neighbor count k increase. However,
our PSOD framework uses a neighbor table that records all
explored neighbors in different distance intervals and dif-
ferent minimum slides, thus it never repeatedly verify the
same potential neighbor points for each data point. Namely,
PSOD at most performs a complete range query for deter-
mining the status of a data point for all distance thresholds in
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parameter space. Hence the utilized CPU time for our PSOD
would not increase sharply with respective to the scale of
parameter k .

As expected, the memory consumed by our PSOD also
increase slightly as shown in Figure 8. The reason is that
PSOD also needsmorememory to storemore explored neigh-
bor information to meet the requirement of neighbor count k
for each query in the cases C2 and C3 compared to case C1.

FIGURE 8. Varying the scale of neighbor parameter k . (a) CPU.
(b) Memory.

3) VARYING THE SCALE OF PARAMETER W
Next, we explore the impact of window-specific parameters
on the performance of our proposed PSOD framework. In par-
ticular, window size w in parameter space is varied from
10K to 20K for case C1, 10K to 50K for case C2, and 10K
to 100K for case C3 on three datasets. Figure 9 depicts the
performance of PSOD framework in terms of CPU time and
memory consumptionwith respect to the scale of window size
w in parameter space.

We observe that PSOD keeps linear increasing in term of
CPU cost as the scale of window size w increases. This is
because as the window size w increases, the number of data
points contained in the window increases for each query. That
is, the number of points that need to be processed increases
for each query. In addition, the search space that PSOD needs
to verify the potential neighbors for each data point also
increases in a larger scale sliding widow. However, because
of theminimum neighbor searching and designed zone-stored
neighbor table, PSODwill terminate early neighbor searching
once the s-inlier or u-inlier status of data point is determined,
which significantly saves lots of CPU cost.

Since the number of data points greatly increases in a
larger scale sliding window, our framework needs to use more
memory to store them and their neighbor tables. Hence the
memory consumed by PSOD increases as the scale of window
size w grows in parameter space as show in Figure 9(b).

4) VARYING THE SCALE OF PARAMETER s
Finally, we test the performance of our proposed PSOD
framework with respective to the scale of slide size s in
parameter space. We vary slide size s from 100 to 1K for case
C1, 100 to 5K for case C2, and 100 to 10K for case C3 on
three datasets.

Figure 10 shows the results of CPU time and memory
consumed by PSOD with respect to the scale of slide size s in

FIGURE 9. Varying the scale of window size parameter w . (a) CPU.
(b) Memory.

FIGURE 10. Varying the scale of slide size parameter s. (a) CPU.
(b) Memory.

parameter space. As we can see, both CPU time and memory
consumption of our PSOD decrease as the scale of slide sizes
in parameter space increase. This is because we treat the
neighbor points of each point in the same slide as a part of
Nafter , as the slide size increases, more data points can be
quickly proved as s-inliers in the slides where they are. Hence
those queries for these s-inliers would be eliminated in the
subsequent windows. In addition, when the window sizes are
fixed in parameter space, larger slide size reduces the number
of slides on data streams, which also reduces the total number
of queries in the streaming data.

For memory consumption, we store the neighbor informa-
tion for each data point in different minimum slides, thus the
total number of active slides for each point decreases as the
scale of slide size increases. Accordingly, the memory used
by our PSOD is reduced.

In summary, our PSOD shows excellent scalability with
respective to the size of parameter space as well as the scale
of pattern and window parameters in parameter space.

VI. CONCLUSION
In this work, we present a solution, called PSOD, for sup-
porting multiple distance-based outlier detection queries in
parameter space with both pattern and window parameters
over data streams. PSOD uses an ingenious neighbor table
that records the neighbors for each point in different distance
intervals and different slides, which enables us to maximumly
reuse the already acquired neighbor information across entire
parameter space. Moreover, PSOD successfully transforms
the query group in four-dimensional parameter space into a
periodic query group in three-dimensional parameter space.
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Extensive experiments on three real datasets demonstrate that
our PSOD outperforms the state-of-the-art method by more
than 100 folds in CPU time, while only using 20% more
memory space.
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