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Abstract. Representation leaning on networks aims to embed networks
into a low-dimensional vector space, which is useful in many tasks such
as node classification, network clustering, link prediction and recommen-
dation. In reality, most real-life networks constantly evolve over time
with various kinds of changes to the network structure, e.g., creation
and deletion of edges. However, existing network embedding methods
learn the representation vectors for nodes in a static manner, which are
not suitable for dynamic network embedding. In this paper, we pro-
pose a dynamic network embedding approach for large-scale networks.
The method incrementally updates the embeddings by considering the
changes of the network structures and is able to dynamically learn the
embedding for networks with millions of nodes within a few seconds.
Extensive experimental results on three real large-scale networks demon-
strate the efficiency and effectiveness of our proposed methods.

1 Introduction

Networks are ubiquitous in our daily life, such as social networks, communication
networks, biological networks, academic networks and the World Wild Web. Peo-
ple have studied many important data mining problems on networks, including
network visualization [21], node classification [3], community detection [12], link
prediction [20] and recommendation [37]. A typical way to tackle these problems
is based on hand-crafted features of networks, which requires a lot of manual
efforts on feature engineering and usually is constricted to a specific problem.
Network embedding techniques provide an alternative way to learn features auto-
matically. The basic idea of network embedding is to learn the low-dimensional
representation of nodes by preserving the network structure. Following the initial
ideas in network embedding [2,10,31], recent techniques such as DeepWalk [25]
and node2vec [13] learn node representation using random walks sampled in the
network. A limitation of such random walk based method is the high computa-
tional cost. To scale up to large-scale network with millions of nodes, LINE [28]

c© Springer International Publishing AG, part of Springer Nature 2018
J. Pei et al. (Eds.): DASFAA 2018, LNCS 10828, pp. 526–541, 2018.
https://doi.org/10.1007/978-3-319-91458-9_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91458-9_32&domain=pdf


Representation Learning for Large-Scale Dynamic Networks 527

utilizes edge sampling in the network to learn representations that preserve the
first-order and the second-order proximities.

However, existing studies mostly focus on static networks. In the real world,
the networks could vary over time with creation and deletion of edges [1]. For
instance, in social networks, users may add a user as a new friend or unfriend a
user who used to be a friend. In co-author network, people build new co-author
relationships over time. In co-location graph where edges as two people being
within certain distance, people gather and depart dynamically.

Though dynamic networks widely exist, the studies of representation learn-
ing on dynamic networks are limited. A naive method is to re-run the embed-
ding methods on the whole network when the network is updated. However,
learning network representation is costly, especially for the large-scale network.
Re-computing on the whole network with every batch of updates may not be
feasible in the real-world setting. Naturally, we ask the question, “can we learn
network embedding dynamically in a more efficient way?”

To address these challenges, in this paper, we propose an efficient embed-
ding method, DLNE, for dynamic network embedding. Our intuition is that, we
update previous embeddings by considering the changes of the networks, i.e.,
newly added (or deleted) edges. The method will be much more efficient com-
pared with re-computing on the whole network because the changes in a large
network could be relatively small. More specifically, our proposed method is
built based on the LINE method [28], which has been shown to be significantly
faster than other embedding methods. We use LINE to obtain the initial repre-
sentations on the current network. With the new batch of updates on the net-
work structure, we update the representations of corresponding affected nodes
by optimizing the loss function defined based on first-order and second-order
proximities.

Our method is validated on three large-scale real world networks, including
social networks and citation networks. We conduct extensive experiments to
verify the effectiveness and efficiency of our method by comparing with state-
of-the-art methods via a multi-label classification task. The results suggest that
DLNE is able to incrementally update the representations for nodes on a dynamic
network with millions of edges in time scale of seconds.

To summarize, the major contributions of this paper are as follows:

– We formally study the problem of dynamic large-scale network embedding.
To the best of our knowledge, we are the first method to efficiently learn
embeddings dynamically on a large-scale network.

– We propose a novel method DLNE to solve the problem of dynamic large-
scale network embedding. We design the loss function to learn the updated
representations by considering the changes of the network structure.

– We conduct extensive evaluations through a multi-label classification task on
three real-world networks. Experimental results demonstrate the effectiveness
and efficiency of our proposed method.

The rest of paper is organized as follows. Related work is discussed in Sect. 2.
Then, we formally state our problem definition in Sect. 3 and the proposed online
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embedding method is described in Sect. 4. Experimental results are reported in
Sect. 5. Finally, we conclude the paper in Sect. 6.

2 Related Work

Dimension reduction or low-dimension graph representation learning have been
studied extensively in the literature. Many methods are proposed in various
fields, such as multidimensional scaling [10], IsoMap [31], LLE [27], and Lapla-
cian Eigenmaps [2]. Chen et al. [8] propose the network embedding for directed
network. They use Markov random walks to measure the locality link structure
of directed networks. Following Chen’s work and motivated by the success of
word2vec technique [22,23], Perozzi et al. [25] propose DeepWalk for social net-
work embedding. They use a truncated random walk to construct the context
of a vertex, then they employ word2vec to learn latent representations for all
vertices in social network. Grover and Leskovec [13] further propose node2vec,
which improve DeepWalk by enabling a controlled random walk. Tang et al. [28]
propose LINE to learn embedding for both undirected and directed large-scale
information networks with unweighted or weighted edges, which is particularly
designed to preserve both the first-order and second-order proximities. Cao
et al. [4] extend LINE to support high-order graph representation learning by
capturing different k-step local relational information. Chen and Wang [9] pro-
pose an heterogeneous information network embedding that considers local and
global semantic among multi-typed entities. In addition, other deep learning
based approaches [5,32] are proposed to enhance the network representation.

Another line of work aims to learn the graph embedding while consider-
ing additional information other than graph connectivity. For example, Yang
et al. [36] propose a matrix factorization based method to learn network rep-
resentations that incorporates text feature into network structure. Chen et al.
[7] incorporate group information to learn network embedding. Most recently,
Huang et al. [14] propose LANE framework for learning representation vectors
for attributed networks. They aim to learn better feature representation incor-
porating label information into network embedding while preserving their cor-
relations. Xu et al. [35] propose Embedding of Embedding (EOE) framework
for coupled heterogeneous networks. They incorporate a harmonious embed-
ding matrix to further embed the embeddings that only encode intra-network
edges. Wang et al. [34] propose a Modularized Nonnegative Matrix Factorization
(MNMF) model to incorporate the community structure into network embed-
ding. Network embedding techniques have attracted more and more attentions
in network science community. Li et al. [17] study on how to leverage node
order information and annotation data to improve network embedding in a sem-
supervised manner. However, all the approaches mentioned so far only handle
static networks. They are not applicable to learn representations on dynamic
evolving information networks.

In practice, many real world networks (e.g., social networks and co-occurrence
networks) are dynamic networks whose edges and vertices change over time. In
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dynamic network analysis, Ning et al. [24] propose an incremental spectral clus-
tering for evolving networks by updating the eigenvalue system continuously.
Chen and Tong [6] propose an online approach to track the eigen-functions of
adjacency matrix for a dynamic network. Li et al. [19] propose a unsupervised
feature selection for dynamic networks, which leverages the temporal evolution
property of dynamic networks to update the feature results incrementally. How-
ever, such work focus on online analysis of network structure change in dynamic
networks, while our work aims to online representation learning for dynamic
evolving networks.

Wang and Li [33] propose a graph embedding method to learn the temporal
dynamics of urban region graph. Although they study a dynamic temporal graph,
the embedding learning is not conducted in an incremental manner. Instead, they
construct the whole evolving network, and learn different embedding for regions
at different timestamp simultaneously. In our method, the embedding vectors of
networks are updated continuously and efficiently, rather than re-learned from
scratch.

Most recently, Li et al. [18] propose dynamic network embedding for
attributed network. They first use an off-line Laplacian Eigenmaps-based model
to learn graph embeddings. Then they update the embedding by updating the
top eigenvectors and eigenvalues according to the updated graph matrix. Jian
et al. [15] propose an online network embedding algorithm for node classifica-
tion on streaming network. They use same Laplacian Eigenmaps-based model to
update embedding representations for newly arrived nodes. However, the graph
factorization-based method only considers the one-hop relationships in adjacency
matrix, and it is difficult to scale because of the use of laplacian eigenmaps.
Meanwhile, our proposed method considers both local and global network struc-
ture and is able to handle large-scale dynamic networks with millions of vertices
and edges in an online fashion.

3 Problem Definition

In this section, we first introduce some concepts used in this paper. Then we
define the problem of dynamic network embedding.

Definition 1 (Network). A network is denoted as G = (V,E), where V =
{v1, v2, . . . , vn} is the set of vertices, and E = {eij}, where i, j ∈ {1, 2, · · · , n},
is the set of edges. Each edge eij connects two vertices vi and vj, and the weight
of this edge is wij.

In practice, networks can be categorized as unweighted (e.g., social networks)
or weighted (e.g., word co-occurrence network) networks. And networks can also
be directed (e.g., citation networks) or undirected (e.g., co-author networks)
networks. In unweighted network, wij = 1 if eij exists, while wij takes continuous
values in weighted network. In undirected network eij = eji with the same
weight, while eij �= eji and wij �= wji in a directed network.
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The structure of networks often evolves over time by adding or deleting edges
and vertices. Without loss of generaliy, we partition the time dimension into
discrete timestamps t = {1, 2, · · · , T} with fixed interval τ . We use Gt to denote
the dynamic evolving network at time t. Correspondingly, the set of edges and
vertices are denoted as Et and Vt.

For simplicity, we track network updates by the addition and deletion of
edges, because the addition (deletion) of vertex could be implemented by the
addition (deletion) of edges. More specifically, one vertex is deleted when all
edges connecting to this vertex are deleted. Also, if a vertex is added to into
current network, at least one edge should be created to connect the new vertex
with an existing vertex. To this end, within each time interval τ , we use Ea and
Ed to denote the set of edges that are added and deleted, respectively.

Network embedding aims to represent each vertex of the networks as a low
dimensional vector, and vertices should have similar embedding vectors if they
are connected. To achieve such an embedding result, the network structures must
be preserved. Next, we formally define the first-order proximity and the second-
order proximity to preserve the local and global network structure, respectively.

Definition 2 (First-Order Proximity). The first-order proximity in a net-
work is defined as the local pairwise proximity between two directly connected
vertices. For each pair of vertices u and v, if there exists euv ∈ E, the weight
wuv indicates the first-order proximity between them. Otherwise, the first-order
proximity between u and v is 0.

Definition 3 (Second-Order Proximity). The second-order proximity
between a pair of vertices is defined to account for their neighborhood struc-
ture. Let Nu = {vu1, vu2, vu3, · · · } denote the set of direct neighbors of vertex u.
The second-order proximity between u and v is determined by the similarity of
two sets Nu and Nv.

In this paper, we aim to learn embedding vectors to preserve the first-order
proximity and the second-order proximity among vertices, meanwhile the learned
embeddings could be updated to account for the temporal dynamics of networks.
The formal definition of dynamic network embedding problem is given as follows:

Problem 1 (Dynamic Network Embedding). Given a dynamic network
Gt, the current embeddings Φt of all the vertices Vt in Gt, the problem of dynamic
network embedding aims to efficiently calculate the embeddings Φt+1 for all ver-
tices in Gt+1 from Φt. Φ : V → R

d can also be regarded as the mapping function
from vertices to d-dimension vector representations.

4 DLNE: Dynamic Large-Scale Network Embedding

In this section, we provide details for our proposed Dynamic Large-scale Network
Embedding (DLNE). First, we present the technical details on how to update
the embeddings according to the addition and deletion edge sets Ea and Ed.
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More specifically, we account for first-order and second-order proximity infor-
mation while update the embedding learning. Finally, we give the algorithm and
optimization steps.

Fig. 1. An example of evolving network: solid red edges denote the added edges Ea,
ane dashed grey edges denote the deleted edges Ed. (Color figure online)

4.1 Overall Framework

In Fig. 1 we show an example of evolving network, where the network evolves
from left to the right. In the given time window, vertex v5 is deleted, which
is equivalent to delete edges {e15, e25, e35, e45}. Similarly, the addition of v7 is
equivalent to addition of {e37, e47, e67}. We use Φl to denote the embedding
function for the graph on the left. The goal of our problem is to calculate Φr

with the addition edge set Ea and deletion edge set Ed.
Intuitively, the edge embedding is used to account for the local network

structure information. Given each edge within the updated edge sets Ea and Ed,
the network structure only changes locally. Driven by this intuition, we propose
to update the vertex embedding locally. Namely, for each edge eij ∈ Ea ∪ Ed,
we only update the embedding vecter Φ(v), where v is in the local structure of
vi and vj . The problem becomes how to define local structure, and update the
embeddings accordingly. In this paper, we define the local structure with the
first-order and the second-order proximity. In the following sections, we give the
technical details on how to update the embedding to account for the first-order
and the second-order proximity, respectively.

DLNE with First-Order Proximity. First, we consider the first-order prox-
imity when there is an edge added into current network. For each edge eij ∈ Ea,
the probability of the connection between vertex vi and vj is formulated as
follows:

p1(vi, vj) = σ(Φ(vj)T · Φ(vi)), (1)

where σ(x) = 1/(1 + exp(−x)) is the sigmoid function and Φ(vi) ∈ R
d is the

embedded vector of vertex vi in the current timestamp. Namely, the probability
of vj being a neighbor of vertex vi is correlated to the similarity of their potential
representation vectors.
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However, the influence of added and deleted edge on the corresponded ver-
tices is different. For each newly added edge eij ∈ Ea, in order to maintain
the influence of both connected and non-connected vertices, we utilize nega-
tive edge sampling from the noise distribution Pn(V ) to model the influence of
non-connected vertices and then the loss function is:

Lfa(vi, vj) = − log σ(Φ(vj)T · Φ(vi)) −
k∑

x=1

Evx∼Pn(V )

[
log σ(−Φ(vx)T · Φ(vi))

]
,

(2)

where k is the number of sampled non-connected edges. Based on the loss func-
tion, we maximize the probability of vj being a neighbor of vertex vi and min-
imize the probability of each negative vertex vx being a neighbor of vertex vi.
We set Pn(V ) ∝ d

3/4
v as suggested in [23], where dv is the degree of vertex v.

For each deleted edge ekh ∈ Ed, we use the negative edge sampling shown as
Eq. (3) to minimize the probability of vertex vk being a neighbor of vh, which
reduces the similarity between vk and vh in the latent representation.

Lfd(vk, vh) = −log(1 − σ(Φ(vk)T · Φ(vh))). (3)

Then, in order to update the embedding vectors of all vertices which correspond
to the created and deleted edges, we maximize the joint probability over all
evolved vertices. The loss function for preserving the first-order proximity is
formulated as follows:

L1 =
∑

eij∈Ea

wijLfa(vi, vj) +
∑

ekh∈Ed

wkh Lfd(vk, vh), (4)

where wij is the weight of edge eij , representing the importance of edge eij in
constructing the embeddings of vi and vj .

DLNE with Second-Order Proximity. Second, the second-order proximity
is determined by the similarity of neighbors between two vertices. The intuition
is that two vertices are more similar if they share more common neighbors. The
second-order proximity has been demonstrated to be a good metric to measure
the similarity of a pair of vertices, even if they are not connected [20]. In this
work, we employ the conditional probability of “context” vj linked with vertex
vi [28]:

p2(vj |vi) =
exp(Ψ(vj)T · Φ(vi))

∑|V |
k=1 exp(Ψ(vk)T · Φ(vi))

, (5)

where |V | is the number of neighbors of vi, and Ψ(vj) ∈ R
d is an auxiliary vector

of vj that needs to be learned when vj is treated as “context”. We can see that
p2(·|vi) defines a conditional distribution of vertex vi among its contexts.

Similar to the first-order proximity, the influence of created and deleted edges
are different. For each added edge eij ∈ Ea, we also use the negative edge



Representation Learning for Large-Scale Dynamic Networks 533

sampling method to model the influence of the vertices that are not in the
context set of vi, and then the loss function is defined as:

Lsa(vi, vj) = −logσ(Ψ(vj)T · Φ(vi)) −
k∑

x=1

Evx∼Pn(V )

[
logσ(−Ψ(vx)T · Φ(vi))

]
.

(6)

The loss function Lsa(vi, vj) is to maximize the log-probability of observing the
context of each vertex vi that connect with the created edges.

For each deleted edge ekh ∈ Ed, one negative edge sampling process is used
to model the influence of edge ekh and then the loss function Lsd is defined as:

Lsd(vk, vh) = −log(1 − σ(Ψ(vh)T · Φ(vk))). (7)

By combining the influence of each added and deleted edge, the loss function for
preserving the second-order proximity is defined as:

L2 =
∑

eij∈Ea

wijLsa(vi, vj) +
∑

ekh∈Ed

wkhLsd(vk, vh). (8)

The representation Φ and Ψ can be learned by training the empirical distri-
bution p2(vj |vi) = wij∑

k∈Ni
wik

that can be observed in the network, where the

denominator is the out-degree of vertex vi.
Finally, we jointly consider the influence of the first-order proximity and the

second-proximity, and the joint loss function is defined as follows:

L = L1 + L2. (9)

4.2 Algorithm and Optimization

The Algorithm 1 is the pseudo-code for our DLNE that preserves both first-order
and second-order proximities. We first perform edge sampling in the set of added
edges Ea to generate the training vertices that are associated with the sampled
edges. In particular, we use negative sampling to implement our loss function
(Eqs. (4) and (8)) for each sampled new edge. Then, we process the deleted
edges by edge sampling in Ed. The sampled deleted edges is addressed in form
of a negative edge in consistent with Eq. (3) for the first-order proximity and
Eq. (7) for the second-order proximity. Note that AddedEdgeSample(Ea) and
DeletedEdgeSample(Ed) only perform one edge sampling from the set of added
edges Ea and the set of deleted edges Ed, respectively. NEGk(vi) represents
the set of k sampled negative vertices w.r.t vi. To optimize the loss function,
we employ the asynchronous stochastic gradient algorithm (ASGD) [26]. The
learning rate η for ASGD is initially set to 0.025 and then decreased linearly
with the number of vertices that have been trained.



534 Y. Yu et al.

Algorithm 1. DLNE: Dynamic Large-scale Network Embedding
Input: Dynamic network Gt; embeddings Φt and auxiliary vectors Ψt of Gt; network

updates Ea and Ed; embedding dimension d; the number of edge sampling sn; the
number of negative sampling k; learning rate η.

Output: Updated embedding vectors Φt+1 of Gt+1 .
1: nums ← 0;
2: while (nums < sn) do
3: eij ← AddedEdgeSample(Ea);
4: for all v ∈ vj ∪ NEGk(vi) do
5: Φ(v) ← Φ(v) − η ∂L1

∂Φ(v)
;

6: Ψ(v) ← Ψ(v) − η ∂L2
∂Ψ(v)

;
7: end for
8: Φ(vi) = Φ(vi) − η( ∂L1

∂Φ(vi)
+ ∂L2

∂Φ(vi)
);

9: ekh ← DeletedEdgeSample(Ed);
10: Φ(vh) ← Φ(vh) − η ∂L1

∂Φ(vh)
;

11: Φ(vk) ← Φ(vk) − η( ∂L1
∂Φ(vk)

+ ∂L2
∂Φ(vk)

);

12: Ψ(vh) ← Ψ(vh) − η ∂L2
∂Ψ(vh)

;
13: nums + +;
14: end while

The gradients in Algorithm1 for edge eij ∈ Ea are calculated as follows:

∂L1

∂Φ(v)
=

{−wij(σ(−Φ(v)TΦ(vi)))Φ(vi) v = vj
wij(σ(Φ(v)TΦ(vi)))Φ(vi) v ∈ NEGk(vi)

∂L1

∂Φ(vi)
= −wij(σ(−Φ(vj)TΦ(vi)))Φ(vj) + wij

k∑

x=1

(σ(Φ(vx)TΦ(vi)))Φ(vx)

∂L2

∂Ψ(v)
=

{−wij(σ(−Ψ(v)TΦ(vi)))Φ(vi) v = vj
wij(σ(Ψ(v)TΦ(vi)))Φ(vi) v ∈ NEGk(vi)

∂L2

∂Φ(vi)
= −wij(σ(−Ψ(vj)TΦ(vi)))Ψ(vj) + wij

k∑

x=1

(σ(Ψ(vx)TΦ(vi)))Ψ(vx)

The gradient for edge ekh ∈ Ed are calculated as follows:

∂L1

∂Φ(vh)
= wkh(σ(Φ(vh)TΦ(vk)))Φ(vk)

∂L1

∂Φ(vk)
= wkh(σ(Φ(vh)TΦ(vk)))Φ(vh)

∂L2

∂Ψ(vh)
= wkh(σ(Ψ(vh)TΦ(vk)))Φ(vk)

∂L2

∂Ψ(vk)
= wkh(σ(Ψ(vh)TΦ(vk)))Φ(vh)

We use the same strategy as proposed in [28] to sample edges with probabil-
ities in proportional to the original edge weights in the created or deleted slides.
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Intuitively, the edges with large weight would be sampled more times. In this
way, the embedding method can support the weighted graph. Specifically, we
use the alias table method [16] to draw an edge sample, which only takes O(1)
time. Therefore, we are able to efficiently update the embedding vectors for each
vertex in the current window.

It is worthy to mention that if the previous embedding Φt and Ψt are not
available, our method can still apply. In this case, we treat previous graph Gt

as an empty graph, and randomly initialize Φ and Ψ . By adding all edges in Ea

and runs Algorithm 1, we are able to learn the dynamic network embeddings.

5 Experiments

5.1 Data Description

We use three real world networks to evaluate our method:

– YouTube1 [30] is a video-sharing website on which users can upload, view,
and share videos. Both the user social network and group membership infor-
mation are included in the dataset. The group is defined by common video
genres (e.g. anime and wresting) that the user followed. We use such group
information as user labels.

– DBLP is an author-paper network2 [29]. We use the DBLP dataset to con-
struct two citation networks, which are DBLP (Paper) and DBLP (Author).
DBLP (Paper) is a directed network, which represents the citation relation-
ships among papers. As a directed weighted network, DBLP (Author) rep-
resents the citation relationships among authors, where edge weight is the
number of cited papers. The labels of DBLP (Author) and DBLP (Paper)
are the research areas of the published papers and authors. We choose 10
research areas in the field of computer science, including AI, computer net-
works, information security, high-performance computing, software engineer-
ing, computer graphics and multimedia, theoretical computer science, human
computer interaction and ubiquitous computing, interdisciplinary studies,
and database, data mining and information retrieval.

The detailed statistics of these networks are summarized in Table 1. Each
network contains at least half million vertices and millions of edges.

We random assign timestamp to edges in YouTuBe dataset due to lack of
time information. We rank the edges in the DBLP datasets by the publish time.
Without loss of generality, we add the same number of edges Ea and delete the
same number of Ed within each time interval.

1 Available at http://socialcomputing.asu.edu/pages/datasets.
2 Available at https://aminer.org/citation.

http://socialcomputing.asu.edu/pages/datasets
https://aminer.org/citation
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Table 1. Statistics of the information networks

Name YouTube DBLP (Paper) DBLP (Author)

|V | 1,138,499 781,109 524,061

|E| 2,990,443 4,191,677 20,580,238

Average degree 5.25 10.73 78.54

# labels 47 10 10

# train 31,703 61,257 117,934

5.2 Baselines and Evaluation Metrics

We compare our method with the following baselines:

– DeepWalk. This approach learns low-dimensional feature representations for
each vertex in the social networks by simulating truncated random walks [25].

– LINE. LINE [28] is an approach for large-scale information network embed-
ding. LINE preserves the first-order (LINE(1st)) and the second-order
(LINE(2nd)) proximities and supports both weighted and directed networks.

– node2vec. node2vec [13] extends DeepWalk by proposing a flexible neighbor
selection method for vertices instead of simple random walk.

Note that we did not compare with DANE [18], because DANE employs both
network adjacency matrix and node attribute matrix. While it is possible to
apply DANE only on network matrix, called DANE-N, it requires to calculate
the eigenvalues and thus cannot be applied in the large-scale networks with
millions of vertices used in the paper.

To facilitate the comparison between DLNE and baselines, we perform a
supervised task – multi-label classification on the embedding results. Specifically,
we randomly sample a portion of the labeled vertices as training data, and the
rest for testing. We employ a one-vs-rest logistic regression classifier implemented
by LibLinear3 [11]. We repeat this process 10 times, and report the average
performance results in terms of Micro-F1 and Macro-F1, which are defined as
follows:

Micro − F1 =
2 × Precision × Recall

Precision + Recall
, (10)

Macro − F1 =
∑D

i=1 F1(i)
D

, (11)

where D is the number of categories and F1(i) is the Micro-F1 in the ith cat-
egory. The Precision and Recall are calculated on all categories. We evaluate
the efficiency of our method on a machine with CoreTM i7-6700 (3.4 GHz) CPU
and 16 GB memory. In this experiment, the dimensional d of embedding is set as
128. For each baseline (Deepwalk, LINE and node2vec), we follow the parameter
settings used in their original papers.

3 Available at http://www.csie.ntu.edu.tw/∼cjlin/liblinear/.

http://www.csie.ntu.edu.tw/~{}cjlin/liblinear/
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Table 2. Performance of algorithms w.r.t. |Ea|
|E| on incremental networks that only

consider newly added edges

YouTube DBLP(Paper) DBLP(Author)

Algorithm
|Ea|
|E| Mic-F1 Mac-F1 Time(s) Mic-F1 Mac-F1 Time(s) Mic-F1 Mac-F1 Time(s)

DeepWalk 1 44.50 35.46 24653 54.41 45.19 16125 61.55 56.72 11997

node2vec 1 44.66 35.94 27756 57.59 46.18 19524 61.91 57.23 15354

LINE 1 45.11 36.21 682 61.16 48.62 340 63.33 59.18 688

DLNE 0.01 41.07 33.07 3.5 52.42 39.23 3.9 56.42 52.89 5.5

0.05 42.53 34.65 15.5 57.31 45.83 18.5 59.94 55.95 29

0.1 43.85 35.76 27 60.11 47.73 35 62.08 57.83 61

0.5 44.58 36.17 125 61.03 48.14 144 62.97 58.76 355

1 45.35 36.53 255 61.12 48.57 335 63.22 59.13 680

Note: Mic-F1 and Mac-F1 mean Micro-F1 and Macro-F1 scores, and Time(s) denotes runtime (in

seconds) of each update. |Ea| is the number of newly added edges at each timestamp.

5.3 Performance Comparison

Comparison on Incremental Networks. We first evaluate the effectiveness
and efficiency of DLNE on multi-label classification compared with baselines in
an incremental environment. Namely, we assume edges are only added into and
never deleted from the network.

We simulate different evolving networks by changing the value of |Ea|/|E|
from 0.01 to 1, where |Ea| is the number of newly added edges with each
time interval and |E| is the number of edges in the dataset. Semantically,
|Ea|/|E| defines the evolving speed of a dynamic network. For example, when
|Ea|/|E| = 0.01, DLNE adds 1% edges of whole network at each timestamp.
For the compared baselines, the representation is learned based on the whole
network (i.e., |Ea|/|E| = 1). Additionally, since the first-order proximity is not
applicable on directed graph [28], the evaluation of DLNE on DBLP(Author) and
DBLP(Paper) only consider the second-order proximity. On YouTuBe dataset
DLNE is able to consider both the first-order and the second-order proximities,
and thus LINE(1st+2nd) is compared on YouTuBe dataset only.

We evaluate the final embedding of the dynamic graph with a multi-class
classification task. In this task, we choose 20% of the labeled vertices as training,
and report the micro-F1 and macro-F1 on the testing data in Table 2. We report
the running time for different embedding methods as well.

It is clear that DLNE achieves similar performance compared with other
methods, while DLNE is 10–25 times faster than the best baseline. These obser-
vations are consistent on all three datasets. Learning the representation on
the entire network should achieve the best performance, since more informa-
tion could be captured, although at the cost of longer running time. We also
observe that as |Ea|/|E| increases, the DLNE achieves better prediction perfor-
mance with longer running time. The reason is that incrementally updating a
small portion of newly added edges saves time but loses some information in the
process.
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Additionally, on each network, we can see that DLNE and LINE run faster
than DeepWalk and node2vec. This is because the latter two baselines need to
sample and train a huge number of random walks, which is computationally
expensive. The superior performance of DLNE and LINE also indicates that the
first-order and second-order proximities effectively captures the local network
structure.

Furthermore, on YouTube dataset, although both DLNE and Line consider
the first-order and second-order proximities, DLNE achieves better Micro-F1
and Macro-F1 than LINE. The potential reason is that LINE learns the embed-
ding of each vertex by preserving the first-order and second-order proximities
separately and then concatenate them. Meanwhile, DLNE accounts for the first-
order and second-order proximities by optimizing the joint loss function, which
automatically balances the effect of these two proximities.

Table 3. Performance of algorithms on dynamic networks that consider both newly
added and deleted edges

YouTube DBLP(Paper) DBLP(Author)

|E0|
|E| Method Mic-F1 Mac-F1 Time(s) Mic-F1 Mac-F1 Time(s) Mic-F1 Mac-F1 Time(s)

0.9 Deepwalk 41.75 33.51 21687 53.32 44.41 17162 58.41 55.68 14497

node2vec 41.85 33.85 23980 57.26 45.89 18771 58.26 55.54 17816

LINE 42.43 35.09 640 60.16 47.72 340 57.95 54.27 688

DLNE 42.91 35.37 25 60.79 48.01 33 59.35 56.38 58

0.7 Deepwalk 38.71 28.04 15143 45.68 30.49 13645 54.52 50.37 12425

node2vec 40.15 29.34 16250 45.86 31.56 14350 54.94 50.73 14265

LINE 41.97 32.76 568 52.66 34.56 274 54.82 50.28 532

DLNE 42.70 33.85 22 53.53 36.74 34 56.45 52.26 50

0.5 Deepwalk 37.36 27.39 13254 43.62 26.19 12816 52.56 48.36 10797

node2vec 39.04 28.12 14650 44.94 26.91 13010 53.43 48.45 11971

LINE 40.12 28.47 410 51.74 32.79 193 51.97 46.62 398

DLNE 42.49 32.08 20 52.85 34.96 32 55.06 50.20 53

Note: Mic-F1 and Mac-F1 mean Micro-F1 and Macro-F1 scores, and Time(s) denotes running time

(in seconds).

Comparison on Dynamic Networks. Next, we evaluate DLNE on a dynamic
network, where edges are added and deleted simultaneously. In this experiment,
we vary the edge size |E0| of the initial graph G0 from 0.5|E| to 0.9|E|, and
the numbers of added edges and deleted edges at each timestamp are fixed as
|Ea| = |Ed| = 0.1|E|. Similar to last experiment, we compare the DLNE output
after the last timestamp T with the baseline embeddings of the last snapshot
graph GT .

We report the comparison results in Table 3. The DLNE consistently runs
about 6–25 times faster than LINE, because the incremental updating embed-
dings are time efficient. We also see that DLNE achieves better classification
performance than all baselines on both micro-F1 and macro-F1. The reason is
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Fig. 2. Performance w.r.t #threads.

that DLNE updates the embeddings of vertices over evolving networks, where the
historical network information are also captured. Other baselines only capture
the network structure of GT and overlook the temporal dependency.

Furthermore, we compare the results under different window sizes. Table 3
shows that our proposed method DLNE outperforms other methods consistently
with different window size, which demonstrates that our method is robust. In par-
ticular, we can see that the performance gap of DLNE over LINE increases (e.g.
Macro-F1 gaps are 0.8%, 3.3%, 12.7% on YouTuBe when |E0|/|E| = 0.9, 0.7, 0.5),
when the size of initial graph G0 decreases. Smaller initial graph size means the
networks evolves more rounds. When the network evolves more rounds, there are
more historical information, which means stronger temporal dependency in the
dynamic evolving network. Our DLNE captures more information in evolving
networks since it updates the representation incrementally, while other meth-
ods only learn the representation on the snapshot. This also demonstrates the
superiority of our DLNE since most real-world networks continuously evolve.

5.4 Parallel Computing

Finally, we evaluate the scalability of our method by running DLNE with dif-
ferent number of threads. The embedding learning parameters are exactly the
same as previous experiment. Figure 2 shows the performance comparison w.r.t
the number of threads on three datasets. We can see that the speed up of DLNE
is stable with the increase of thread number. At the same time, increasing the
number of threads does not affect the classification performance, as shown in
Fig. 2(b). In summary, DLNE exhibits strong parallelism potential in handling
large scale network dynamics.

6 Conclusion

This paper proposes an incremental model DLNE to learn the representation
of large-scale dynamic networks. DLNE efficiently update the representation of



540 Y. Yu et al.

network in a dynamic environment. The model preserves the first-order and the
second-order proximities by optimizing the joint loss function. Extensive evalu-
ations on three real-world networks demonstrate the effectiveness and efficiency
of our method. In the future, we plan to explore how to learn the representation
on dynamic networks with the changing of the weights of edges. Besides, it is
interesting to investigate the efficient deep representation learning for dynamic
large-scale networks.
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