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Abstract. Anomaly detection of high-dimensional data is an impor-
tant but yet challenging problem in research and application domains.
Unsupervised techniques typically rely on the density distribution of the
data to detect anomalies, where objects with low density are consid-
ered to be abnormal. The state-of-the-art methods solve this problem
by first applying dimension reduction techniques to the data and then
detecting anomalies in the low dimensional space. However, these meth-
ods suffer from inappropriate density estimation modeling and decoupled
models with inconsistent objectives. In this work, we propose an effec-
tive Anomaly Detection model based on Autoregressive Flow (ADAF).
The key idea is to unify the distribution mapping capability of flow-
based models with the neural density estimation power of autoregressive
models. We design an autoregressive flow-based model to infer the la-
tent variables of input data by minimizing the combination of latent
error and neural density. The neural density of input data can be es-
timated naturally by ADAF, along with the latent variable inference,
rather than through an additional stitched density estimation network.
Unlike stitching decoupled models, ADAF optimizes the same network
parameters simultaneously by balancing latent error and neural density
estimation in a unified training fashion to effectively separate the anoma-
lies out. Experimental results on six public benchmark datasets show
that, ADAF achieves better performance than state-of-the-art anomaly
detection techniques by up to 20% improvement on the standard F1

score.

Keywords: Anomaly detection, flow-based model, neural density esti-
mation, deep learning.

1 INTRODUCTION

Anomaly detection is a fundamental and hence well-studied problem in many
areas, such as cyber-security [26], manufacturing [19], system management [16],
and medicine [7]. Anomaly detection, also known as outlier detection, is to iden-
tify the objects that significantly differ from the majority of objects in the data
space. In general, normal data is large and consistent with certain distribution,
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while abnormal data is small and discrete; therefore anomalies are residing in
low density areas.

Although great progress has been made in anomaly detection in the past few
decades, anomaly detection for high-dimensional data is still a huge challenge.
Due to the dimensional disaster, it is increasingly difficult for traditional density
estimation models to implement density estimation in the original data space.
But unfortunately for a real-world problem, the dimensionality of data could be
very large. To address this challenge, a two-step framework is usually applied into
high-dimensional data [5, 12]. It first performs dimensionality reduction on high-
dimensional data and then detect anomalies in the low-dimensional space. In
recent years, deep learning has achieved great success in anomaly detection [6].
Generative adversarial networks (GANs) [13] and autoencoder [30] and their
variants have been widely used for anomaly detection, such as variational au-
toencoder (VAE) [1], and adversarial autoencoder (AAE) [21]. The core idea of
these methods is to encode input data into a low dimensional representation, and
then decode the low dimensional representation into the original data space by
minimizing the reconstruction error. In this process, the essential features of the
original data are extracted in latent data space through training autoencoder,
without noise and unnecessary features. Several recent studies have applied this
structure into practical problems. For example, DAGMM [31] combines deep au-
toencoder and Gaussian mixture model (GMM) in anomaly detection. However,
the real-world data may not only have high dimensions, but also lack a clear pre-
defined distribution (e.g., GMM). Manual parameter adjustment is also required
in GMM when modeling the density distribution of input data, which has a seri-
ous impact on detection performance. Additionally, all these methods based on
two steps have two main limitations: (1) the loss of information in original data
is caused by the irreversible dimensionality reduction. (2) the decoupled models
of dimensionality reduction and density estimation are easily trapped in local
optima during training.

Recently, several flow-based models are proposed to generate data and have
proved to be successful in many fields, such as Parallel WaveNet [20] for speech
synthesis, and Glow [17] and NICE [9] for image generation. Flow-based models
map original data to a latent space so as to make the transformed data conform
to a factorized distribution, i.e., resulting in independent latent variables. This is
a revertible non-dimensional reduction process, meaning that there is no loss of
information. Compared with GANs and VAEs, which have shown great success
in the field of high-dimensional data anomaly detection, flow-based models have
not received much attention. Nevertheless, flow-based models possess the follow-
ing advantages: First, flow-based models perform exact latent variable inference
and log-likelihood evaluation. VAEs can only infer the approximate value of the
latent variable corresponding to the input data point after encoding. GANs have
no encoder at all to infer the latent variable. In reversible generative models like
Glow [17], exact inference of latent variables can be achieved without approxi-
mation, and the exact log-likelihood of the data also can be optimized, instead
of a lower bound of it. Second, flow-based models are efficient to parallelize for
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both inference and synthesis, such as Glow [17] and RealNVP [10]. Third, there
is significant potential for memory savings. Computing gradients in reversible
neural networks requires a certain amount of memory, instead of linear in their
depth. The fourth is natural neural density estimation. Autoregressive models
and normalizing flows are the main members of the family of neural density
estimation. The neural density of input data can be estimated while inferring
latent variable.

In this paper, we propose an effective Anomaly Detection method based
on Autoregressive Flow-based generative model, called ADAF, which is a deep
learning framework that addresses the aforementioned challenges in anomaly
detection from high-dimensional datasets. ADAF is a neural density estimation
model, which unifies the distribution mapping capacity of flow-based model with
the density estimation power of autoregressive model to provide a neural density
estimation of high-dimensional data for effectively identifying anomalies. First,
we design an autoregressive flow-based model to infer the latent variables of in-
put data by minimizing the combination of latent error and sample neural den-
sity. Second, neural density of input data can be estimated naturally by ADAF,
which is totally different from traditional surrounding point-based density es-
timation. The neural density of a data point is calculated directly along with
the latent variable inference and log-likelihood evaluation, rather than through
an additional stitched density estimation network. Finally, ADAF is an absolute
end-to-end model that optimizes both latent error and neural density estimation
simultaneously for the same network parameters, which avoids getting into local
optima.

We conduct comprehensive experiments on six public benchmark datasets
to valuate the effectiveness of our proposed model. ADAF is significantly better
than state-of-the-art methods by up to 20% improvement in standard F1 score
for anomaly detection. It is worth noting that ADAF achieves better results with
fewer training samples compared to existing methods based on deep learning.

To summarize, we make the following contributions:

– We propose a deep anomaly detection model based on autoregressive flow
for anomaly detection from high-dimensional datasets.

– We propose to combine the latent error and neural density together to opti-
mize latent variable inference and log-likelihood estimation simultaneously
in autoregressive flow model for effectively identifying anomalies.

– We conduct extensive evaluations on six benchmark datasets. Experimental
results demonstrate that our method significantly outperforms state-of-the-
art methods.

2 RELATED WORK

In recent years, varieties of studies focus on anomaly detection in data mining
and machine learning [11]. Distance-based model [18] detects anomalies through
global density criterion. Density-based methods [4, 27] uses local relative density
as anomaly criterion to detect anomalies. Several studies [15, 25] apply KDE
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into density-based local outlier detection to improve the detection accuracy.
However, such methods rely on an appropriate distance metric, which are only
feasible for handling low-dimensional data, but not for anomaly detection of high
dimensional data. One-class classification approaches trained by normal data are
widely used for anomaly detection, such as one-class SVMs [8] and SVDD [22].
The core of these methods is to find a decision boundary that separates abnor-
mal data from normal data. Another category of anomaly detection framework is
mainly based on reconstruction errors to determine whether a sample is anoma-
lous, such as conventional Principal Component Analysis (PCA), kernel PAC,
and Robust PCA (RPCA) [5, 14].

Recently, varieties of anomaly detection methods based on deep neural net-
works are proposed to detect anomalies [6]. GANs, Autoencoder and their vari-
ants have been widely used in anomaly detection, especially for high-dimensional
data anomaly detection. The variational autoencoder is used directly for anomaly
detection by using reconstruction error in [1]. Inspired by RPCA [5], Zhou et
al. [30] propose a Robust Deep Autoencoder (RDA), and use the reconstruction
error to detect anomalies for high-dimensional data. AnoGAN [3] uses a Gen-
erative Adversarial Network [13] to detect anomalies in the context of medical
images by reconstruction error. In a follow-up work, f-AnoGAN [23] introduces
Wasserstein GAN [2] to improve AnoGAN to be adaptable to real-time anomaly
detection applications. However, these methods only consider reconstruction er-
rors as anomaly criterion, thus the performance of these methods is limited in
detecting anomalies.

Deep structured energy based model (DSEBM) [29] directly simulates the
data distribution through the deep architectures to detect data anomalies. DSEBM
integrates Energy-Based Models (EBMs) with various types of datasets, includ-
ing spatial data, static data, and sequential data. DSEBM has two anomaly cri-
teria to identify anomalies: the energy score (DSEBM-e) and the reconstruction
error (DSEBM-r). Deep Autoencoding Gaussian Mixture Model (DAGMM) [31]
consists of a compression network and an estimation network. The compression
network reduces the dimensionality of input samples through a deep autoen-
coder, prepares their low-dimensional representations from the reduced space
and reconstruction error features, and provides the representations to the sub-
sequent estimation network. Estimation networks take feeds and predict their
likelihood/energy in the framework of a Gaussian Mixture Model (GMM). These
models first reduce the dimensionality of the data, and then detect anomalies
in the low-dimensional space through the energy model or GMM. As GANs are
able to model the complex high-dimensional distributions of real-world data,
and Adversarially Learned Anomaly Detection (ALAD) is a GAN based meth-
ods [28], which considers both data distribution and reconstruction error. ALAD
derives adversarially learned features for the anomaly detection task based on
bi-directional GANs, and then uses reconstruction errors based on these adver-
sarially learned features to separate out anomalies.

Our proposed method is most related to DAGMM. However, unlike DAGMM,
ADAF uses an autoregressive flow-based model to accurately extract indepen-
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dent latent variables. And ADAF directly obtain the neural density estimation of
the original data with latent variable mapping, rather than a predefined GMM
distribution. Most importantly, ADAF can independently estimate the neural
density of a data point without having to rely on other constraints, such as dis-
tance or density from other data points, and show a powerful ability of anomaly
detection with few training samples.

3 Autoregressive Flow-based Anomaly Detection Model

3.1 Normalizing flows

Flow refers to the data “flowing” through a series of bijections (revertible map-
ping), and finally maps to a suitable representation space. Normalizing means
that the variable integral of the representation space is 1, which meets the defi-
nition of probability distribution function.

Given an observed data x ∈ X, an explicit invertible non-linear transforma-
tion f : Rd → Rd of a simple tractable distribution pZ(z) (e.g., an isotropic
Gaussian distribution) on a latent variable z ∈ Z, X = f(Z) and Z = f−1(X),
the change of variable formula defines a model distribution on X by:

pX(x) = pZ(f−1(x))|det(∂f
−1(x)

∂x
)|, (1)

where ∂f−1(x)
∂x is the Jacobian of f at x. The transformation f is typically chosen

so that it is invertible and its Jacobian determinant is easy to compute.
Therefore, the probability density function of the model given a data can be

calculated from a log probability:

log(pX(x)) = log(pZ(f−1(x))) + log(|det(∂f
−1(x)

∂x
)|). (2)

3.2 Autoregressive density estimation

Autoregressive density estimation uses the chain rule of probability to learn the
joint probability density by decomposing it into the product of one-dimensional
conditional probability density. Given an observation x which contains d at-
tributes, its joint probability density is calculated as follows:

p(x) =

d∏
i=1

p(xi|x1:i−1), (3)

Formally, the generation of the variable xi in the i-th dimension depends
only on the previously generated variable x1:i−1, that is:

p(xi|x1:i−1) = N (xi|µi, (exp(αi))
2), µi = gµi

(x1:i−1), αi = gαi
(x1:i−1), (4)
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Fig. 1. Specific process of single model. The gray cells are the cells that are currently
being calculated, and the blue cells represent the cells on which they depend.

where gµi
and gαi

are functions that compute the mean and log standard devia-
tion of the i-th attribute given all previous variables. Autoregressive probability
density has two parameters: mean µi and log standard deviation αi.

We use the recursive operation of the above Eq. (3) and Eq. (4) to generate
data:

xi = zi exp(αi) + µi, zi ∼ N (0, 1), (5)

where z = (z1, z2, ..., zd) is the vector of random numbers the model uses inter-
nally to generate data.

3.3 Anomaly Detection based on Autoregressive Flow (ADAF)

Single Module From Eq. (5), we can see that the autoregressive model provides
an alternative characterization as a transformation f from the space of random
numbers Z to the space of data X. We express this model as X = f(Z). Given
data point x which contains d dimensions, we can get z by the following reverse
operation:

zi = (xi − µi) exp(−αi), µi = gµi(x1:i−1), αi = gαi(x1:i−1), (6)

The specific process of a single module is shown in Figure 1. The figure on
the left is the generation process f of x. For any distribution xi, it is calculated
from αi, µi and zi, which means that xi depends on all previous variables (i.e.,
x1, . . . , xi−1) and corresponding zi. The figure on the right is the inverse gener-
ation process f−1 of z. For any distribution zi, it is obtained from αi, µi and
xi, which means that zi also only depends on all previously generated variables
(i.e., x1, . . . , xi−1).

Because of autoregressive structure, the Jacobian of f−1 is triangular by
design. We can calculate its absolute determinant as follows:
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|det(∂f
−1(x)

∂x
)| = exp(−

d∑
i=1

αi), αi = gαi
(x1:i−1). (7)

Therefore, the autoregressive model can be equivalently regarded as a nor-
malizing flow, which can calculate density p(x) by substituting Eq. (6) and (7)
into Eq. (2):

log(pX(x)) = log(pZ(f−1(x))) + log(exp(−
d∑
i=1

αi)). (8)

Multiple Modules We improve the model fit by stacking multiple instances
of the single model into a deeper flow:

x = fK ◦ ... ◦ f2 ◦ f1(z), (9)

z = f−11 ◦ ... ◦ f−1K−1 ◦ f
−1
K (x), (10)

where x is the input data for d dimensions, K is the number of single module,
fi represents an autoregressive module, z is the latent variable.

Combining Eq. (7), (8), and Eq. (10), then sample neural density can be
further inferred by:

D(x) = − log(pX(x))

= −[log(pZ(

K∏
k=1

f−1i (x))) +

K∑
k=1

[log(exp(−
d∑
i=1

αki))]],
(11)

where pZ is a simple tractable distribution (e.g., an isotropic Gaussian distribu-
tion).

Objective Function Given a dataset of N instances, which contain d at-
tributes. The objective function guides ADAF training is constructed as follows:

J (µ, α) =
1

N

N∑
j=1

L(xj , zj) +
λ

N

N∑
j=1

D(xj). (12)

This objective function includes two components.

– L(xj , zj) is the latent error, which is the error between input data xj and
its latent data zj . Latent data is the key information of the input data, so
we expect the value of latent error is as low as possible. In practice, we use
L2-norm for this purpose, as L(xj , zj) = ‖xj − zj‖22.
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– D(xj) is the sample neural density of input data. By minimizing negative
log-likelihood density estimations, we can better fit the observed data to
high-density space. We optimize the combination of neural density and latent
error until the two reach a equilibrium, which makes our objective function
better serve the objective of anomaly detection.

– λ is the coefficient parameter in ADAF, which controls the objective to be
biased towards latent error or neural density.

– J (µ, α), µ and α represent all related parameters µi and αi in the model.

Although our objective function consists of two components, it is totally
different from DAGMM. In our objective function, the latent error and the neural
density together optimize the same network parameters, which is a thorough
end-to-end model. DAGMM is also an end-to-end training model, but the two
parts of its objective function optimize different network parts, respectively.
Therefore, our model is an absolute end-to-end framework that jointly optimizes
latent error and neural density estimation simultaneously. More specifically, we
use stochastic gradient descent to optimize the objective during training. Finally,
the latent error and the sample neural density are used as anomaly criteria to
detect anomalies. That is, a data sample has a higher latent error and sample
neural density value, it is more likely to be an anomaly.

4 Experiments

In this section, we use six public benchmark datasets to evaluate the effective-
ness and robustness of ADAF in anomaly detection. The code of the baseline
methods is available at GitHub3 released by ALAD. The code of our ADAF can
be available at GitHub4.

Table 1. Statistics of the public benchmark datasets

Dataset #Dimensions #Instances Anomaly ratio (ρ)

Thyroid 36 3,772 0.025
KDDCUP 118 494,021 0.2
SpamBase 58 3485 0.2

Arrhythmia 274 432 0.15
KDDCUP-Rev 118 121,597 0.2

Cardiotocography 22 2068 0.2

3 https://github.com/houssamzenati/Adversarially-Learned-Anomaly-Detection
4 https://github.com/1246170471/ADAF
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4.1 Datasets

We conduct experiments on six public datasets in the field of anomaly detection:
KDDCUP, Thyroid, Arrhythmia, KDDCUP-Rev, SpamBase, and Cardiotocog-
raphy. The details of the datasets are shown in Table 1.

– Thyroid: Thyroid is from UCI Machine Learning Repository5 thyroid dis-
ease classification dataset, which contains samples of 36 dimensions. There
are 3 classes in original dataset. As hyperfunction is a minority class, we
treat hyperfunction as anomaly class in our experiment.

– KDDCUP: The KDDCUP 10% dataset from UCI Machine Learning Repos-
itory is a network intrusion dataset, which originally contains 41 dimensions.
34 of them are continuous data, and another 7 represent categories. We
use one-hot representation to encoder them, and eventually obtain a 118-
dimensional dataset. As 20% of them are marked as “normal” and meanwhile
others are marked as “attack”, and “normal” samples constitute a small por-
tion, therefore, we treat “normal” samples as anomalies in our experiment.

– SpamBase: SpamBase is from UCI Machine Learning Repository, which col-
lects spam emails filed by postmaster and individuals and non-spam emails
from filed work and personal emails. We treat the spam emails as outliers,
and the anomaly ratio is 0.2.

– Arrhythmia: Arrhythmia dataset is also obtained from the UCI Machine
Learning Repository. This dataset contains 274 attributes, 206 of them are
linear valued and the rest are nominal. The smallest classes, including 3, 4,
5, 7, 8, 9, 14 and 15, are combined to form the anomaly class, and the rest
of the classes are combined to form the normal class.

– KDDCUP-Rev: This dataset is an abbreviated version extracted from
KDDCUP. We retain all “normal” data in this dataset, and randomly draw
“attack” samples to keep the anomaly ratio as 0.2. As “attack” data is in
minority part, we treat “attack” data as anomalies.

– Cardiotocography: Cardiotocography is also from UCI Machine Learn-
ing Repository which related to heart diseases. This dataset contains 22
attributes, and the instances in the dataset are classified by three expert ob-
stetricians into 3 classes: normal, suspect, or pathological. Normal instances
are treated as inliers and the remaining as outliers.

4.2 Baseline Methods

We compare our method with the following traditional and state-of-the-art deep
learning methods:

– OC-SVM [8]: One Class Support Vector Machines (OC-SVM) is a classic
kernel method for novelty detection that only use normal data to learn a deci-
sion boundary. We adopt the widely used radial basis function (RBF) kernel.
In our experiments, we assume that the abnormal proportion is known. We

5 https://archive.ics.uci.edu/ml/
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set the parameter ν to the anomaly proportion, and set γ to 1/m, where m
is the number of input features.

– DSEBM [29]: Deep Structured Energy Based Models(DSEBM) is a deep
learning method for anomaly detection. They tackle the anomaly detection
problem by directly modeling the data distribution with deep architectures.
DSEBM contains two decision criteria for performing anomaly detection: the
energy score (DSEBM-e) and the reconstruction error (DSEBM-r).

– DAGMM [31]: Deep Autoencoding Gaussian Mixture Model (DAGMM)
is a state-of-the-art method for anomaly detection, which consists of two
major components: a compression network and an estimation network. The
compression network performs dimensionality reduction for input samples by
a deep autoencoder, and feeds the low-dimensional representations with the
reconstruction error to the subsequent estimation network. The estimation
network takes the feed, and predicts their likelihood/energy in the framework
of GMM.

– AnoGAN [24]: AnoGAN is a GAN-based method for anomaly detection.
AnoGAN is trained with normal data, and using it to recover a latent repre-
sentation for each input test data. AnoGAN uses both reconstruction error
and discrimination components as the anomaly criterion. Reconstruction
error ensures how well the GAN is able to reconstruct the data via the gen-
erator, while the discrimination component considers a score based on the
discriminator. There are two approaches for the anomaly score in the original
paper and we choose the best variant in our tasks.

– ALAD [28]: Adversarially Learned Anomaly Detection (ALAD) is also a
state-of-the-art method based on bi-directional GANs, which derives adver-
sarially learned features for the anomaly detection task. ALAD uses recon-
struction error based on these adversarially learned features to determine if
a data sample is anomalous.

4.3 Experiment Configuration

The configurations of baselines used in experiments follows their original config-
urations. We follow the setting in [29, 31] with completely clean training data:
in each run, we take τ% of data by randomly sampling for training with the
rest (1-τ%) reserved for testing, and only data samples from the normal data
are used for training models. Specifically, for our ADAF and all baselines, we set
τ=50 in KDDCUP and KDDCUP-Rev, τ=80 in other datasets. Without special
statement, we set λ to 1 by default.

We set different K values (i.e., the number of distribution mappings) on
different datasets in our network structure. K is set to 4 in KDDCUP and
KDDCUP-Rev,K=8 in Cardiotocography,K=16 in Arrhythmia,K=16 in Spam-
Base, and K=10 in Thyroid. See our code for more detailed network structure
settings.
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4.4 Evaluation Metrics

We consider average precision, recall, and F1 score to quantify the results. We
choose a threshold based on the anomaly ratio in the test set. For example, if
the the anomaly ratio in the test set is ρ, the top ρ data of the objective function
value is marked as anomalies.

The precision and recall are defined as follows: Precision = |G|∩|R|
|R| and

Recall = |G|∩|R|
|G| , where G denotes the set of ground truth anomalies in the

dataset, and R denotes the set of anomalies reported by the methods. F1 score
is defined as follows: F1 = 2∗Precision∗Recall

Precision+Recall .

Table 2. Average precision, recall, and F1 from ADAF and all baselines. For each
metric, the best result is shown in bold.

Method KDDCUP Thyroid
Precision Recall F1 Precision Recall F1

OC-SVM 0.7457 0.8523 0.7954 0.3639 0.4239 0.3887
DSEBM-r 0.8744 0.8414 0.8575 0.0400 0.0403 0.0403
DSEBM-e 0.2151 0.2180 0.2170 0.1319 0.1319 0.1319
DAGMM 0.9297 0.9442 0.9369 0.4766 0.4834 0.4782
AnoGAN 0.8786 0.8297 0.8865 0.0412 0.0430 0.0421

ALAD 0.9427 0.9577 0.9501 0.3196 0.3333 0.3263

ADAF 0.9877 0.9926 0.9901 0.5102 0.5321 0.5209

Method Arrhythmia KDDCUP-Rev
Precision Recall F1 Precision Recall F1

OC-SVM 0.5397 0.4082 0.4581 0.7148 0.9940 0.8316
DSEBM-r 0.4286 0.5000 0.4615 0.2036 0.2036 0.2036
DSEBM-e 0.4643 0.4645 0.4643 0.2212 0.2213 0.2213
DAGMM 0.4909 0.5078 0.4983 0.9370 0.9390 0.9380
AnoGAN 0.4118 0.4375 0.4242 0.8422 0.8305 0.8363

ALAD 0.5000 0.5313 0.5152 0.9547 0.9678 0.9612

ADAF 0.7172 0.7171 0.7171 0.9895 0.9941 0.9918

Method SpamBase Cardiotocography
Precision Recall F1 Precision Recall F1

OC-SVM 0.7440 0.7972 0.7694 0.7366 0.6848 0.7051
DSEBM-r 0.4296 0.3085 0.3574 0.5584 0.5467 0.5365
DSEBM-e 0.4356 0.3185 0.3679 0.5564 0.5367 0.5515
DAGMM 0.9435 0.7233 0.7970 0.5024 0.4905 0.4964
AnoGAN 0.4963 0.5313 0.5132 0.4446 0.4360 0.4412

ALAD 0.5344 0.5206 0.5274 0.5983 0.5841 0.5911

ADAF 0.8381 0.8393 0.8387 0.7435 0.7432 0.7433
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4.5 Effectiveness Evaluation

First, we valuate the overall effectiveness of our proposed model compared with
all baseline methods on six benchmark datasets. We repeat 20 runs for all meth-
ods on each dataset and the average precision, recall, and F1 score are shown in
Table 2.

From Table 2, we can see that ADAF is significantly better than all baselines
in terms of average precision, recall, and F1 score on six datasets. On the KDD-
CUP and KDDCUP-Rev, ADAF achieves 4% and 2.4% improvement in standard
F1 score compared to state-of-the-art ALAD, reaching over 98% in all terms of
precision, recall and F1 score. On Thyroid and Arrhythmia, ADAF significantly
performs better than state-of-the-art DAGMM and ALAD by over 4.2% and
20.1% improvement in standard F1 score. On SpamBase and Cardiotocography,
ADAF is 4.1% and 3.7% better than DAGMM and OC-SVM methods, respec-
tively. The reasons why ADAF is better than DAGMM may be attributed as: (1)
ADAF obtains latent variables based on a reversible flow model. There is no loss
of dimensional information in the reversible process, and exact latent variables
can be obtained. DAGMM uses an autoencoder to obtain the latent variables,
which is an irreversible dimensionality reduction operation and will inevitably
lose the information of the original input data; (2) ADAF uses a neural density
estimator for density estimation instead of Gaussian mixture model. Deep neu-
ral density estimation is superior to Gaussian mixture model, because GMM is
a parameter estimation that refers to the process of using sample data to esti-
mate the parameters of the selected distribution, while neural density estimator
compute the probability density jointly combining with the generation of latent
variables. Additionally, GMM also needs to manually select the number of mixed
Gaussian models, which is very tricky in the absence of domain knowledge.

For AnoGAN, it adopts adversarial autoencoder to recover a latent represen-
tation for each input data, and uses both reconstruction error and discrimination
components as the anomaly criterion, but AnoGAN does not make full use of the
low-dimensional representation. Although ALAD can simulate the distribution
of data well when the experimental data is large enough, it also ignores the con-
sideration of latent representation. Another potential reason why our method is
better than all baselines is that we use an autoregressive flow model to obtain
the latent variables and neural density of input data at the same time without
dimensionality reduction, avoiding the loss of information.

4.6 Performance w.r.t. Training Set

Second, we investigate the impact of different training data on ADAF and all
baselines. We use τ% of the normal dataset as the training set for all methods.
We repeat the experiments on Arrhythmia and KDDCUP datasets 20 times and
report the average results in Table 3 and Table 4.

As we can see, only when the training data is 30%, our results are slightly
lower than DSEBM-e on Arrhythmia. In all other cases, our ADAF significantly
outperforms than all baselines in terms of precision, recall and F1 score on both
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Table 3. Performance comparison w.r.t. training ratio on Arrhythmia

Ratio ADAF ALAD DAGMM
τ% Precision Recall F1 Precision Recall F1 Precision Recall F1

30% 0.4607 0.4747 0.4676 0.4641 0.5250 0.4926 0.3750 0.4500 0.4091
40% 0.5024 0.5252 0.5135 0.4634 0.5278 0.4935 0.3902 0.4444 0.4156
50% 0.5539 0.5707 0.5621 0.5000 0.5312 0.5152 0.3824 0.4062 0.3939
60% 0.5808 0.5808 0.5808 0.4643 0.4643 0.4643 0.4643 0.4643 0.4643
70% 0.6286 0.6363 0.6315 0.3810 0.4000 0.3902 0.4286 0.4500 0.4390
80% 0.7172 0.7171 0.7171 0.3571 0.4167 0.3846 0.3571 0.4167 0.3846

Ratio DSEBM-e DSEBM-r AnoGAN
τ% Precision Recall F1 Precision Recall F1 Precision Recall F1

30% 0.4583 0.5500 0.5000 0.3542 0.4250 0.3864 0.2917 0.3500 0.3182
40% 0.4634 0.5278 0.4935 0.3902 0.4444 0.4156 0.3415 0.3889 0.3636
50% 0.5000 0.5312 0.5152 0.4118 0.4375 0.4242 0.3529 0.3750 0.3636
60% 0.4643 0.4643 0.4643 0.4286 0.4286 0.4286 0.4286 0.4286 0.4286
70% 0.4286 0.4500 0.4390 0.3810 0.4000 0.3902 0.4286 0.4500 0.4390
80% 0.4286 0.5000 0.4615 0.4286 0.5000 0.4615 0.3571 0.4167 0.3846

Table 4. Performance comparison w.r.t. training ratio on KDDCUP

Ratio ADAF ALAD DAGMM
τ% Precision Recall F1 Precision Recall F1 Precision Recall F1

10% 0.9873 0.9938 0.9906 0.9576 0.9727 0.9651 0.9234 0.9382 0.9308
20% 0.9896 0.9942 0.9919 0.9554 0.9691 0.9622 0.9041 0.9171 0.9106
30% 0.9863 0.9889 0.9876 0.9513 0.9513 0.9513 0.9290 0.9437 0.9363
40% 0.9888 0.9895 0.9892 0.9466 0.9625 0.9545 0.9469 0.9628 0.9548
50% 0.9833 0.9941 0.9887 0.9513 0.9664 0.9588 0.9315 0.9464 0.9389
60% 0.9890 0.9959 0.9925 0.9502 0.9624 0.9563 0.9448 0.9570 0.9509

Ratio DSEBM-e DSEBM-r AnoGAN
τ% Precision Recall F1 Precision Recall F1 Precision Recall F1

10% 0.1121 0.1142 0.1131 0.8535 0.8233 0.8381 0.9166 0.8362 0.8667
20% 0.1322 0.1333 0.1332 0.8472 0.8166 0.8316 0.8590 0.8590 0.8590
30% 0.0830 0.0840 0.0830 0.8732 0.8403 0.8564 0.8344 0.8476 0.8409
40% 0.1311 0.1332 0.1321 0.8745 0.8422 0.8576 0.8343 0.8344 0.8344
50% 0.2151 0.2180 0.2170 0.8744 0.8414 0.8575 0.9472 0.8163 0.8630
60% 0.0401 0.0411 0.0410 0.8756 0.8399 0.8573 0.8496 0.8605 0.8550
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Arrhythmia and KDDCUP. As the ratio of training data increases, the perfor-
mance of our model is getting better and better on both datasets, especially
on Arrhythmia ADAF achieves a significant improvement. The performance of
ALAD and AnoGAN on KDDCUP dataset is relatively stable, and has some
fluctuations on Arrhythmia. From Table 4, DSEBM-e that uses energy score as
detection criterion is not suitable for KDDCUP. This is because the data dis-
tribution of KDDCUP is more complicated than that of the energy model. The
experimental results of ALAD, DSEBM-r and AnoGAN are similar because they
all use the reconstruction error as the criterion for anomaly detection. Although
the results of DAGMM also increases with the increase of training data, our
ADAF is far superior to DAGMM, even using less training data.

In summary, this experiment confirms that our ADAF can achieve better
results with fewer training samples compared to state-of-the-art baselines.
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Fig. 2. Anomaly detection results on contaminated training data on KDDCUP

4.7 Robustness Evaluation

Finally, we evaluate the robustness of our ADAF compared to the baselines on
KDDCUP. We only use 10% of the normal data as the training set for our ADAF,
and meanwhile we mix c% of samples from the anomalous data into the training
set. In term of ALAD, DSEBM and DAGMM, we select 50% of the normal data
as the training set, while mixing c% of samples from anomaly data into their
training set.

Figure 2 shows the average precision, recall, and F1 score results of ADAF,
DSEBM-e, DAGMM and ALAD with different contaminated training data.
When the contamination ratio c increases from 1% to 5%, the average preci-
sion, recall, and F1 score of all methods decrease. However, we also observe that
our model is only affected slightly and maintains an extremely robust perfor-
mance. As c% increases, the performance of DAGMM declines sharply, but the
impact on DSEBM-r and ALAD is not very significant. This may be because
the GMM model in DAGMM is more sensitive to noise compared to the recon-
struction error used in DSEBM-r and ALAD. Nevertheless, our ADAF is still
significantly better than all baseline methods.
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5 CONCLUSION

In this paper, we propose an Anomaly Detection model based on Autoregressive
Flow (ADAF) for detecting anomalies in high-dimensional data. ADAF uses an
autoregressive flow to obtain the latent variable, which holds the key informa-
tion of the original input data. Because of the reversibility of flow model, the
latent variables completely inherit the essential information of the original input
data. Unlike the traditional two-step methods, ADAF is an absolute end-to-end
framework that jointly optimizes the latent error and probability density esti-
mation simultaneously. Finally, both latent error and neural density are used
as decision criteria in anomaly detection. Our experimental results on public
benchmark datasets show that ADAF is significantly better than state-of-the-
art methods by up to 20% improvement on the standard F1 score.
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