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ABSTRACT
Network embedding, which aims at learning low-dimensional rep-

resentations of nodes in a network, has drawn much attention

for various network mining tasks, ranging from link prediction to

node classification. In addition to network topological information,

there also exist rich attributes associated with network structure,

which exerts large effects on the network formation. Hence, many

efforts have been devoted to tackling attributed network embed-

ding tasks. However, they are also limited in their assumption of

static network data as they do not account for evolving network

structure as well as changes in the associated attributes. Further-

more, scalability is a key factor when performing representation

learning on large-scale networks with huge number of nodes and

edges. In this work, we address these challenges by developing the

DRLAN–Dynamic Representation Learning framework for large-

scale Attributed Networks. The DRLAN model generalizes the dy-

namic attributed network embedding from two perspectives: First,

we develop an integrative learning framework with an offline batch

embedding module to preserve both the node and attribute proximi-

ties, and online network embedding model that recursively updates

learned representation vectors. Second, we design a recursive pre-

projection mechanism to efficiently model the attribute correlations

based on the associative property of matrices. Finally, we perform

extensive experiments on three real-world network datasets to show

the superiority of DRLAN against state-of-the-art network embed-

ding techniques in terms of both effectiveness and efficiency. The

source code is available at: https://github.com/ZhijunLiu95/DRLAN.
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1 INTRODUCTION
Network embedding has received great attention owing to its ability

in learning low-dimensional representations for nodes in a network

for a variety of real-world mining applications, such as link predic-

tion [2, 34], node classification [6, 8], network reconstruction [1],

spatial data learning [25, 31] and user behavior modeling [7, 13, 32].

In these applications, the core of network representation learn-

ing methods is preserving the proximity of nodes based on the

topological structural information of a network, without involv-

ing hand-engineering domain-specific features [8]. In recent years,

due to the availability and usefulness of rich attribute information

(e.g., user profiles in social media or author affiliations in academic

networks) in real-world network analysis scenarios, attributed net-

work embedding [3, 8] has become a promising solution to improve

the performance of network representation learning. These studies

indicate that the network structure formulation is highly correlated

with the associated node attributes. In particular, these models

represent a vertex as a learnable embedding vector with the joint

consideration of network topological structure and node attributes.

Despite the effectiveness of existing attributed network embed-

ding methods [3, 9, 14, 23], most of them miss an important issue of

network representation – network structures and node attributes

would evolve over time, and thus the assumption of node prox-

imity and attribute consistencies does not hold any more. In such

cases, the node relations and the associated attribute information

are no longer static. Therefore, it is crucial to take the above two-

dimensional dynamics (i.e., both the network structure and associ-

ated attributes) into consideration for more accurate representation

learning on attributed networks.

One possible solution to deal with dynamic embedding learning

scenarios of attributed networks, is to run batch algorithms until
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all evolving data are collected. Nevertheless, the batch algorithms

will either need to operate on the data from the first timestamp

to the current one (which is very costly on large-scale data), or

ignore some previously inferred results and run from scratch on

a sliding recent time window (which does not exploit all available

data). As such, these static network embedding models are not

well-suited for dynamic attribute network embedding. While there

exists a handful of recent study that considers dynamic information

in attributed network embedding [11], this method is limited to its

inefficiency issue. In this work, we strive to develop an effective and

efficient network representation learning method which explicitly

and jointly encodes dynamic network topological and attributed

signals on large-scale network datasets.

There are several key challenges that remain to be solved, in

order to realize the dynamic representation learning for large-scale

attributed networks. In particular, First, in light of these limitations

of existing network embedding methods, perform representation

learning for large-scale networks with the goal of jointly preserv-

ing global structure contexts and attributed information, remains

a significant challenge. Second, the variation of network structure

and node attributes raises the challenge of capturing the correla-

tions among nodes in a timely manner. Third, it is important and

challenging to operate the representation learning framework on

the time-evolving network data and update the learned embedding

vectors on the fly.

To tackle the aforementioned challenges, we develop a new

framework (i.e., DRLAN)–Dynamic Representation Learningmethod

for large-scale Attributed Networks. To be more specific, we first

develop a sparse random projection module to learn node repre-

sentations as the main embedding space, where both the network

structure and attribute proximities can be well preserved. To cap-

ture the dynamic network signals from both the topological and

semantic dimensions, we propose an online network embedding

model that recursively updates learned representation vectors based

on the new network information. Towards scalable modeling of

attribute similarities, a recursive pre-projection mechanism is devel-

oped to efficiently estimate the correlations among node attributes

based on the associative property of matrix product. We further

perform complexity analysis of the developed DRLAN framework.

The results of this work are important since they enable the rep-

resentation learning on attributed networks on the fly even for

large-scale network data.

We highlight the key contributions of this work as follows:

• We present DRLAN: a dynamic representation learning frame-

work to learn network embeddings on large-scale attributed

networks. Our model is capable of modeling the time-evolving

network characteristics (i.e., network structural and attributed

information) for dynamic attributed network embedding.

• Our developed DRLAN model is an integrative learning frame-

work with the offline learning phase to generate node embed-

dings by discovering a latent node attribute and network struc-

ture guided learning subspace, and an online learning phase

to deal with dynamic network characteristics by incrementally

update node embeddings in a timely manner.

• In themain embedding space, we develop a recursive pre-projection

mechanism to efficientlymodel similarities among node attributes

on the fly in the view of dynamic network structures. We also

analyze the time complexity of DRLAN framework.

• We conduct extensive experiments for various representative

network mining tasks (i.e., node classification, link prediction,

and network reconstruction) on three real-world networks. Ex-

perimental results demonstrate the effectiveness and efficiency of

our DRLAN framework in learning representation for dynamic

large-scale attributed networks, as compared to state-of-the-art

network embedding techniques.

2 RELATEDWORK
Network Embedding. Recently, static network embedding meth-

ods can be classified into two categories: one for plain networks

where only topological structure information is utilized for embed-

ding, e.g., DeepWalk [20] employs a truncated random walk on

network then utilizes the word embedding to learn latent represen-

tations of the network structure information. Node2vec [5] further

extends DeepWalk by adding the flexibility in exploring network

structure. LINE [24] tactfully designs an optimized objective func-

tion that preserves first-order and second-order proximities to learn

network structure representations. NetSMF [21] leverages theories

from spectral sparsification to efficiently sparsify the dense NetMF

matrix implicitly factorized by DeepWalk, which can support large-

scale network embedding learning.

Another one for non-plain networks such as complex informa-

tion network which considers not only topological structure infor-

mation but also auxiliary information of nodes, e.g., attributes or

types of nodes. Matrix factorization models are proposed to learn

representations by considering both structure and node attribute in-

formation in [29]. Gao et al. [3], Tu et al. [27] andMeng et al. [17] use

deep learning to learn a joint feature representation for attributed

networks. LGCN [4] transforms graph data into grid-like struc-

tures and then applies regular convolutional operations to learn

graph representation. In addition to node attributes, node labels

are also taken into consideration in [8]. NetHash [28] employs the

randomized hashing technique to encode shallow trees to preserve

information about large-scale attributed network. FeatWalk [9]

utilizes a similarity-based random walks among heterogeneous

attributed network to extract the local structure proximity and

attribute proximity. However, such methods cannot be applied to

dynamic environments.

Besides static networks, how to embed dynamic networks where

structures and attributes change over time also attracts research

attention. DLNE [33] updates previous embeddings by considering

the changes of the networks. DHPE [38] and DANE [11] propose

to use matrix perturbation to handle the changes of edges or at-

tribute values. However, they are at least quadratic time complexity

with respect to the number of nodes, thus it is difficult to apply

these methods to dynamic large-scale attributed networks. Recently,

TIMERS [36] proposes to optimally set the restart time to reduce

error accumulation of incremental SVD in time for dynamic net-

works. DynamicTriad [37] uses triadic closure process to capture

the network dynamics in topological structure. However, these

methods only capture the dynamic structural changes for plain

networks. CTDNE [18] uses temporal random walk to capture the

continuous time dynamics of the network. MMDNE [16] captures



micro and macro changes in the network through temporal atten-

tion point process and the number of network edges. DySAT [22]

and DyRep [26] employ self-attention network and deep temporal

point process to capture the structural neighborhood and temporal

dynamics. Such methods based on deep neural networks can learn

structural representations of nodes over dynamic networks, but

they are all time-consuming, thus these methods cannot handle dy-

namic large-scale networks that are updated quickly and frequently

in a timely manner.

RandomProjection.Randomprojection ismotivated by the Johnson-

Lindenstrauss lemma [10], which uses a random matrix with unit

Euclidean column norms to find a lower-dimensional subspace that

approximately preserves the distances between all pairs of data

points in the original space. However, performing such a projection,

while conceptually simple, is non-trivial, especially in a real-world

environment. In order to speed up the efficiency of random projec-

tion, Li et al. [12] proposes to use the very sparse projection matrix

with i.i.d. entries, which promotes the implementation of memory

and computation efficient algorithms. Recently, some works [35]

aim to capture structure information of network by a variant of

Gaussian random projection. However, these methods do not con-

sider how to embed node attributes, thus cannot be directly applied

to our problem of dynamic attributed network embedding.

3 PROBLEM DEFINITION
In this section, we introduce key notations used in this paper and

then formally define the studied problem.

3.1 Notations
The main symbols used in this paper are listed in Table 1. We

use normal lowercase characters to denote scalars (e.g., 𝑎), bold

lowercase characters to denote vectors (e.g., a), bold uppercase

alphabets to denote matrices (e.g., A). We use dot to denote the

matrix product of two matrices, e.g., A · B. The transpose of matrix

A is represented as A𝑇
. I denotes the identity matrix.

Table 1: Main symbols and their definitions.

Notations Definitions

A(𝑡 ) adjacency matrix of network structure at time step 𝑡

ΔA(𝑡 ) changes of adjacency matrix at time step 𝑡

X(𝑡 ) attribute information for nodes at time step 𝑡

ΔX(𝑡 ) changes of attribute matrix at time step 𝑡

S attribute similarity matrix of node

R random projection matrix

U(𝑡 ) embedding representation matrix at time step 𝑡

𝑑 dimension of embedding representations

𝑝 order for structure proximity

𝑞 order for attribute proximity

𝑠 sparsity of random projection matrix

Δ𝑛 number of added nodes

Δ𝑘 number of added attributes

3.2 Problem Formulation
Given a time-stamped attributed network, we aim to provide online

representation for every snapshot in time. Let u(𝑡 ) = {𝑢1, 𝑢2, ..., 𝑢𝑛}
denote a set of 𝑛 nodes in the attributed network G(𝑡 ) at time step 𝑡 .

We use the adjacency matrix A(𝑡 ) ∈ R𝑛×𝑛 to represent the network

structure of G(𝑡 ) . In addition, we assume that nodes are affiliated

with 𝑘-dimensional attributes f = {𝑓1, 𝑓2, ..., 𝑓𝑘 } and X(𝑡 ) ∈ R𝑛×𝑘
denotes the node attribute matrix. At the following time step, the

attributed network is characterized with both topology and con-

tent drift such that new/old edges may be added/deleted, and node

attribute values and the number of attributes could also change.

We use ΔA and ΔX to denote the network and attribute changes

between two consecutive time step 𝑡 and time step 𝑡+1, respectively.

Following the settings of [11], we split dynamic attributed em-

bedding problem into two sub-problems. First, we build an offline

model to embed the static attributed network to a low-dimensional

vector space, where structure and attribute proximities between

nodes are preserved. Second, we propose a dynamic model to up-

date the embedding of nodes corresponding to the changes in the

attribute network at following time steps. These two sub-problems

are summarized as follow:

Problem 1. The offline model of DRLAN at time step 𝑡0: Given
the network adjacency matrix A(𝑡0) and node attribute matrix X(𝑡0) ,
the offline model aims to output attributed network embedding U(𝑡0) .

Problem 2. The online model of DRLAN at time step 𝑡+1: Given
network adjacency matrix A(𝑡+1) and node attribute matrix X(𝑡+1) ,
and intermediate embedding result U(𝑡 ) at time step 𝑡 , the online
model aims to output attributed network embedding U(𝑡+1) based on
U(𝑡 ) .

4 THE PROPOSED FRAMEWORK – DRLAN
In this section, we first present an offline learning module that

learns embedding representation for attributed networks in a static

setting to tackle Problem 1. Then we propose an online learning

module that dynamically updates consensus embeddings on the fly

with changes in the network to tackle Problem 2. At the end, we

analyze the computational complexity of our model.

4.1 DRLAN: Offline Learning Phase
Network topology structures and node attributes present different

information about nodes of attributed networks in different perspec-

tives. In general, either of these information could be sparse and

noisy, presenting great challenges to learn embedding representa-

tion [11]. Fortunately, the previous work has shown that high-order

proximities are essential to mitigate the network structure sparsity

in finding better representation, which can be formulated as a poly-

nomial function of the adjacency matrix [30]. Rich node attributes

could further mitigate the problem. In this paper, we aim to pre-

serve high-order structure proximity and attribute similarity in the

embedding matrix with the following objective function:

min

U
∥HH𝑇 − UU𝑇 ∥2

H =𝛽 (𝛼0I + 𝛼1A + · · · + 𝛼𝑝A𝑝 )
+(1 − 𝛽) (\0I + \1S + · · · + \𝑞S𝑞),

(1)

where U ∈ R𝑛×𝑑 is a low-dimensional representation matrix, 𝑑 is

the embedding dimension size, H is the proximity matrix of high-

order network structure and attribute proximities in attributed

network, A𝑝
is 𝑝-order structure proximity, S𝑞 is 𝑞-order attribute



proximity, and 𝛼0, 𝛼1, . . . , 𝛼𝑝 , \0, \1, . . . , \𝑞 , and 𝛽 are predefined

weights.

Then, as discussed in [19], the objective function can be solved

by the generalized Singular Value Decomposition (GSVD) method.

However, GSVD is computationally expensive and thus not suitable

for large-scale attributed networks. To optimize the objective func-

tion in Eq. (1), a simple but powerful method is random projection.

The pairwise similarity of high dimensional data can be preserved

effectively by random projection [12, 35]. There are variants of ran-

dom projection techniques are applied in manifold learning area.

The sparse random projection we use is one of the variations, which

achieves a significant speedup with little loss in accuracy. Formally,

let projection matrix R ∈ R𝑛×𝑑 with 𝑖 .𝑖 .𝑑 entries drawn from:

𝑟 𝑗𝑖 =
√
𝑠


1 with prob. 1

2𝑠

0 with prob. 1 − 1

𝑠

−1 with prob. 1

2𝑠

, (2)

where 𝑠 =
√
𝑛 or 𝑠 = 𝑛

log𝑛
[12]. With 𝑠 =

√
𝑛, one can achieve a

√
𝑛-fold speedup because only

1√
𝑛
of the data need to be processed.

Since the multiplications with

√
𝑠 can be delayed, no floating point

arithmetic is needed.

Next, we take the high-order proximities as a multi-layer proxim-

ity network that each layer represents a different order of proximity,

and we can obtain the representation U by randomly projecting the

proximity matrix H into a low-dimensional subspace:

U =H · R
=𝛽 (𝛼0I + 𝛼1A + · · · + 𝛼𝑝A𝑝 ) · R
+(1 − 𝛽) (\0I + \1S + · · · + \𝑞S𝑞) · R

=𝛽UA + (1 − 𝛽)UX,

(3)

where UA
and UX

is structure and attribute representation, respec-

tively.

Inspired by [35], we can improve the efficiency by the associative

property of matrix multiplication to reuse previously computed

matrix products A𝑖 · R to avoid explicit calculations of higher order

proximity matrices A𝑖+1 · R:

UA = 𝛼0Y0 + 𝛼1Y1 + · · · + 𝛼𝑝Y𝑝 (4)

where Y0 = R and Y𝑖 = A · Y𝑖−1,∀1 ≤ 𝑖 ≤ 𝑝 .

It is worth noting that the attribute similarity matrix S usually
is not a sparse matrix so both its storage and computation are very

time-consuming. All pairwise proximities in S can be computed

as X · XT
, at the cost of time 𝑂 (𝑛2𝑘), which is often prohibitive

for large 𝑛 and 𝑘 , in large-scale network. To solve this problem,

we design a recursive pre-projection mechanism to avoid explicit

calculation of the enormous matrix S by leveraging the associative

property of matrix. For simplicity, we use the simplest inner product

to describe our method:

UX = (\0I + \1S + · · · + \𝑞S𝑞) · R
= \0I · Z0 + \1X · Z1 + · · · + \𝑞X · Z𝑞

(5)

where Z0 = R, Z1 = X𝑇 ·R, and Z𝑖 = XT (X ·Z𝑖−1),∀2 ≤ 𝑖 ≤ 𝑞. The

matrix Z𝑖 is the projection of attribute matrix X in low dimensional

space on 𝑖-th order proximity, which preserves all pairwise distances

of X. Then we can indirectly obtain the representation vector with

the core features of attribute similaritymatrix S𝑖 byX·Z𝑖 . Finally, we
achieve a substantial cost reduction for computing S·R from𝑂 (𝑛2𝑘+
𝑛2𝑑) to 𝑂 (2𝑛𝑘𝑑). As a result, to obtain a consensus embedding

representation from H, we could take the high-order structure

proximity and attribute similarity together. Algorithm 1 shows the

pseudo-code of our offline model.

Algorithm 1 DRLAN: Offline Learning Phase

Input: Adjacency matrix A, attribute matrix X, dimension 𝑑 ,

orders 𝑝 and 𝑞, weights 𝛼0, 𝛼1, . . . , 𝛼𝑝 , \0, \1, . . . , \𝑞 , hyper-

parameter 𝛽 .

Output: Representation results U
1: Generate R ∈ R𝑛×𝑑 by Eq. (2)

2: Y0 ← R
3: Z0 ← R, Z1 ← X𝑇R
4: for 𝑖 in 1 : 𝑝 do
5: Calculate Y𝑖 = A · Y𝑖−1
6: end for
7: for 𝑖 in 2 : 𝑞 do
8: Calculate Z𝑖 = X𝑇 · (X · Z𝑖−1)
9: end for
10: Calculate UA

using Eq. (4)

11: Calculate UX
using Eq. (5)

12: Calculate U = 𝛽UA + (1 − 𝛽)UX

4.2 DRLAN: Online Learning Phase
In general, attributed networks often exhibit high dynamics. For

example, in social networks, social relations are continuously evolv-

ing, and user preference characteristics may also evolve accordingly.

The changes may be passed on to their friends, and have a profound

impact on network information. But the only way of the existing

offline methods handle this situation is to recalculate the entire

representation. When the data is large (e.g., 100 million users), this

is obviously not feasible. Therefore, it is critical to build an efficient

online embedding algorithm which can directly update the existing

representation on the fly for the large-scale attributed networks.

Next, we present our online learning model for dynamic attrib-

uted networks. Here, we divide the dynamic changes of attrib-

uted networks into two categories: structure changes and attribute

changes.

4.2.1 Structure Changes. The structure changes can be divided

into the changes of edges and the changes of nodes. For changes of

edges, we only need to update the representation from the previous

representation. Formally, we denote the changes in the adjacency

matrix as ΔA and the changes in UA
as ΔUA . From Eq. (3), we

only need to update the structure part of the representation by an

increment projection:

UA
(𝑡+1) = UA

(𝑡 ) + ΔUA
(𝑡 )

= [𝛼0I + 𝛼1 (A(𝑡 ) + ΔA(𝑡 ) ) + · · · + 𝛼𝑝 (A(𝑡 ) + ΔA(𝑡 ) )𝑝 ]R
= 𝛼0 (Y0 + ΔY0) + 𝛼1 (Y1 + ΔY1) + · · · + 𝛼𝑝 (Y𝑝 + ΔY𝑝 )

⇒ ΔYi = A(𝑡 ) · ΔY𝑖−1 + ΔA(𝑡 ) · Y𝑖−1 + ΔA(𝑡 ) · ΔY𝑖−1
(6)



Here we can also use the associative property of matrix multiplica-

tion to improve efficiency.

Nodes in the networkmay also be added or deleted. As for deleted

nodes, it can be treated equivalently as the changes of edges by

deleting all edges of the deleted nodes. For newly added nodes, we

first add some empty nodes (i.e., no edge is connected to any other

nodes) tomake the dimension of thematricesmatch. Specifically, we

denote Δ𝑛 as the number of added nodes. For the projection matrix

R, we can generate an additional 𝑖 .𝑖 .𝑑 random matrix R̂ ∈ RΔ𝑛×𝑑 by

Eq. (2) and concatenate it with the current projection matrix to gain

the new projection matrix R(𝑡+1) ∈ R(𝑛+Δ𝑛)×𝑑 . For other matrix

A and I we add Δ𝑛 all-zero rows and columns to complement the

dimension. Then we can update added edges to those newly added

nodes using Eq. (6).

4.2.2 Attribute Changes. The changes of node attributes also
can be divided into the changes of attributes and the changes of

nodes. Formally, we denote the changes in the attribute matrix as

ΔX and the changes in UX
as ΔUX

. From Eq. (3), we only need to

update the attribute part of the representation:

UX
(𝑡+1) = UX

(𝑡 ) + ΔUX
(𝑡 )

= [\0I + \1 (S(𝑡 ) + ΔS(𝑡 ) ) + . . .
+ \𝑞 (S𝑞(𝑡 ) + (ΔS(𝑡 ) )

𝑞)]R

⇒ ΔUX
(𝑡 ) = (\1ΔS(𝑡 ) + · · · + \𝑞 (ΔS(𝑡 ) )𝑞)R

ΔS(𝑡 ) = (X(𝑡 ) · ΔX𝑇
(𝑡 ) + ΔX(𝑡 ) · X

𝑇
(𝑡 ) + ΔX(𝑡 ) · ΔX(𝑡 ) )

(7)

Here we find the computational complexity of computing ΔS(𝑡 ) · R
is 𝑂 (3𝑑𝑋𝑛 + 3𝑛2𝑑), where 𝑑𝑋 is the number of non-zero entries in

the sparse matrix ΔX(𝑡 ) , which is much higher than 𝑂 (2𝑛𝑘𝑑) of
computing S(𝑡+1) · R(𝑡+1) in Eq. (5). Besides, the formula in Eq. (5)

can naturally handle the change in the number of attributes. So

instead of using Eq. (7) to update the attribute representation, we

use Eq. (5) to directly calculate the new attribute representation.

Moreover, for the changes about the number of nodes, we can

first update the projection matrix R through the previously men-

tioned process in the structure changes. Then, we only need to

replace the attribute matrix X(𝑡 ) in Eq. (5) with the new attribute

matrix X(𝑡+1) . In this way, we can obtain the attribute represen-

tation U𝑋
(𝑡+1) directly. Algorithm 2 shows the pseudo-code of our

online model.

4.3 Computational Complexity Analysis
We next theoretically analyze the computational complexity of our

proposed algorithms.

Lemma 4.1. The time complexity of the proposed offline embedding
algorithm is𝑂 (𝑝𝑚𝑛 +𝑞𝑛𝑘𝑑 + 𝑝𝑛𝑑), where 𝑛 and 𝑘 are the number of
nodes and attributes of attributed network,𝑚 is non-zero entries in
the adjacency matrix, 𝑝 and 𝑞 are the orders of high-order structure
and attribute proximity, and 𝑑 is the embedding dimension size.

Proof. As shown in Algorithm 1, the complexity of generating

projection matrix (line 1) is𝑂 (𝑛𝑑). The complexity of performing a

sparse projection (line 3) is𝑂 (𝑘𝑛𝑑). Then each iteration of comput-

ing 𝑖-th order structure proximity (lines 4-6) is 𝑂 (𝑚𝑛). And each

iteration of recursive pre-projection (lines 7-9) is𝑂 (𝑛𝑘𝑑). After that,

Algorithm 2 DRLAN: Online Learning Phase

Input: Adjacency matrix A(𝑡 ) , dynamic changes of adjacency ma-

trix ΔA(𝑡 ) , attributes matrix X(𝑡+1) at time step 𝑡 + 1, previous
representation results UA

(𝑡 )
Output: Updated representation results U(𝑡+1)
1: if ΔA(𝑡 ) includes Δ𝑛 new nodes then
2: Generate an sparse random projection R̂ ∈ RΔ𝑛×𝑑
3: Concatenate R̂ with R to obtain R(𝑡+1)
4: Add Δ𝑛 all-zero rows in UA

(𝑡 )
5: end if
6: Y0 ← R(𝑡+1)
7: Z0 ← R(𝑡+1) , Z1 ← X𝑇

(𝑡+1)R(𝑡+1)
8: for 𝑖 in 1 : 𝑝 do
9: Calculate Y𝑖 using Eq. (6)

10: end for
11: for 𝑖 in 2 : 𝑞 do
12: Calculate Z𝑖 = X𝑇

(𝑡+1) · (X(𝑡+1) · Z𝑖−1)
13: end for
14: Calculate ΔUA

(𝑡+1) using Eq. (6)
15: Calculate UX

(𝑡+1) using Eq. (5)
16: Calculate U(𝑡 ) = 𝛽 (UA

(𝑡+1) + ΔUA
(𝑡+1) ) + (1 − 𝛽) (UX

(𝑡+1) )

the complexity of calculating UA
(line 10), UX

(line 11), and U (line

12) are 𝑂 (𝑝𝑛𝑑), 𝑂 (𝑞𝑛𝑘𝑑), and 𝑂 (𝑛𝑑), respectively. Therefore, the
overall time complexity of Algorithm 1 is𝑂 (𝑝𝑚𝑛+𝑞𝑛𝑘𝑑 +𝑝𝑛𝑑). □

Lemma 4.2. The time complexity of the proposed online embedding
algorithm at time step 𝑡 is𝑂 (𝑞𝑛 (𝑡 )𝑘𝑑+(Δ𝑛+𝑝𝑑𝐴)𝑑), Where Δ𝑛 is the
number of added nodes of adjacency matrix A(t) , 𝑛 (𝑡 ) = 𝑛 (𝑡−1) + Δ𝑛,
and 𝑑𝐴 is the number of non-zero entries in the sparse matrices ΔA(t) .

Proof. By Algorithm 2, the complexity of updating the sparse

random projection matrix (lines 1-5) is𝑂 (Δ𝑛𝑑), and the complexity

of performing a sparse projection (line 7) is 𝑂 (𝑘𝑛 (𝑡 )𝑑). The com-

plexity of each iteration for 𝑖-th order increment structure proximity

(lines 8-10) is𝑂 (𝑑𝐴𝑑). Each iteration of recursive pre-projection for

𝑖-th order attribute proximity (lines 11-13) is𝑂 (𝑛 (𝑡 )𝑘𝑑). Finally, the
complexity of line 14, line 15, and line 15 are𝑂 (𝑝𝑑𝐴𝑑),𝑂 (𝑞𝑛 (𝑡 )𝑘𝑑),
and 𝑂 (𝑛 (𝑡 )𝑑), respectively. Therefore, the overall time complexity

of Algorithm 2 is 𝑂 (𝑞𝑛 (𝑡 )𝑘𝑑 + (Δ𝑛 + 𝑝𝑑𝐴)𝑑). □

As can be shown, ΔA and ΔX are often very sparse, that is,

added nodes and attributes are usually quite small, thus 𝑑𝐴 and Δ𝑛
are very small, meanwhile we have 𝑞𝑛 (𝑡 )𝑘𝑑 ≪ 𝑝𝑚𝑛 (here 𝑛 (𝑡 )=𝑛).
Based on the above analysis, the proposed online embedding is

more efficient than re-running the offline method repeatedly for

dynamic large-scale attributed networks.

Table 2: The Statistics of Datasets

Dataset BlogCatalog Flickr DBLP

# Nodes 5,196 7,575 781,108

# Edges 171,743 239,738 4,191,677

# Attributes 8,189 12,047 160,648

# Labels 6 9 10

# Time steps 10 10 10



5 EXPERIMENTS
In this section, we conduct experiments to evaluate the effective-

ness and efficiency of the proposed DRLAN method for dynamic

attributed network representation. In particular, we attempt to an-

swer the following three questions: (1) Efficiency: Can the proposed

DRLAN be faster than other attributed network representation and

dynamic representation learning methods in learning the represen-

tations for nodes? (2) Effectiveness: Can DRLAN perform better than

other methods over dynamic graphs in traditional network mining

tasks, e.g., node classification, link prediction, and network recon-

struction? (3) Sensitivity: What are the impacts of hyper-parameter

𝛽 , orders 𝑝 , 𝑞, dimension 𝑑 and the sparsity 𝑠 of projection matrix

on DRLAN?

5.1 Experimental Setting
5.1.1 Datasets. Three publicly available real-world datasets, i.e.,

BlogCatalog, Flickr, and DBLP
1
, are employed in the experiments.

BlogCatalog and Flickr are generated from static attributed net-

works, and have been used in previous research [8, 11]. In order to

simulate the dynamic changes of the network, we randomly add

1% new nodes and 1% new attributes, while randomly delete 1%

existing edges and 1% existing attributes at each time step. DBLP

dataset is extracted from DBLP public bibliography data. Specif-

ically, a citation network is built for the papers published before

2014 from 10 main research areas in computer science, including AI,

computer networks, information security, database, etc. We treat

each paper as a node, each citation as a direct edge from one paper

to its reference. Bag-of-words model is applied on the paper title

and venue to obtain the attribute information, and the major area

the papers are published in is considered as label ground truth. We

divide the DBLP network into 10 time steps from 2005-2014 based

on the publishing time of papers. The detailed statistics of these

datasets are summarized in Table 2.

5.1.2 Baselines. To evaluate the performance of our proposed

DRLAN, we compare it with three categories of methods: plain

network embedding methods, attributed network embedding meth-

ods and dynamic network embedding methods. Four plain network

embedding methods are:

• DeepWalk [20]: DeepWalk preforms random walks on network

and uses the skip-gram model to learn representation.

• node2vec [5]: node2vec extends DeepWalk by proposing a flexible

neighbor discovery method in random walks to capture richer

structure information.

• LINE [24]: LINE is one of state-of-the-art method for large-scale

plain network embedding using edge-sampling method. It is

able to preserve both first-order and second-order proximities

between the nodes.

• RandNE [35]: RandNE is also a state-of-the-art plain network

embedding method for billion-scale networks. It learns represen-

tation preserving high-order network structural proximities by

iterative Gaussian random projection.

Three state-of-the-art attributed network embedding methods are:

• LANE [8]: LANE incorporates label information into attributed

network representation. However, label is very important for

1
https://www.aminer.cn/billboard/citation (V7 version is used)

node classification task, so we use the variations of LANE which

only leverages the attributed network, without the help of label.

• CAN [17]: CAN learns representations of both attributes and

nodes in the same semantic space such that the affinities between

them can be captured.

• FeatWalk [9]: FeatWalk is a state-of-the-art attributed network

embedding method. It uses random walks sampled from hetero-

geneous feature matrix to encode multiple node features into

unified node vector representations.

Four dynamic network embedding methods are:

• CTDNE [18]: CTDNE uses temporal random walk to capture

the continuous time dynamics of the network, learning a time

dependent network representation for continuous-time dynamic

networks.

• TIMERS [36]: TIMERS is a state-of-the-art network embedding

method for dynamic networks. It develops a lower bound of

SVD minimum loss for dynamic networks and uses the bound to

monitor the margin between reconstruction loss of incremental

updates and the minimum loss in SVD model.

• MMDNE [16]: MMDNE microscopically models the formation

process of network structure with a temporal attention point

process, and macroscopically constrains the network structure

to obey a certain evolutionary pattern with a dynamics equation.

• DANE [11]: DANE learns representation from eigenvector de-

composition of the Laplace matrix and employs first-order matrix

perturbation theory to dynamically update the representation.

We implemented all the baselines by the code released by original

authors.We evaluate the efficiency of ourmethod on amachinewith

Intel Xeon E5-2660 (2.2GHz) CPU and 80GB memory. For all the

methods, we uniformly set the dimension as 𝑑 = 128 unless stated

otherwise, and other parameters of all baselines are tuned to be

optimal. In addition, all of the pre-defined weights in our model can

be efficiently tuned at the end of the algorithm without re-running

the model. It is important to note that DeepWalk, node2vec, LINE,

LANE, CAN and FeatWalk can only handle static networks. For a

fair comparison, we rerun these methods at each time step.

5.2 Results and Analysis
5.2.1 Efficiency Study. To compare the efficiency of different

methods, we first compare DRLAN with the attributed network

embedding baselines (i.e., LANE, DANE, CAN and FeatWalk) and

state-of-the-art dynamic network embedding (i.e., TIMERS, CTDNE

andMMDNE). Because DeepWalk, node2vec, LINE and RandNE can

only handle plain networks and calculating attribute information is

very time-consuming, we do not include these methods for fairness.

Meanwhile, LANE and DANE are not able to handle the large-scale

network DBLP due to the out of memory issue, and CAN, CTDNE

and MMDNE cannot get results on DBLP in an acceptable time (i.e.,

36 hours). Hence, we do not present their experimental results on

Figure 1(c) and subsequent experiments on DBLP.

As we can observe from Figure 1, DRLAN is much faster than

all baseline methods. To be more specific, for example, DRLAN is

6, 676× and 11, 910× faster than state-of-the-art dynamic embedding

MMDNE on moderate-scale BlogCatalog and Flickr, respectively.

DRLAN significantly outperforms deep neural network model CAN

by 3, 213× and 5, 426× on BlogCatalog and Flickr networks. DRLAN

https://www.aminer.cn/billboard/citation
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Figure 1: Cumulative running time comparison.

is faster than FeatWalk by 170×, 244× and 310× on BlogCatalog,

Flickr and DBLP, respectively. This indicates that DRLAN is sig-

nificantly more efficient than state-of-art methods as the network

scale expands. DRLAN is 5× and 23× faster than DANE on Blog-

Catalog and Flickr, however, DANE is not able to handle large-scale

attributed network DBLP due to its huge memory requirements

and time consumption for eigen-decomposition.

This efficiency experiment confirms that our proposed DRLAN

is faster than other attributed and dynamic network embedding

methods on large-scale networks, and is able to efficiently handle

the large-scale attributed networks.

5.2.2 Node Classification. We further evaluate the effectiveness

of representations on the task of node classification. We split the

embeddings of all nodes via 5-fold cross-validation, using 80% of

nodes as training set and the rest of nodes for the testing. Then, an

one-vs-all logistic regression classifier implemented by LibLinear
2

is trained using the representations of labeled nodes in the training

set, and then tested on the labeled nodes of testing set. Similar

to previous studies [3, 20], we use two measurements Macro-F1

and Micro-F1 to evaluate the performance. The whole process is

repeated 10 times and the average performance on every time step

is reported in Tables 3, 4 and 5.

The following observations can be made from the tables: (1) All

attributed network embedding methods generally perform better

than the plain network embeddingmethods. Themain reason is that

attributed network embedding methods can capture the attribute

information of nodes, which effectively alleviates the sparsity and

noise of network structure. Especially for node classification task,

the help of attributes would be more significant. It can be observed

that in the more sparse DBLP network, those methods considering

attribute (i.e., FeatWalk and DRLAN) is more effective. Addition-

ally, TIMERS performs worst on DBLP network. This is because

DBLP network is very sparse (average degree is only 10.73), and

SVD based embedding is not suitable for very sparse networks. (2)

DRLAN achieves the best results on the large-scale network DBLP

while slightly better performance than FeatWalk on BlogCatalog

and Flickr. This may be because FeatWalk uses a random walk

2
https://www.csie.ntu.edu.tw/~cjlin/liblinear/

sampling based method to learn the features of attributed network.

As the scale of the network increases, the sampling based method

will be very time-consuming and difficult to accurately learn the

essential features from the sampled walks. In contrast, DRLAN does

not require a complicated sampling process, and it can learn the

representation through direct projection of the network, which

allows it to directly obtain the core information of the attributed

network and naturally adapt to large-scale attributed networks.

5.2.3 Link Prediction. Link prediction is an important task of

network analysis. It aims to predict if there is an edge between

two nodes. Following [15], we randomly hide 10% of the edges for

testing. After learning representation on the rest of the network,

we use the inner product between representation to present the

similarity of two nodes. We rank pairs of nodes according to the

similarity measures and evaluate the performance on the testing

set. To judge the ranking quality, we employ the area under the ROC
curve (AUC), which is widely used in machine learning community

to evaluate a ranking list. The process is repeated 10 times and the

average results are reported.

The results on three attributed networks are shown in Tables 6,

8 and 10. From the results, we can see that DRLAN significantly

outperforms the baselines in all cases on all networks in link pre-

diction task. Notably, compared to the pure structure-based meth-

ods, i.e., DeepWalk, node2vec, LINE, RandNE, CTDNE, TIMERS

and MMDNE, DRLAN achieves a significant improvement at each

time step. Additionally, DRLAN even outperforms deep learning

method CAN on two moderate-scale networks BlogCatalog and

Flickr. In addition to our method considering high-order proximi-

ties, Johnson-Lindenstrauss Lemma guarantees the loss accuracy of

random projection. Moreover, DRLAN still significantly performs

better than FeatWalk with the dynamic updates of the networks.

The reason is the same as explained above, our DRLAN can update

the representations preserving both high-order structure proximi-

ties and attribute similarities by direct increment projection at each

new time step, while FeatWalk re-learns the representation from

the sampled walks on the updated heterogeneous feature matrix.

This experiment also proves that the representation learned

by DRLAN can effectively infer the dynamic network structure

https://www.csie.ntu.edu.tw/~cjlin/liblinear/


Table 3: Micro-F1 (Mi) and Macro-F1 (Ma) scores of node classification on BlogCatalog

Time 1 2 3 4 5 6 7 8 9 10

Method Mi Ma Mi Ma Mi Ma Mi Ma Mi Ma Mi Ma Mi Ma Mi Ma Mi Ma Mi Ma

DeepWalk .735 .759 .737 .758 .718 .742 .714 .732 .725 .744 .713 .730 .715 .729 .704 .717 .695 .710 .695 .705

Node2vec .745 .762 .743 .764 .737 .750 .743 .758 .751 .769 .748 .757 .751 .736 .739 .729 .721 .715 .728 .720

LINE .744 .770 .749 .768 .715 .734 .728 .746 .711 .731 .692 .708 .703 .718 .698 .714 .711 .723 .693 .700

RandNE .741 .733 .729 .742 .734 .742 .730 .741 .732 .745 .729 .738 .725 .735 .717 .724 .715 .720 .714 .719

LANE .924 .861 .935 .905 .918 .877 .771 .755 .900 .887 .915 .919 .855 .860 .923 .919 .906 .908 .914 .916

CAN .831 .847 .823 .840 .832 .843 .823 .835 .817 .830 .817 .824 .808 .818 .814 .822 .805 .809 .815 .820

FeatWalk .921 .925 .936 .921 .919 .923 .917 .920 .923 .926 .921 .923 .927 .930 .925 .928 .918 .921 .922 .925

CTDNE .749 .775 .762 .787 .755 .778 .744 .769 .754 .776 .744 .766 .747 .754 .734 .744 .714 .727 .724 .741

TIMERS .730 .617 .713 .600 .700 .599 .692 .623 .702 .671 .704 .694 .698 .702 .704 .706 .711 .719 .722 .729

MMDNE .756 .641 .776 .799 .773 .796 .778 .797 .769 .787 .777 .790 .776 .784 .778 .788 .757 .770 .764 .779

DANE .901 .842 .925 .892 .902 .881 .785 .740 .907 .877 .901 .886 .869 .895 .921 .903 .913 .909 .892 .917

DRLAN .928 .924 .942 .928 .920 .925 .916 .922 .918 .922 .914 .919 .934 .912 .932 .916 .905 .909 .927 .910

Table 4: Micro-F1 (Mi) and Macro-F1 (Ma) scores of node classification on Flickr

Time 1 2 3 4 5 6 7 8 9 10

Method Mi Ma Mi Ma Mi Ma Mi Ma Mi Ma Mi Ma Mi Ma Mi Ma Mi Ma Mi Ma

DeepWalk .552 .574 .559 .580 .556 .572 .561 .576 .565 .574 .571 .578 .556 .561 .564 .562 .555 .551 .568 .565

node2vec .524 .551 .537 .546 .539 .552 .540 .545 .533 .540 .538 .558 .535 .531 .537 .542 .537 .525 .540 .534

LINE .539 .558 .539 .553 .554 .567 .528 .542 .550 .562 .545 .553 .520 .525 .531 .529 .548 .542 .531 .525

RandNE .559 .549 .564 .536 .555 .542 .568 .535 .555 .531 .558 .545 .569 .554 .563 .555 .554 .540 .561 .534

LANE .818 .778 .808 .786 .739 .713 .766 .742 .769 .751 .774 .765 .775 .769 .775 .773 .788 .785 .769 .767

CAN .707 .720 .720 .734 .704 .716 .716 .723 .696 .700 .705 .709 .698 .698 .717 .714 .722 .719 .716 .709

FeatWalk .877 .883 .874 .877 .885 .899 .884 .888 .875 .877 .878 .880 .879 .880 .876 .877 .881 .880 .877 .876

CTDNE .682 .658 .665 .648 .701 .674 .716 .689 .722 .699 .729 .702 .734 .734 .726 .737 .747 .739 .739 .729

TIMERS .625 .597 .624 .592 .609 .580 .613 .587 .597 .618 .615 .595 .605 .585 .605 .584 .606 .586 .600 .586

MMDNE .698 .673 .720 .699 .722 .690 .732 .710 .736 .711 .730 .710 .730 .708 .742 .746 .741 .740 .745 .735

DANE .741 .741 .760 .760 .752 .752 .773 .773 .775 .775 .760 .760 .766 .766 .762 .762 .771 .771 .761 .761

DRLAN .891 .897 .884 .889 .886 .889 .886 .889 .881 .884 .886 .888 .883 .885 .880 .879 .878 .877 .879 .877

Table 5: Micro-F1 (Mi) and Macro-F1 (Ma) scores of node classification on DBLP

Time 1 2 3 4 5 6 7 8 9 10

Method Mi Ma Mi Ma Mi Ma Mi Ma Mi Ma Mi Ma Mi Ma Mi Ma Mi Ma Mi Ma

DeepWalk .647 .542 .601 .494 .576 .467 .548 .433 .532 .407 .506 .377 .500 .366 .508 .368 .511 .363 .511 .369

node2vec .659 .579 .621 .544 .592 .463 .545 .423 .533 .409 .507 .376 .500 .362 .508 .371 .512 .369 .510 .361

LINE .530 .390 .519 .382 .503 .345 .500 .338 .486 .313 .473 .287 .478 .301 .491 .310 .503 .316 .502 .318

RandNE .630 .690 .659 .682 .653 .645 .650 .638 .686 .633 .673 .687 .678 .631 .691 .631 .633 .657 .650 .648

FeatWalk .901 .885 .898 .883 .892 .870 .884 .862 .882 .856 .882 .857 .870 .847 .869 .838 .855 .816 .855 .815

TIMERS .444 .422 .450 .428 .437 .417 .421 .403 .415 .383 .405 .382 .402 .372 .395 .375 .391 .370 .384 .372

DRLAN .945 .930 .943 .926 .953 .939 .955 .939 .954 .935 .942 .942 .963 .951 .951 .936 .925 .905 .917 .894

Table 6: AUC scores of link prediction on BlogCatalog

Time 1 2 3 4 5 6 7 8 9 10

DeepWalk .571 .565 .588 .604 .615 .619 .619 .616 .621 .618

node2vec .563 .579 .586 .606 .615 .623 .622 .611 .620 .621

LINE .588 .592 .583 .586 .583 .584 .586 .579 .577 .579

RandNE .833 .840 .838 .834 .835 .832 .835 .831 .835 .838

LANE .726 .702 .707 .727 .685 .660 .743 .714 .683 .713

CAN .835 .839 .785 .857 .857 .798 .857 .802 .812 .857

FeatWalk .635 .632 .631 .636 .636 .636 .642 .634 .640 .647

CTDNE .776 .794 .790 .796 .807 .792 .800 .790 .800 .793

TIMERS .707 .689 .704 .690 .710 .710 .720 .718 .708 .703

MMDNE .840 .836 .833 .840 .841 .834 .830 .844 .840 .840

DANE .736 .711 .694 .714 .708 .698 .745 .734 .715 .725

DRLAN .861 .856 .858 .859 .861 .863 .865 .867 .868 .875

Table 7: AUC scores of network reconstru. on BlogCatalog

Time 1 2 3 4 5 6 7 8 9 10

DeepWalk .498 .511 .506 .512 .517 .523 .528 .542 .554 .566

node2vec .496 .501 .507 .511 .516 .521 .530 .536 .551 .564

LINE .497 .496 .499 .499 .498 .502 .502 .502 .505 .501

RandNE .863 .868 .867 .865 .876 .877 .883 .887 .890 .893

LANE .685 .683 .750 .771 .657 .742 .764 .750 .725 .763

CAN .834 .835 .790 .855 .838 .794 .856 .800 .808 .857

FeatWalk .633 .634 .635 .636 .639 .640 .641 .640 .643 .645

CTDNE .792 .792 .791 .794 .795 .795 .794 .792 .793 .796

TIMERS .698 .686 .698 .702 .707 .705 .709 .709 .711 .713

MMDNE .862 .869 .863 .875 .879 .876 .878 .879 .861 .872

DANE .673 .669 .771 .691 .731 .692 .693 .701 .705 .713

DRLAN .905 .908 .909 .912 .912 .913 .914 .915 .917 .916



Table 8: AUC scores of link prediction on Flickr

Time 1 2 3 4 5 6 7 8 9 10

DeepWalk .682 .701 .699 .710 .747 .764 .775 .792 .795 .791

node2vec .683 .685 .730 .749 .772 .793 .802 .805 .804 .807

LINE .797 .798 .793 .783 .781 .784 .766 .765 .767 .769

RandNE .840 .840 .842 .856 .855 .863 .853 .854 .855 .852

LANE .692 .766 .756 .716 .740 .788 .728 .770 .722 .733

CAN .858 .850 .858 .866 .858 .869 .870 .870 .869 .877

FeatWalk .678 .679 .673 .681 .685 .705 .698 .703 .695 .696

CTDNE .761 .778 .773 .779 .786 .784 .794 .809 .806 .805

TIMERS .631 .612 .614 .600 .614 .621 .610 .619 .605 .616

MMDNE .805 .812 .819 .815 .819 .820 .814 .817 .813 .822

DANE .701 .775 .748 .705 .754 .797 .735 .764 .715 .720

DRLAN .862 .864 .867 .870 .874 .876 .880 .883 .886 .889

Table 9: AUC scores of network reconstruction on Flickr

Time 1 2 3 4 5 6 7 8 9 10

DeepWalk .440 .444 .450 .453 .449 .449 .427 .412 .416 .415

node2vec .429 .435 .435 .431 .422 .408 .380 .370 .366 .373

LINE .338 .343 .345 .350 .357 .361 .364 .367 .374 .376

RandNE .841 .846 .847 .849 .846 .829 .837 .831 .841 .845

LANE .666 .654 .708 .696 .680 .671 .688 .701 .682 .702

CAN .756 .759 .721 .782 .769 .731 .790 .745 .752 .796

FeatWalk .652 .655 .658 .661 .663 .668 .669 .672 .676 .678

CTDNE .802 .802 .800 .796 .795 .799 .801 .809 .811 .805

TIMERS .609 .605 .608 .601 .606 .610 .607 .608 .614 .609

MMDNE .829 .833 .835 .839 .839 .836 .838 .839 .841 .842

DANE .672 .661 .692 .701 .701 .688 .670 .681 .692 .711

DRLAN .858 .861 .864 .868 .871 .873 .877 .880 .883 .886

Table 10: AUC scores of link prediction on DBLP

Time 1 2 3 4 5 6 7 8 9 10

DeepWalk .701 .693 .678 .689 .686 .686 .702 .705 .713 .711

node2vec .696 .689 .691 .681 .686 .694 .689 .690 .700 .706

LINE .573 .558 .548 .557 .562 .548 .534 .526 .526 .524

RandNE .793 .780 .810 .788 .798 .779 .758 .772 .778 .769

FeatWalk .774 .773 .765 .765 .760 .757 .755 .751 .755 .745

TIMERS .631 .667 .656 .625 .606 .590 .576 .573 .562 .561

DRLAN .892 .893 .881 .839 .880 .861 .828 .811 .838 .855

Table 11: AUC scores of network reconstruction on DBLP

Time 1 2 3 4 5 6 7 8 9 10

DeepWalk .729 .715 .697 .701 .704 .691 .705 .699 .687 .673

node2vec .716 .704 .712 .702 .707 .705 .715 .707 .692 .681

LINE .613 .565 .640 .678 .620 .606 .582 .563 .539 .551

RandNE .796 .799 .771 .794 .751 .733 .754 .754 .768 .732

FeatWalk .792 .790 .803 .813 .748 .728 .712 .716 .735 .730

TIMERS .643 .659 .651 .605 .643 .589 .593 .563 .555 .587

DRLAN .893 .890 .891 .899 .870 .863 .844 .839 .826 .827
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Figure 2: The impacts of parameters 𝑝, 𝑞, 𝛽 , dimension 𝑑 , and the sparsity 𝑠 of projection matrix on DRLAN

based on structure information and rich attribute information of

the existing network.

5.2.4 NetworkReconstruction. One basic objective for network
representation is to reconstruct the network.We rank pairs of nodes

in a similar way as link prediction. The top ranking pairs are used

to reconstruct the network because large similarities indicate high

probabilities of having edges. On DBLP network, the number of

possible pairs of nodes
𝑁 (𝑁−1)

2
is too large to evaluate, following

the setting in [15] we sample 1% of these pairs for evaluation.

We show the results on three attributed networks in Tables 7, 9

and 11. Aswe can see, DRLAN achieves the best performance among

all methods on network reconstruction task. Although TIMERS

considers restart of SVD to reduce error accumulation for dynamic

networks in time, it still shows noticeable performance degradation

at some time steps on large-scale DBLP network. Additionally, we

find FeatWalk and DRLAN both show a performance degradation

over time on DBLP network. The potential reason may be: on

DBLP network, the attribute information of papers over a long

time span may interfere the network reconstruction over time, and

thus the structure of network is more important in this task. For

example, a new published paper, which may be similar to a very

old paper in title, may not cite this old paper. However, DRLAN

still significantly outperforms FeatWalk at each time step. This is

because DRLAN retains the powerful structure representation by

explicitly considering the high-order structural proximities, which

is more effective on sparse DBLP network.

In summary, the results of the three dynamic network mining

tasks answer the question that our model can learn better node

embedding with the dynamic updates of networks as compared to

competitive network embedding methods.

5.2.5 Parameter Sensitivity. We now study the sensitivity of

our proposed method with respect to the important parameters

in terms of node classification task. Specifically, we analyze the

effect of the structure proximity order 𝑝 , attribute proximity order



𝑞, sparsity 𝑠 of random projection matrix, hyper-parameter 𝛽 and

embedding dimension 𝑑 . The results are shown in Figure 2, results

on other datasets are very similar, so we omit them. First, we vary

𝑝 and 𝑞 from 1 to 5 respectively. As 𝑝 and 𝑞 increase, high-order

structure and high-order attribute information are added to U. Fig-
ure 2(a) shows the results of DRLAN on Flickr with different 𝑝 and

𝑞. We find that both high-order structure information and high-

order information can significantly improve the performance of

node representations. Second, we vary the hyperparameter 𝛽 from

0 to 1 and sparsity 𝑠 of random projection matrix from 1 to 500

√
𝑛.

When 𝛽 = 0, only attribute information is used to learn U. When

𝛽 = 1, only structure information is used to learn U. The sparsity 𝑠
denotes 1/𝑠 of the elements in the matrix S being preserved in the

process of random projection. From the results in Figure 2(b), we

observe that DRLAN achieves the best performance when 𝛽 = 0.6

and 𝑠 = 30

√
𝑛, where the contributions of attribute information and

structure information are balanced while preserving the appropri-

ate information in the projection process. Finally, we vary 𝑑 from

32 to 192. From Figure 2(c), we see that, as 𝑑 increases from 32 to

192, the performance of DRLAN gradually increases. In particular,

the experimental results on the BlogCatalog network achieve the

best at 𝑑 = 128, followed by slight fluctuations. From the results, we

also find that DRLAN performs well under most parameter settings,

which means that DRLAN has good robustness.

6 CONCLUSIONS
In this paper, we propose a novel dynamic representation learn-

ing method - DRLAN for large-scale attributed networks based

on sparse random projection, which can capture the high-level

non-linearity and preserve the high-order proximity both in the

topological structures and node attributes. In particular, DRLAN

can efficiently obtain the low-dimensional representations of nodes

in attributed networks by sparse random projection and be able to

update on the fly as the changes in network. Moreover, DRLAN

does not require complex sampling processes in [9, 24] or intricacy

matrix decomposition in [8, 11] to obtain representation. Extensive

experiments on three real-world datasets validate the efficiency

and effectiveness of DRLAN across various settings.
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