
Fast Attributed Multiplex Heterogeneous Network Embedding
Zhijun Liu

Yantai University
Yantai, China

liuzhijun9503@126.com

Chao Huang
JD Finance America Corporation

Mountain View, USA
chaohuang75@gmail.com

Yanwei Yu∗
Ocean University of China

Qingdao, China
yuyanwei@ouc.edu.cn

Baode Fan
Yantai University
Yantai, China

fanbaodeyt@163.com

Junyu Dong
Ocean University of China

Qingdao, China
dongjunyu@ouc.edu.cn

ABSTRACT
In recent years, heterogeneous network representation learning
has attracted considerable attentions with the consideration of
multiple node types. However, most of them ignore the rich set
of network attributes (attributed network) and different types of
relations (multiplex network), which can hardly recognize themulti-
modal contextual signals across different relations. While a handful
of network embedding techniques are developed for attributed
multiplex heterogeneous networks, they are significantly limited
to the scalability issue on large-scale network data, due to their
heavy computation and memory cost. In this work, we propose
a Fast Attributed Multiplex heterogeneous network Embedding
framework (FAME) for large-scale network data, by mapping the
units from different modalities (i.e., network topological structures,
various node features and relations) into the same latent space in
an efficient way. Our FAME is an integrative architecture with the
scalable spectral transformation and sparse random projection, to
automatically preserve both attribute semantics and multi-type
relations in the learned embeddings. Extensive experiments on four
real-world datasets with various network analytical tasks, demon-
strate that FAME achieves both effectiveness and significant effi-
ciency over state-of-the-art baselines. The source code is available
at: https://github.com/ZhijunLiu95/FAME.

CCS CONCEPTS
•Mathematics of computing→Graph algorithms; •Comput-
ing methodologies→ Learning latent representations.

KEYWORDS
Network embedding; graph representation learning; multiplex het-
erogeneous networks; attributed networks; large-scale networks;
sparse random projection

∗Yanwei Yu is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CIKM ’20, October 19–23, 2020, Virtual Event, Ireland
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6859-9/20/10. . . $15.00
https://doi.org/10.1145/3340531.3411944

ACM Reference Format:
Zhijun Liu, Chao Huang, Yanwei Yu, Baode Fan, and Junyu Dong. 2020. Fast
Attributed Multiplex Heterogeneous Network Embedding. In Proceedings
of the 29th ACM International Conference on Information and Knowledge
Management (CIKM ’20), October 19–23, 2020, Virtual Event, Ireland. ACM,
New York, NY, USA, 10 pages. https://doi.org/10.1145/3340531.3411944

1 INTRODUCTION
Representation learning on network data (e.g., social networks, cita-
tion networks and E-commerce networks) has become a pragmatic
research field and been applied to many online services, such as
advertising, E-commerce and social media platforms. At its core is
to learn low-dimensional vector representations of nodes while pre-
serving network topological structure and intrinsic characteristics,
which could facilitate various downstream network analytical tasks,
e.g., link prediction [6], node classification [27], spatial-temporal
data modeling [23, 29] and user behavior analysis [15, 30].

Early methods towards this goal, have made significant efforts
on representation learning for homogeneous networks with singu-
lar type of nodes [6, 12, 22]. To capture the network heterogeneity
properties, many subsequent research works propose to model het-
erogeneous graph structures based on predefined meta-paths, such
as metapath2vec [5]. To capture the rich neighborhood contextual
signals, various graph neural network based models have been pro-
posed to aggregate feature information from neighboring nodes,
such as graph convolutional networks (GCN) [12], graph attention
networks (GAT) [25], inductive graph learning (GraphSAGE) [7]
and mutual information maximization schemes (DMGI) [17].

However, in real-world scenarios, we need to deal with more
complex contextual network structures–multiplex heterogeneous
network in which each connection between multiple types of nodes
is exhibited with relationship diversity in nature. Consider the
online retailing system as an example, there may exist multiple
relations (e.g., click, add-to-cart, add-to-preference and purchase)
between the same pair of user and item [28]. The ignorance of such
multi-modal relations, makes existing network embedding methods
insufficient to distill effective attribute-based structural signals from
the collective behaviors of users. While a handful of studies attempt
to learn node embeddings on multiplex heterogeneous network [2,
17, 32], a significant deficiency is that they can hardly serve the
large-scale network data (e.g., millions of nodes and edges)–which
is ubiquitous in practical scenarios. For example, when learning the
representation of the Alibaba data with more than 40 million nodes
and 500 million edges, GATNE takes nearly 4 hours to converge

https://github.com/ZhijunLiu95/FAME
https://doi.org/10.1145/3340531.3411944
https://doi.org/10.1145/3340531.3411944


with 150 distributed workers [2]. Such methods of excessively high
time complexity and relying on large-scale distributed computing
platform are not enough to be adopted in practice, especially in
frequently updated systems. Hence, an efficient model with stronger
joint representation learning capability of heterogeneous multi-
type relations and contextual attributes for large-scale network
data, is urgently needed.

Nevertheless, there are several key challenges that remain to be
solved, in order to realize both efficient and effective representa-
tion learning for large-scale attributed multiplex heterogeneous
networks (AMHENs).
• Heterogeneity. Heterogeneous multi-typed nodes and rela-
tions raise the challenge of automatically capturing various
interactive meta-paths among nodes and high-order network
structures in a unified embedding framework. Most existing
heterogeneous network embedding methods require hand-
crafted meta-paths for different network datasets.
• Multiplicity. Because of heterogeneous multi-typed relations
and contextual attributes, performing representation learn-
ing for AMHENs with the goal of jointly preserving meta-
path interactions, global structural contexts and attributed
information, remains a significant challenge.
• Scalability. In light of these limitations of existing multiplex
heterogeneous network embedding methods, it is important
and challenging to develop leaning algorithms that can scale
well to large-scale networks with millions of nodes, edges
and high-dimensional attributes without relying on large-
scale distributed computing platform.

To tackle the aforementioned challenges, we propose a novel Fast
Attributed Multiplex heterogeneous network Embedding frame-
work, named FAME. Specifically, we first decompose the multi-
plex heterogeneous network into homogeneous and bipartite sub-
network. Then, a spectral transformation module is developed to
automatically aggregate the semantic-level decoupled sub-networks
with the exploration of their multi-relational topological signals.
To significantly reduce the computation and memory costs, we pro-
pose to endow the graph convolutional network with the efficient
feature aggregation capability via the sparse random projection
mechanism. To encode the rich set of network attributes, we further
incorporate the external attributed features into the spectral graph
transformation architecture, while preserving both semantic and
structural information in the attributed multiplex heterogeneous
network. The resulting model outperforms several strong baselines
on both link prediction and node classification tasks. We also found
that with the new designed random projection-based graph con-
volutional operation, our FAME embedding framework performs
significantly faster than the state-of-the-art representation learning
methods for AMHENs by up to several orders of magnitudes.

We highlight the key contributions of this work as follows:

• We explore how information interchange on various modali-
ties in the network, to jointly reflect unique node characteris-
tics and graph topological information. The proposed FAME
framework can automatically capture relation-aware struc-
tural signals between nodes without the prior knowledge of
meta-path definitions.

• FAME incorporates both the spectral graph transformation
and node attributed features into the sparse random pro-
jection architecture, to augment the graph convolutional
network with the capability of large-scale network represen-
tation learning in an efficient way.
• Weperform extensive experiments on four real-world datasets
to demonstrate the superiority of our proposed model when
competing with other baselines. In addition to its effective-
ness advantage, FAME results in up to 6 orders of magnitudes
faster than state-of-the-art AMHEN embedding techniques.

2 RELATEDWORK
Network Embedding. There are mainly two types of network rep-
resentation learning methods: network embedding and graph neu-
ral networks. Network embedding is to embed network into a low
dimensional space while preserving the network structure and prop-
erty [9, 31], such as random walk based methods [6], deep neural
network models [21], matrix factorization based approaches [1, 18].
For graph neural networks, GCN [12] is proposed to incorporate
neighbors’ features into the center node feature using convolutional
operations. GAT [24] leverages attention mechanism to capture
the importance of neighbors to the center node more effectively.
SGC [27] is a simplified version of GCN, which only uses the prod-
uct of high-order adjacency matrices and attribute matrix, without
nonlinear transformation and training parameters. However, all
these algorithms are proposed for the homogeneous networks.

HeterogeneousNetworkEmbedding.Heterogeneous network
embedding mainly focuses on preserving the meta-path based struc-
tural information. metapath2vec [5] formalizes meta-path based
random walk to construct the heterogeneous neighborhood of
nodes and then leverages a heterogeneous skip-grammodel to learn
node embeddings. HERec [19] also uses a meta-path based random
walk strategy to generate meaningful node sequences and subse-
quently integrated into matrix factorization (MF) model to learn
network embeddings. HetGNN [33] and HeGAN [8] incorporate
bi-directional LSTM, attention mechanism, and generative adversar-
ial networks (GAN) for heterogeneous network embedding. These
methods rely on domain knowledge to choose the valuable meta-
paths, whereas there also exist several methods [26, 32] which do
not require meta-path selection. However, HANE [26] transforms
various types of nodes with different attributes into a uniform
space, which cannot distinguish the diversity of edges between
nodes. GTN [32] needs explicit products of candidate adjacency
matrices and requires additional memory space and computing
resources.

Multiplex Heterogeneous Network Embedding. Multiplex
networks are much richer than simple heterogeneous networks
and often used to model complex interaction systems. Most of the
existing approaches usually only capture a single view of a het-
erogeneous network, whereas there are usually multiple types of
relations between nodes, yielding networks with multiple views.
PMNE [16] proposes three aggregation models to learn one overall
embedding from the multiplex network. However, it cannot capture
long-distance meta-path information between nodes and ignore the
rich content information of the nodes. GATNE [2] learns base em-
bedding, edge embedding and attribute embedding to generate the



overall node embeddings. The base embedding and attribute embed-
ding are shared among edges of different types, while the edge em-
bedding is computed by aggregation of neighborhood information
with the self-attention mechanism. HAN [25] extends GAT to het-
erogeneous networks through meta-path based neighbor discovery
strategy and hierarchical attention mechanism. DMGI [17] learns a
node encoder that maximizes the mutual information between local
patches of each relation of the heterogeneous graph and the global
representation of the relation. However, these methods still need to
specify the meta-path type manually. Recently, GTN [32] computes
the convex combinations of adjacency matrices of sub-networks
with different weights to obtain candidate adjacency matrices to
generate the useful meta-paths. GMP [10] builds category graphs
to model user purchasing behaviors, and uses multi-scale pyramid
neural network to predict users’ purchasing intentions.

RandomProjection.Randomprojection is based on the Johnson-
Lindenstrauss lemma [11], which uses a random matrix with unit
Euclidean column norms to find a lower-dimensional subspace
that approximately preserves the Euclidean distances between all
pairs of data points in the original space. There are several variants
of random projection techniques for manifold and network learn-
ing [14, 20]. Recently, RandNE [34] and FastRP [3] are proposed to
capture high-order structure information of homogeneous network
by Gaussian random projection and sparse random projection, re-
spectively. However, these methods ignore the heterogeneity and
attributes of nodes and relations, and thus cannot capture the rich
semantics on AMHENs.

3 PROBLEM DEFINITION
In this section, we introduce key notations used in this paper and
then formally define the studied problem.

Let G = {V, E} denote a network, whereV is the set of nodes,
and E is the set of edges between the nodes, each representing a
relationship between two nodes. Each edge 𝑒𝑖 𝑗 ∈ E is an ordered
pair 𝑒𝑖 𝑗 = (𝑣𝑖 , 𝑣 𝑗 ) and is associated with a weight 𝑤𝑖 𝑗 > 0, which
indicates the strength of the relation. If 𝐺 is undirected, we have
𝑒𝑖 𝑗 ≡ 𝑒 𝑗𝑖 and 𝑤𝑖 𝑗 ≡ 𝑤 𝑗𝑖 ; if 𝐺 is directed, we have 𝑒𝑖 𝑗 . 𝑒 𝑗𝑖 and
𝑤𝑖 𝑗 . 𝑤 𝑗𝑖 .

Definition 1 (Heterogeneous Network). A heterogeneous
network is a network G = {V, E} associated with a node type map-
ping function 𝜙 : V → O and an edge type mapping function
𝜓 : E → R, where O and R represent the set of all node types and
the set of all edge types, respectively. Each node 𝑣 ∈ V belongs to a
particular node type, and each edge 𝑒 ∈ E is categorized into a spe-
cific edge type. If |O| + |R| > 2, the network is called heterogeneous;
otherwise homogeneous.

Definition 2 (Attributed Network). An attributed network
is a network G endowed with an attribute feature matrix, i.e., G =

{V, E,X}. X ∈ R𝑛×𝑚 is the matrix that consists of node attribute
features for all nodes, where each row is the associated node feature
vector of node 𝑣𝑖 . Here, 𝑛 and 𝑚 denotes the number of nodes and
attributes, respectively.

Definition 3 (Attributed Multiplex Heterogeneous Net-
work, or AMHEN). An attributed multiplex heterogeneous net-
work is a network G = {V, E,X} = {G1,G2, . . . ,G|R |}, where

G𝑟 = {V, E𝑟 ,X} is the graph that contains all edges with edge type
𝑟 ∈ R, E =

⋃
𝑟 ∈R E𝑟 , andV =

⋃
𝑜∈OV𝑜 . If |O| + |R| > 2 and there

exist different types of edges between same node pairs, the network is
calledmultiplex heterogeneous.

More specifically, in a multiplex heterogeneous network, there
may be multiple types of edges between node 𝑣𝑖 and 𝑣 𝑗 . Hence, an
edge is denoted as 𝑒𝑟

𝑖 𝑗
in AMHENs, where 𝑟 corresponds to a certain

edge type. Given the above definitions, we next formally define our
studied problem for representation learning on networks.

Problem 1 (Attributed Multiplex Heterogeneous Network
Embedding). Given an attributed multiplex heterogeneous network
G = {V, E,X}, the problem of Attributed Multiplex Heterogeneous
Network Embedding is to learn a 𝑑-dimensional vector representation
for each node 𝑣𝑖 ∈ V , i.e., learn a mapping function 𝑓 : V → R𝑑 ,
where 𝑑 ≪ |V|.

Key notations are summarized in Table 1.

Table 1: Main notations and their definitions.

Notation Definition
G the input network
V, E the node/edge set of G
O,R the node/edge type set of G
X the node attribute matrix of G
Z the node embedding
A the adjacency matrix
A the adjacency matrix with meta-paths
R the random projection matrix
𝑑 the dimension of embeddings
𝑛,𝑚 the number of nodes/attributes
𝑠 the sparsity of random projection matrix
𝐾 the order of spectral graph transformation
𝛼𝑖 the weight of spectral graph transformation
𝛽𝑖 the weight of adjacency matrix

4 METHODOLOGY
In this section, we present the details of our FAME (as shown in
Figure 1), consisting of two key components: (i) spectral graph
transformation and (ii) fast random projection embedding. Spectral
graph transformation aims to capture the short and long meta-
paths among heterogeneous nodes across multi-relations and sub-
network high-order structures. Fast random projection embedding
incorporates the spectral graph transformation and node attribute
features together into a spare random projection architecture to
learn the low-dimensional representation of nodes efficiently.

4.1 Spectral Graph Transformation
Since AMHENs involve different types of nodes and relationships
among these nodes (each relationship having a different role and
impact on node representation), we first decouple an AMHEN into
multiple homogeneous and bipartite sub-networks (the latter in-
volving two types of nodes) to differentiate each relationship be-
tween nodes in the network. After that, we perform spectral graph



Final 
Model
V4

Fix type 
3

I1 I2 I3U1U2U3

U3

U1
U2

I3

I1
I2

I1 I2 I3U1U2U3

U3

U1
U2

I3

I1
I2

I1 I2 I3U1U2U3

U3

U1
U2

I3

I1
I2

I1 I2 I3U1U2U3

U3

U1
U2

I3

I1
I2

U1

U2

I1

U3

I2

I3

U1

U2

I1

U3

I2

I3

U1

U2

I1

U3

I2

I3

U1

U2

I1

U3

I2

I3

click

buy

cart

collect

user & item 
attributes

Sub-network Extraction Spectral Graph Transformation

U3

U1
U2

I3

I1
I2

f1 f2 f4 f5f3 f6 f7 f9 f10f8

Weighted sum
𝔸 =෍

𝑡=1

𝑇

𝛽𝑡 𝐀𝑡

Fast Random Projection 
Embedding

𝐙 = 𝐹𝜃(𝔸) ⋅ 𝐗 ⋅ 𝐑

𝐹𝜃(𝔸) =෍

𝑖=1

𝐾

𝛼𝑖 𝔸
𝑖

Y4Y1 Y2 Y3

U3

U1
U2

I3

I1
I2

I1 I2 I3U1U2U3

U3

U1
U2

I3

I1
I2

β1

β2

β3

β4

U1

U2

f1 f2 f3 f4 f5

f1 f2 f3 f4 f5

I1

U3

f1 f2 f3 f4 f5

I2

I3

f6 f7 f8 f9 f10

f6 f7 f8 f9 f10

f6 f7 f8 f9 f10

click

user

item

buy

add-to-cart

add-to-collect

E-commerce 
Network

U

I

Figure 1: The overview of the proposed FAME.

transformation on these sub-networks to better capture the prox-
imities between nodes.

Let {G𝑟 |𝑟 = 1, 2, . . . , |R |} be the collection of obtained homoge-
neous networks and bipartite networks and {A𝑟 |𝑟 = 1, 2, . . . , |R |}
denote the adjacency matrices corresponding to {G𝑟 }. For example,
as shown in Figure 1, an E-commerce network contains two node
types (i.e., user and item) and four edge types (i.e., click, buy, add-to-
cart and add-to-preference). In such a case, we divide the network
into four bipartite networks. Notice that we extend the adjacency
matrix A𝑟 of sub-network G𝑟 to include all types of nodes in the
network to fit the dimensions of all adjacency matrices.

Inspired by [13], we can use spectral graph transformation of the
adjacency matrices to capture the high-order proximities between
nodes in each sub-network. One can exploit the fact that the power
A𝑖 of the adjacency matrix of an unweighted graph contains the
number of paths of length 𝑖 for each node pair. On the basis that
nodes connected by many paths should be considered to have a
closer relationship to each other than nodes connected by a few
paths. We compute a weighted sum of powers of A as a spectral
graph transformation function:

𝐹 (A𝑟 ) =
𝐾∑
𝑖=1

𝛼𝑖A𝑖𝑟 , (1)

where 𝛼𝑖 is the weight for the 𝑖-th order proximity, 𝑟 denotes edge
type, and 𝐾 is the highest order. The result is a matrix polynomial
of order 𝐾 . The coefficients 𝛼𝑖 should be decreased to reflect the
assumption that links are more likely to arise between nodes that
are connected by short paths than nodes connected by long paths.
Thus, such a function takes both path length and path count into
account in capturing the high-order structures.

Nevertheless, directly applying spectral graph transformation on
the separate sub-networks cannot capture the complex meta-paths
between nodes in AMHENs. To address this issue, we propose
a novel spectral graph transformation incorporating automatic
generation of meta-paths for AMHENs.

We first perform a weighted sum of the separate sub-networks
to obtain a new combined adjacency matrix:

A =

|R |∑
𝑟=1

𝛽𝑟A𝑟 , (2)

where the weight 𝛽𝑟 of the adjacency matrix A𝑟 indicates the im-
portance of the corresponding sub-network in the network. Now,
we can capture all meta-path interactions across multi-relations
among nodes in the network by performing a spectral graph trans-
formation on the new adjacency matrix A:

𝐹 (A) =
𝐾∑
𝑖=1

𝛼𝑖A
𝑖

=

𝐾∑
𝑖=1

𝛼𝑖 (
|R |∑
𝑟=1

𝛽𝑟A𝑟 )𝑖 .

(3)

The spectral graph transformation function 𝐹 (A) allows learning
short and long meta-paths across multi-relations including original
sub-network high-order structures at the same time.

An example of AMHEN is illustrated in Figure 2, we only consider
two relations (i.e., buy and add-to-cart) between users and items
in the toy example. A1 and A2 denote the adjacency matrices for
the two sub-networks corresponding to purchase and add-to-cart
relationships, respectively. As shown in Figure 2, if each adjacency
matrix is regarded as an unweighted graph, and two relationships
are equally important (i.e., A = A1 +A2), then spectral graph trans-
formation captures the number of meta-paths with different lengths
across multi-relations. For example, (A1 +A2)2 obtains the number
of 2-length meth-paths across heterogeneous multi-relations for
all node pairs. If the importance of each relationship is taken into
account, e.g., A = A1 + 0.5 ∗ A2 (the importance of add-to-cart is
set lower than that of purchase), our spectral graph transformation
can capture the summarization of meta-paths with different lengths
across multi-relations with importance. For example, the element
2.5 in (A1 + 0.5 ∗ A2)2 indicates the summarization of 2-length
meta-paths from 𝑢1 to 𝑢1 across multi-relations with importance
weights.

Furthermore, we find that when calculating higher-order adja-
cency matrices, the values of some nodes with larger degrees are
much higher than those with lower degrees. This obvious data
skewness will significantly affect the performance of the learned
embedding. Therefore, we first normalize the obtained adjacency
matrix A to reduce the data skewness before performing spectral
graph transformation:

A = D−1A (4)

where D is the degree matrix of A:

D𝑖 𝑗 =

{∑
𝑘 A𝑖𝑘 if 𝑖 = 𝑗,

0 otherwise
(5)

The main difference from the meta-path generation in GTN [32]
is that GTN computes the convex combinations of sub-network
adjacency matrices with different weights to obtain candidate ad-
jacency matrices. Then candidate adjacency matrices are used to
capture different lengths of meta-paths by stacking equal-length
graph transformer layers. This requires the calculation and storage



I1

I2

I3

buy

add-to-cart

E-commerce 
Network

I1 I2 I3U1 U2 U3

U3

U1

U2

I3

I1

I2

I1 I2 I3U1 U2 U3

U3

U1

U2

I3

I1

I2

0
2 1 0
1 1 1
0 0 2

2 1 0
1 1 0
0 1 2

0

5 3 0
3 3 2
0 2 4

0

0
5 3 1
3 2 1
1 1 5

U1 I1 U1

U1 I1 U1

U1 I2 U1

U1 I1 U1

U1 I1 U1

𝐀1

𝐀2

𝐀1 + 𝐀2

(𝐀1+𝐀2)
2

Meta-paths across multi-
relations

2.5 2 0
2 2.25 0.75
0 0.75 2.25

0

0
3.25 1.75 0.5
1.75 1.25 0.5
0.5 0.5 2.5

(𝐀1 + 0.5 ∗ 𝐀2)
2

U1 I1 U1

U1 I1 U1

U1 I2 U1

U1 I1 U1

U1 I1 U1
0.5

1

1

1

1

0.50.5

0.50.5

0.5

1

0.25

0.25

0.5

0.5

U2 I1 U1

U2 I1 U1

U2 I2 U1

1 1

0.5

0.5

1

0.5

0.5

1

1

U3 I3 U2

U3 I3 U2

1 0.5
0.5

0.50.5
0.25

I2 U2
0.5 I3

1 0.5
Meta-paths across multi-relations with importance

U2

U1

U3

I

U user

item

Figure 2: Illustration of spectral graph transformation for an example of AMHEN

of a large amount of candidate adjacency matrices as the meta-path
length increases, which significantly increases the time complexity
and space complexity of the proposed model. Our proposed spectral
graph transformation can directly obtain all meta-path interactions
across multi-relations among multi-type nodes in an AMHEN by
performing transformation on a single weighted summed adjacency
matrix A, without computing and storing redundancy candidate
adjacency matrices.

4.2 Fast Random Projection Embedding
GCNs have recently been widely used in heterogeneous network
embedding and have achieved great success [12, 25, 26, 32]. Never-
theless, thesemethods all need to train a large number of parameters
as well as a long training time, which is inefficient when dealing
with large-scale networks.

To improve the efficiency, we first introduce the spectral graph
convolution theorem and analyze its limitations; then we propose a
fast random projection embedding method for large-scale AMHENs.
Spectral graph convolution theorem defines the convolution in
the Fourier domain based on the normalized graph Laplacian L =

I−D−
1
2AD−

1
2 , where I is the identity matrix and D = 𝑑𝑖𝑎𝑔(∑𝑗 A𝑖 𝑗 )

is the degree matrix [12]. Let L = ΦΛΦ𝑇 , where Φ is the matrix of
eigenvectors of L and Λ is the diagonal matrix of its eigenvalues.
The convolution on the network is defined as follows:

𝑔𝜃 ★X = 𝑔𝜃 (L)X

= 𝑔𝜃 (ΦΛΦ𝑇 )X

= Φ𝑔𝜃 (Λ)Φ𝑇X,
(6)

where X ∈ R𝑛×𝑚 is the node feature matrix, 𝑔𝜃 is a filter parame-
terized by 𝜃 in the Fourier domain, and Φ𝑇X is the graph Fourier
transform of signal X.

To convolve the local neighbors of the target node, [4] defines
𝑔𝜃 (Λ) as a polynomial filter up to 𝐾 order as follows:

𝑔𝜃 (Λ) =
𝐾∑
𝑘=1

𝜃𝑘Λ
𝑘 , (7)

where 𝜃 ∈ R𝐾 is a vector of polynomial coefficients. To get a low-
dimensional representation for a node, one method is to generalize
𝑔𝜃 to𝑚 × 𝑑 filter for feature maps by replacing parameter 𝜃 ∈ R𝐾
with parameter matrix Θ ∈ R𝐾×𝑚×𝑑 :

𝑔𝜃 (Λ) =
𝐾∑
𝑘=1

Λ𝑘Θ𝑘 ,

Z = 𝜎 (𝑔𝜃 ★X)

= 𝜎 (Φ(
𝐾∑
𝑘=1

Λ𝑘 )Φ𝑇XΘ𝑘 ),

(8)

where Z denotes the matrix of the node embeddings and 𝜎 (·) is the
softmax activation function. However, the number of parameters
that need to be optimized in such method is 𝐾 ×𝑚 × 𝑑 . In addition,
the complexity of this filtering operation is linear in the number
of edges. When the size of node feature increases, the number of
parameters increases. Therefore, it is difficult to apply to large-
scale heterogeneous networks with many types of nodes with huge
feature space.



In order to solve the above efficiency problems, we propose fast
random projection embedding, which incorporates the spectral
graph transformation and node features into random projection ar-
chitecture to efficiently learn effective node representation. Random
projection is a simple but powerful dimension reduction method
that preserves pairwise distances between data points. There are
many variants of random projection techniques are applied in the
manifold learning area. The sparse random projection we use is
one of the variations, which achieves a significant speedup with
little loss on accuracy. Formally, let projection matrix R ∈ R𝑚×𝑑
with 𝑖 .𝑖 .𝑑 entries drawn from:

𝑟 𝑗𝑖 =
√
𝑠


1 with prob. 1

2𝑠
0 with prob. 1 − 1

𝑠

−1 with prob. 1
2𝑠

(9)

where 𝑠 =
√
𝑚 or 𝑠 = 𝑚

log𝑚 [14]. With 𝑠 =
√
𝑚, one can achieve a

√
𝑚-fold speedup because only 1√

𝑚
of the data need to be processed.

Since the multiplications with
√
𝑠 can be delayed, no floating point

arithmetic is needed.
In the fast random projection embedding, we replace the filter 𝑔𝜃

with our spectral graph transformation function 𝐹 (A) to capture
the multi-relational structures in the AMHEN, and then incorporate
it with node attribute features and finally get the low-dimensional
embeddings of nodes by random projection:

Z = 𝐹 (A) · X · R

=

𝐾∑
𝑖=1

𝛼𝑖A
𝑖 · X · R,

(10)

where R ∈ R𝑚×𝑑 is the projection matrix that can be obtained
using Eq. (9). Notice that our fast random projection embedding
method also supports multiplex heterogeneous networks without
node attribute features. Under such situations, a projection matrix
R ∈ R𝑛×𝑑 is directly applied to the spectral graph transformation
function.

Although we reduce the number of parameters by random pro-
jection, the spectral graph transformation still requires an explicit
matrix product on the adjacency matrices. This seriously affects the
efficiency of our method, since the complexity of matrix product
on the adjacency matrices is extremely high. To further reduce the
computation cost, we leverage the associative property of matrix
product to reduce the time complexity as in [34]:

Z𝑖 =
(
A𝑖 · (X · R)

)
=

(
A . . .

(
A︸   ︷︷   ︸

𝑖

·(X · R)
) )

Z =

𝐾∑
𝑖=1

𝛼𝑖Z𝑖 .

(11)

This operation significantly reduces the time complexity from𝑂 (𝑛3 ·
𝐾 +𝑛2 ·𝑚 +𝑛 ·𝑚 ·𝑑) to𝑂 (𝐾 · 𝑒 ·𝑛 +𝑛 ·𝑚 ·𝑑), where 𝑒 is the number
of edges in A.

Algorithm 1 shows the pseudo-code of our proposed framework.
It is worth noting that we replace the explicit adjacency matrix
product in the spectral graph transformation by Eq. (11) in random

Algorithm 1 The Learning Process of FAME
Input: Input AMHEN G, node feature matrix X, embed-

ding dimension 𝑑 , matrix polynomial order 𝐾 , weights
𝛼1, 𝛼2, . . . , 𝛼𝐾 , 𝛽1, 𝛽2, . . . , 𝛽 |R |

Output: Embedding results Z
1: Decouple the attributed multiplex heterogeneous network into

homogeneous networks and bipartite networks to obtain the
adjacency matrices {A𝑟 |𝑟 = 1, 2, . . . , |R |}

2: Calculate A =
∑ |R |
𝑟=1 𝛽𝑟A𝑟

3: Normalization A = D−1A
4: Generate random projection matrix R by Eq.(9)
5: Z1 ← A · X · R
6: for 𝑖 = 2 to 𝐾 do
7: Calculate Z𝑖 ← A · Z𝑖−1
8: end for
9: Z = 𝛼1Z1 + · · · + 𝛼𝐾Z𝐾

Table 2: Statistics of Datasets (n-type: node type, e-type: edge
type, feat.: features, and Mult.: Multiplex edge type)

Dataset #nodes #edges #n-type #e-type #feat. Mult.

Alibaba-S 21,318 41,676 2 4 19 ✓
Alibaba 1,310,391 61,354,443 2 4 19 ✓
Amazon 10,166 148,865 1 2 1,156 ✓
AMiner 58,068 118,939 3 3 4 ×
IMDB 12,772 18,644 3 2 1,256 ×

projection, as shown in lines 4-8, which significantly improves the
efficiency of the algorithm.

5 EXPERIMENT
5.1 Datasets
We conduct extensive experiments on four public real-world datasets.
Alibaba dataset1 has two node types (user and item) and includes
four types of edges between users and items. We use the category
of item as the class label in node classification. Amazon dataset2
includes product metadata of Electronics category and co-viewing,
co-purchasing links between products. The product attributes in-
clude the price, sales-rank, brand, category, etc. AMiner dataset3
contains three types of nodes: author, paper and conference. The
domain of papers is considered as the class label. IMDB dataset4
contains three types of nodes, i.e., movie, actor and director, and la-
bels are genres of movies. Node features are given as bag-of-words
representations of plots. There is no multiplex edge between each
pair of node types in the Aminer and IMDB datasets, so they are
not multiplex networks. Since some of the baselines cannot scale to
the whole graph on Alibaba dataset, we evaluate the model perfor-
mance on a sampled dataset from Alibaba, denoted by Alibaba-S.
The statistics of these four datasets are summarized in Table 2.

1https://tianchi.aliyun.com/competition/entrance/231719/information/
2http://jmcauley.ucsd.edu/data/amazon/
3https://github.com/librahu/
4https://github.com/seongjunyun/Graph_Transformer_Networks

https://tianchi.aliyun.com/competition/entrance/231719/information/
http://jmcauley.ucsd.edu/data/amazon/
https://github.com/librahu/
https://github.com/seongjunyun/Graph_Transformer_Networks


5.2 Baselines
We compare our FAME against the following baselines:
• node2vec [6] - node2vec is a network embedding method
which samples short biased random walks with the balance
between DFS and BFS.
• RandNE [34] - RandNE is a Gaussian random projection
approach to map the network into a low-dimensional em-
bedding space while preserving the high-order proximities
between nodes.
• FastRP [3] - FastRP is an extension of RandNE by using
sparse random projection and normalizing node similarity
matrix entries.
• SGC [27] - SGC is a simplified version of GCN, which only
uses the product of high-order adjacency matrices and at-
tribute matrix, without nonlinear transformation and train-
ing parameters.
• PMNE [16] - We denote their network aggregation, result
aggregation, and co-analysis model as PMNE-n, PMNE-r,
and PMNE-c, respectively.
• GATNE [2] - GATNE includes GATNE-T and GATNE-I. We
use GATNE-I as our baseline method, which considers both
the network structure and the node attributes, and then
learns an inductive transformation function to obtain em-
beddings for all nodes.
• HAN [25] - HAN applies graph neural network and graph
attention mechanism on multiplex network to learn node
embedding.
• GTN [32] - GTN transforms a heterogeneous graph into
multiple new meta-path graphs and then learns node em-
beddings via graph convolution network on the meta-path
graphs.
• DMGI [17] - DMGI integrates node embeddings from differ-
ent types of relations through the consensus of a regulariza-
tion framework and an universal discriminator.

As RandNE, FastRP, node2vec and SGC can only deal with ho-
mogeneous network, we feed separate graphs with different edge
types into them to obtain different node embeddings for each sep-
arated graph, then perform mean pooling to generate final node
embedding.

In addition to the above baselines, we also design a variant
FAME𝑚 of our model to verify the effectiveness of our proposed
spectral graph transformation, which do not consider meta-path
interactions across multi-relations and directly perform spectral
graph transformation on the decoupled networks.

We also summarize the network types handled by the competitor
methods in Table 3.

5.3 Experimental Setting
The purpose of running time comparison task is to evaluate the
efficiency of methods, hence we use the entire network as the train-
ing set to obtain the embeddings of all nodes. For link prediction
task, we hide a set of edges from the original graph and train on
the remaining graph. Following [2], we create a validation/test set
that contains 5%/10% randomly selected positive edges respectively
with the equivalent number of randomly selected negative edges
for each edge type. For the node classification task, we first learn

Table 3: The network types handled by different methods
(Heter.: Heterogeneity, Multi.: Multiplex edge type, Attr.: At-
tribute, Unsup.: Unsupervised, Auto.: Automaticmeta-path).

Heter. Multi. Attr. Unsup. Auto.Node Edge

node2vec × × × × ✓ ×
RandNE × × × × ✓ ×
FastRP × × × × ✓ ×
SGC × × × ✓ ✓ ×
PMNE × ✓ ✓ × ✓ ×
DMGI ✓ ✓ ✓ ✓ ✓ ×
HAN ✓ ✓ × ✓ × ×
GTN ✓ ✓ ✓ ✓ × ✓

GATNE ✓ ✓ ✓ ✓ ✓ ×
FAME ✓ ✓ ✓ ✓ ✓ ✓

Table 4: Runtime comparison of all methods (Second)

Method Alibaba-S Amazon AMiner IMDB

node2vec 1031.25 428.68 3841.8 1272.75
RandNE 2.26 1.06 7.31 1.77
FastRP 2.78 1.54 5.95 1.93
SGC 0.192 0.446 0.74 0.224

PMNE-n 4026.25 788.04 12492.55 2481.55
PMNE-r 4389.25 793.03 12378.45 4917.8
PMNE-c 2016.3 376.74 7511.55 2048.15
GATNE 27152.02 51546.15 9h/epoch 57842.78
DMGI 1510.81 4401.83 50026.69 18556.37
HAN 4226.95 / 87105.55 70510
GTN 21166.83 / OOM 4287.20

FAME𝑚 0.96 1.43 3.29 1.29
FAME 0.51 0.59 1.45 0.28
Speedup* 53239× 87366× 22345×/epoch 206581×
* Speedup over GATNE. OOM: Out Of Memory (80 GB). DMGI
runs out of memory on the entire AMiner, and the result is
only run on a single type of paper node.

the representation of each node and then perform accuracy evalua-
tion. More specifically, we take 80% of the node embeddings as the
training set, 10% as the validation set, and 10% as the test set, and
then train a logistic regression classifier in the training set, evaluate
on the nodes in the test set.

We set 𝑑 to 200 for all the methods for a fair comparison. We
use the source code provided by their authors for baselines. For
all random walk based methods, we set walk length to 100 per
node, window size to 10, the number of negative samples to 5. We
set 𝑝 = 2 and 𝑞 = 0.5 for node2vec and set 𝛼𝑟 and 𝛽𝑟 to 1 for
every edge type 𝑟 on GATNE. For the PMNE model, we use the
hyperparameters given by the original paper. For all deep learning
methods (e.g., GATNE, HAN, GTN, DMGI), we tune learning rate
in {0.01, 0.05, 0.001, 0.005, 0.0001, 0.0005}. We set the regularization
parameter to 0.001, the number of attention head is set as 8, and the



Table 5: Link prediction performance comparison of different methods on four datasets

Alibaba-S Amazon AMiner IMDB
ROC-AUC PR-AUC F1 ROC-AUC PR-AUC F1 ROC-AUC PR-AUC F1 ROC-AUC PR-AUC F1

node2vec 0.614 0.580 0.593 0.946 0.944 0.880 0.594 0.663 0.602 0.479 0.568 0.474
RandNE 0.877 0.888 0.826 0.950 0.941 0.903 0.607 0.630 0.608 0.901 0.933 0.839
FastRP 0.927 0.900 0.926 0.954 0.945 0.893 0.620 0.634 0.606 0.869 0.893 0.811
SGC 0.686 0.708 0.623 0.791 0.802 0.760 0.589 0.585 0.567 0.826 0.889 0.769

PMNE-n 0.966 0.973 0.891 0.956 0.945 0.893 0.651 0.669 0.677 0.674 0.683 0.646
PMNE-r 0.859 0.915 0.824 0.884 0.890 0.796 0.615 0.653 0.662 0.646 0.646 0.613
PMNE-c 0.597 0.591 0.664 0.934 0.934 0.868 0.613 0.635 0.657 0.651 0.634 0.630
DMGI 0.857 0.781 0.784 0.905 0.878 0.847 OOM OOM OOM 0.926 0.935 0.873
GATNE 0.981 0.986 0.952 0.963 0.948 0.914 OOT OOT OOT 0.872 0.878 0.791
FAME𝑚 0.980 0.983 0.947 0.939 0.937 0.887 0.610 0.639 0.677 0.935 0.951 0.894
FAME 0.993 0.996 0.979 0.959 0.950 0.900 0.687 0.747 0.726 0.944 0.959 0.897

OOT: Out Of Time (36 hours). OOM: Out Of Memory (80 GB); DMGI runs out of memory on the entire AMiner.

Table 6: Link prediction results on entire Alibaba dataset

Alibaba
ROC-AUC PR-AUC F1

RandNE 0.916 0.934 0.835
FastRP 0.929 0.934 0.921
SGC 0.776 0.767 0.747
FAME 0.949 0.951 0.932

dropout ratio of attention is 0.6. For GTN, we use the sparse version
of their released source code and set GT layers to 3 for all datasets.
For DMGI, we set the self-connection weight 𝑤 = 3 and tune
𝛼, 𝛽,𝛾 in {0.0001, 0.001, 0.01, 0.1}. In the experiment, we set matrix
polynomial order 𝐾 to 3 and sparsity 𝑠 to

√
𝑚 for our FAME. For the

weights 𝛼1, . . . , 𝛼𝐾 , 𝛽1, . . . , 𝛽 |R | , we perform optuna5, a Bayesian
hyperparameter optimization method, for 100 rounds on validation
set; the search ranges for weights are set to [10−6, 106]. We evaluate
the efficiency of all methods on a machine with Intel Xeon E5-2660
(2.2GHz) CPU and 80GB memory.

5.4 Model Efficiency Study
We first evaluate the superior efficiency of our method by report-
ing the running time of FAME and all baselines on all datasets in
Table 4. As we can see, FAME is significantly faster than all het-
erogeneous network embedding baselines by orders of magnitude
on all datasets. More specifically, FAME achieves at least 53,239×
speedup over state-of-the-art AMHEN embedding method GATNE.
GTN that learns meta-paths automatically is also slow on the mul-
tiplex networks (e.g., Alibaba-S). From the results, we can observe
that FAME is 41,503 times and 15,311 times faster than the sparse
version of GTN on Alibaba-S and IMDB, respectively. Due to the
high computational and space cost of GTN method, its sparse ver-
sion still has the out of memory issue on AMiner data. Even for
homogeneous network embedding node2vec, FAME is more than
three orders of magnitude faster. Only random projection-based
5https://github.com/pfnet/optuna

methods (i.e., RandNE and FastRP) and SGC achieve comparable
running time, but RandNE and FastRP are also slightly slower than
FAME. This is because RandNE and FastRP need to perform multi-
ple embedding for the decoupled sub-networks. However, in the
experiments below, we will show that the quality of embeddings
produced by FAME is significantly better than those of RandNE,
FastRP and SGC.

5.5 Link Prediction
We evaluate the model performance by comparing FAME with nine
baselines on link prediction task. Because both HAN and GTN re-
quire node labels for training, thus they cannot be applied to the
link prediction for nodes of different types. DMGI does not conduct
link prediction experiment and explain how to do link prediction
between different types of nodes in their paper. Thus, we overlook
the node type in the experiment. The results are shown in Table 5.
GATNE cannot run on AMiner dataset due to the out of time issue,
and DMGI runs out of memory on AMiner dataset. We can see
that FAME significantly outperforms all baselines on four networks.
More specifically, our FAME achieves comparable results to state-
of-the-art GATNE on Amazon dataset. This is because Amazon
dataset only has two types of links, co-viewing and co-purchasing,
between one type of node (product). Such a network structure is rel-
atively simple, and even manually specified meta path can capture
most features in the network. At this time, the network features
obtained by the manually specified meta-paths are basically equiva-
lent to the network features obtained by all the meta-paths that we
automatically obtain. However, FAME obtains better performance
than state-of-the-art GATNE on other two more complex networks
as FAME captures effective multi-relational topological structures
automatically.

Notably, only RandNE, FastRP, SGC and our FAME can run on
the entire Alibaba dataset, with 80G memory and 36 hours limit. As
shown in Table 6, FAME achieves state-of-the-art performance on
Alibaba dataset compared with best results from previous state-of-
the-art methods. Additionally, FAME performs better than the vari-
ation FAME𝑚 on all datasets, suggesting that our proposed spectral

https://github.com/pfnet/optuna


Table 7: Node classification performance comparison

Unsupervised AMiner Alibaba-S IMDB
Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1

RandNE ✓ 0.641 (0.0074) 0.672 (0.0064) 0.319 (0.0170) 0.358 (0.0093) 0.373 (0.0143) 0.392 (0.0185)
FastRP ✓ 0.650 (0.0086) 0.690 (0.0074) 0.301 (0.0180) 0.392 (0.0119) 0.363 (0.0236) 0.381(0.0140)
SGC ✓ 0.516 (0.0047) 0.587 (0.0157) 0.286 (0.0231) 0.361 (0.0175) 0.489 (0.0106) 0.563 (0.0133)
HAN × 0.690 (0.0149) 0.726 (0.0086) 0.275 (0.0327) 0.392 (0.0081) 0.552 (0.0112) 0.568 (0.0078)
GTN × OOM OOM 0.255 (0.0420) 0.392 (0.0071) 0.615 (0.0108) 0.616 (0.0093)

GATNE ✓ OOT OOT 0.291 (0.0086) 0.390 (0.0014) 0.169 (0.0132) 0.333 (0.0005)
DMGI ✓ 0.473 (0.0155) 0.626 (0.0093) 0.220 (0.0214) 0.392 (0.0026) 0.548 (0.0190) 0.544 (0.0189)
FAME𝑚 ✓ 0.575 (0.0064) 0.621 (0.0076) 0.306 (0.0119) 0.333 (0.0124) 0.505 (0.0176) 0.513 (0.0092)
FAME ✓ 0.722 (0.0114) 0.727 (0.0091) 0.323 (0.0154) 0.393 (0.0060) 0.593 (0.0135) 0.594 (0.0143)

OOM: Out Of Memory (80 GB), OOT: Out Of Time (36 hours). The standard deviations are reported in the parentheses.

1 2 3 4 5
Order K

200

400

600

800

1000

Ru
nn

in
g 

Ti
m

e 
(S

ec
on

d)

FAME
FAMEm

(a) Runtime w.r.t. order 𝐾

2e5 4e5 6e5 8e5 1e6
#nodes

0

200

400

600

Ru
nn

in
g 

Ti
m

e 
(S

ec
on

d)

FAME
FAMEm

(b) Runtime w.r.t. #nodes

Figure 3: Runtime of FAME w.r.t. order 𝐾 and #nodes.

transformation effectively captures the heterogeneous meta-paths
and works better in multiplex heterogeneous networks.

5.6 Node Classification
We further evaluate the effectiveness of representations on the
supervised task of node classification with state-of-the-art methods.
The results are shown in Table 7. Based on these results, we have
the following observations: (1) FAME is significantly better than
state-of-the-art unsupervised embedding methods (i.e., GATNE and
DMGI), while even achieves comparable results with sate-of-the-
art supervised methods (i.e., HAN and GTN). (2) GTN cannot run
on AMiner due to memory constraint as it needs to calculate the
product of the adjacency matrices explicitly. Furthermore, GATNE
cannot obtain the embeddings for AMiner network within 36 hours,
and it cannot well learn the features that distinguish node categories.
(3) Meta-path information is more important in node classification
for multi-type node networks (e.g., FAME and FAME𝑚 on AMiner
vs. FAME and FAME𝑚 on Alibaba-S).

5.7 Scalability Analysis
We now investigate the scalability of the proposed FAME on large-
scale AMHEN. Figure 3 shows the speed of our proposed methods
w.r.t. order 𝐾 and the number of nodes sampled from the Alibaba
dataset. As we can see, FAME is quite scalable in terms of order
𝐾 and the number of nodes in Alibaba network. FAME not only
performs better than FAME𝑚 in effectiveness, but also improves

the embedding efficiency by performing spectral transformation
for all sub-networks uniformly. More specifically, FAME only takes
less than 10 minutes to obtain the embeddings for all nodes in
the entire Alibaba on a single server. In summary, apart from the
promising performance, FAME is also scalable enough to be adopted
in practical scenarios without resorting to large-scale distributed
computing platform.

5.8 Parameter Sensitivity
We now investigate the sensitivity of our proposed method with
respect to the important parameters, including order 𝑘 , embedding
dimension 𝑑 , and the number of rounds for tuning weights. To
clearly show the influence of these parameters, we report F1 score
on link prediction task with different parameter settings on four
datasets. Figure 4 shows the experimental results.

As shown in Figure 4(a), at first, the performance of FAME in-
creases as order 𝐾 increases, and then remains stable when 𝐾 ≥ 3.
This is mainly because 1-length and 2-lengthmeta-path interactions
can significantly improve the effect of link prediction, while longer
meta-paths do not lead to significant performance improvements.
Then, we examine the effectiveness of FAME when the embedding
dimension 𝑑 varying from 64 to 512, and report the average F1 score
on all datasets. From the results in Figure 4(b), we can see that the
performance of FAME gradually rises and then remains relatively
stable as the dimension increases, because our method uses random
projection to reduce the dimension. The increase of the embedding
dimension 𝑑 will definitely reduce the distance error in the embed-
ding space. When it increases to a certain degree, the error reaches
a certain boundary and tends to be stable. Figure 4(c) illustrates the
performance of our FAME with respect to the number of rounds
in tuning weights. We can conclude that our FAME can efficiently
determine the weight parameters, and it has achieved stable perfor-
mance within a few dozen rounds. In addition, the high efficiency
of our method verified in the above experiments also makes the
parameter tuning process more efficient, which greatly reflects the
advantages of our method.



1 2 3 4 5
order K

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F1
 sc

or
e

Alibaba-S
Amazon
Aminer
IMDB

(a) F1 score w.r.t. order 𝐾

64 128 200 256 512
embedding dimension d

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F1
 sc

or
e

Alibaba-S
Amazon
Aminer
IMDB

(b) F1 score w.r.t. embedding dimension 𝑑

1 510 20 40 60 80 100 120
#rounds

0.6

0.7

0.8

0.9

1.0

F1
 sc

or
e Alibaba-S

Amazom
Aminer
IMDB

(c) F1 score w.r.t. #rounds

Figure 4: Parameter sensitivity of proposed method w.r.t. order 𝐾 , dimension 𝑑 , and #rounds.

6 CONCLUSION
We present an efficient yet effective unsupervised method FAME
for embedding large-scale AMHENs. FAME first performs an spec-
tral graph transformation to capture different proximities between
nodes including complete meta-paths across multi-relations and
high-order topological structures. Then FAME tactfully incorpo-
rates the proposed spectral graph transformation and node attribute
features into the sparse random projection architecture for fast
and effective node representation learning. Experiments show that
FAME significantly drives the embedding time down by up to 6
orders of magnitude over state-of-the-art baselines. Additionally,
FAME achieves better performance compared to state-of-the-art
methods on both link prediction and node classification tasks.

ACKNOWLEDGMENTS
This work is partially supported by the National Natural Science
Foundation of China under grant Nos. 61773331 and 61403328, the
Fundamental Research Funds for the Central Universities under
grant No. 201964022, and the Graduate Innovation Foundation of
Yantai University under grant No. YDZD2021.

REFERENCES
[1] Shaosheng Cao, Wei Lu, and Qiongkai Xu. 2015. Grarep: Learning graph repre-

sentations with global structural information. In CIKM. ACM, 891–900.
[2] Yukuo Cen, Xu Zou, Jianwei Zhang, Hongxia Yang, Jingren Zhou, and Jie Tang.

2019. Representation Learning for Attributed Multiplex Heterogeneous Network.
In KDD. 1358–1368.

[3] Haochen Chen, Syed Fahad Sultan, Yingtao Tian, Muhao Chen, and Steven Skiena.
2019. Fast and Accurate Network Embeddings via Very Sparse Random Projection.
In CIKM. 399–408.

[4] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convo-
lutional Neural Networks on Graphs with Fast Localized Spectral Filtering. In
NeurIPS. 3837–3845.

[5] Yuxiao Dong, Nitesh V. Chawla, and Ananthram Swami. 2017. metapath2vec:
Scalable Representation Learning for Heterogeneous Networks. InKDD. 135–144.

[6] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for
networks. In KDD. ACM, 855–864.

[7] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In NeurIPS. 1024–1034.

[8] Binbin Hu, Yuan Fang, and Chuan Shi. 2019. Adversarial Learning on Heteroge-
neous Information Networks. In KDD. 120–129.

[9] Chao Huang, Baoxu Shi, Xuchao Zhang, Xian Wu, et al. 2019. Similarity-aware
network embedding with self-paced learning. In CIKM. 2113–2116.

[10] Chao Huang, Xian Wu, Xuchao Zhang, Chuxu Zhang, Jiashu Zhao, Dawei Yin,
and Nitesh V Chawla. 2019. Online purchase prediction via multi-scale modeling
of behavior dynamics. In KDD. 2613–2622.

[11] William B Johnson and Joram Lindenstrauss. 1984. Extensions of Lipschitz
mappings into a Hilbert space. Contemporary mathematics 26, 189-206 (1984), 1.

[12] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In ICLR.

[13] Jérôme Kunegis and Andreas Lommatzsch. 2009. Learning spectral graph trans-
formations for link prediction. In ICML. 561–568.

[14] Ping Li, Trevor J Hastie, and Kenneth W Church. 2006. Very sparse random
projections. In KDD. ACM, 287–296.

[15] Ruirui Li, Xian Wu, Xian Wu, and Wei Wang. 2020. Few-Shot Learning for New
User Recommendation in Location-based Social Networks. InWWW. 2472–2478.

[16] Weiyi Liu, Pin-Yu Chen, Sailung Yeung, Toyotaro Suzumura, and Lingli Chen.
2017. Principled multilayer network embedding. In ICDMW. IEEE, 134–141.

[17] Chanyoung Park, Donghyun Kim, Jiawei Han, and Hwanjo Yu. 2020. Unsuper-
vised Attributed Multiplex Network Embedding. In AAAI. 5371–5378.

[18] Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, et al. 2019. NetSMF: Large-Scale
Network Embedding as Sparse Matrix Factorization. In WWW. 1509–1520.

[19] Chuan Shi, Binbin Hu, Wayne Xin Zhao, and S Yu Philip. 2018. Heterogeneous
information network embedding for recommendation. TKDE 31, 2 (2018), 357–
370.

[20] Qinfeng Shi, Chunhua Shen, Rhys Hill, and Anton Van Den Hengel. 2012. Is
margin preserved after random projection?. In ICML. 643–650.

[21] Yiwei Sun, SuhangWang, Tsung-YuHsieh, Xianfeng Tang, and Vasant G. Honavar.
2019. MEGAN: A Generative Adversarial Network for Multi-View Network
Embedding. (2019), 3527–3533.

[22] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.
2015. Line: Large-scale information network embedding. In WWW. 1067–1077.

[23] Xianfeng Tang, Boqing Gong, Yanwei Yu, Huaxiu Yao, Yandong Li, Haiyong Xie,
and Xiaoyu Wang. 2019. Joint modeling of dense and incomplete trajectories for
citywide traffic volume inference. In WWW. 1806–1817.

[24] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In ICLR.

[25] Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and Philip S
Yu. 2019. Heterogeneous Graph Attention Network. InWWW. ACM, 2022–2032.

[26] Yueyang Wang, Ziheng Duan, Binbing Liao, Fei Wu, and Yueting Zhuang. 2019.
Heterogeneous Attributed Network Embedding with Graph Convolutional Net-
works. In AAAI. 10061–10062.

[27] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, et al. 2019.
Simplifying Graph Convolutional Networks. In ICML. 6861–6871.

[28] Lianghao Xia, Chao Huang, Yong Xu, Peng Dai, Bo Zhang, and Liefeng Bo.
2020. Multiplex Behavioral Relation Learning for Recommendation via Memory
Augmented Transformer Network. In SIGIR. 2397–2406.

[29] Yanwei Yu, Xianfeng Tang, Huaxiu Yao, Xiuwen Yi, and Zhenhui Li. 2019. City-
wide Traffic Volume Inference with Surveillance Camera Records. IEEE Transac-
tions on Big Data (2019).

[30] Yanwei Yu, HongjianWang, and Zhenhui Li. 2018. Inferring mobility relationship
via graph embedding. IMWUT 2, 3 (2018), 1–21.

[31] Yanwei Yu, Huaxiu Yao, Hongjian Wang, Xianfeng Tang, and Zhenhui Li. 2018.
Representation learning for large-scale dynamic networks. In DASFAA. Springer,
526–541.

[32] Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and Hyunwoo J. Kim.
2019. Graph Transformer Networks. In NeurIPS. 11960–11970.

[33] Chuxu Zhang, Dongjin Song, Chao Huang, Ananthram Swami, and Nitesh V.
Chawla. 2019. Heterogeneous Graph Neural Network. In KDD. 793–803.

[34] Ziwei Zhang, Peng Cui, Haoyang Li, Xiao Wang, and Wenwu Zhu. 2018. Billion-
Scale Network Embedding with Iterative Random Projection. In ICDM. 787–796.


	Abstract
	1 Introduction
	2 Related Work
	3 Problem Definition
	4 Methodology
	4.1 Spectral Graph Transformation
	4.2 Fast Random Projection Embedding

	5 Experiment
	5.1 Datasets
	5.2 Baselines
	5.3 Experimental Setting
	5.4 Model Efficiency Study
	5.5 Link Prediction
	5.6 Node Classification
	5.7 Scalability Analysis
	5.8 Parameter Sensitivity

	6 Conclusion
	Acknowledgments
	References

