
Motif-Preserving Dynamic Attributed Network Embedding
Zhijun Liu

Yantai University
Yantai, China

liuzhijun9503@126.com

Chao Huang
JD Finance America Corporation

Mountain View, USA
chaohuang75@gmail.com

Yanwei Yu∗
Ocean University of China

Qingdao, China
yuyanwei@ouc.edu.cn

Junyu Dong
Ocean University of China

Qingdao, China
dongjunyu@ouc.edu.cn

ABSTRACT
Network embedding has emerged as a new learning paradigm to
embed complex network into a low-dimensional vector space while
preserving node proximities in both network structures and prop-
erties. It advances various network mining tasks, ranging from link
prediction to node classification. However, most existing works
primarily focus on static networks while many networks in real-life
evolve over time with addition/deletion of links and nodes, natu-
rally with associated attribute evolution. In this work, we present
Motif-preserving Temporal Shift Network (MTSN), a novel dy-
namic network embedding framework that simultaneously models
the local high-order structures and temporal evolution for dynamic
attributed networks. Specifically, MTSN learns node representations
by stacking the proposed TIME module to capture both local high-
order structural proximities and node attributes bymotif-preserving
encoder and temporal dynamics by temporal shift operation in a
dynamic attributed network. Finally, we perform extensive experi-
ments on four real-world network datasets to demonstrate the supe-
riority of MTSN against state-of-the-art network embedding base-
lines in terms of both effectiveness and efficiency. The source code of
our method is available at: https://github.com/ZhijunLiu95/MTSN.

CCS CONCEPTS
•Mathematics of computing→Graph algorithms; •Comput-
ing methodologies→ Learning latent representations.

KEYWORDS
Network embedding, graph neural networks, dynamic networks

ACM Reference Format:
Zhijun Liu, ChaoHuang, Yanwei Yu, and JunyuDong. 2021.Motif-Preserving
Dynamic Attributed Network Embedding. In Proceedings of the Web Con-
ference 2021 (WWW’21), April 19–23, 2021, Ljubljana, Slovenia. ACM, New
York, NY, USA, 10 pages. https://doi.org/10.1145/3442381.3449821

∗Yanwei Yu is the corresponding author.

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW’21, April 19–23, 2021, Ljubljana, Slovenia
© 2021 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.
ACM ISBN 978-1-4503-8312-7/21/04.
https://doi.org/10.1145/3442381.3449821

1 INTRODUCTION
Network embedding has received great attention owing to its abil-
ity in learning low-dimensional representations for nodes in a net-
work for a variety of real-world mining applications, such as link
prediction [4, 26, 52], node classification [12, 15], network recon-
struction [38], and recommendation [13, 50]. The core of network
embedding is to preserve the proximities of nodes based on the
topological structures of a network. In recent years, due to the avail-
ability and usefulness of rich attribute information (e.g., user profiles
in social media or author affiliations in academic networks) in real-
world scenarios, attributed network embedding [8, 15] has become
a promising solution to improve the performance of network repre-
sentation learning. It aims to learn latent feature representations
of nodes, such that the network topological structure and node
attributes can be jointly preserved in the learned embeddings.

Despite the effectiveness of existing attributed network embed-
ding methods [8, 16, 23, 43], these works are generally designed for
static graphs. In real-world scenarios, however, many networks are
inherently dynamic where network structures and node attributes
constantly evolve over time. Thus, the assumption of node proxim-
ity and attribute consistencies does not hold any more. For example,
the friendship between users in social network platforms can evolve
over time [35], and users’ interactions over different items could
change dramatically, since user’s preferences are dynamic by na-
ture [31]. We term this kind of networks with the evolution of both
network structure and node attribute information as dynamic at-
tributed networks, which not only refer to the creation and deletion
of edges and nodes in the network, but also the change of weights
on the edges, as well as the evolution of node attributes.

Performing representation learning on the dynamic attributed
networks is of great importance to network mining tasks, yet it is
very challenging due to the complex evolution patterns of network
structure and node attributes. Therefore, it is crucial to account for
the above two-dimensional dynamics of graph structural context
and attribute information, which needs dedicated efforts. To ad-
dress this challenge, there exist several attempts proposed to study
the dynamic attributed network embedding [22, 40, 41, 48]. For
example, DANE [22] learns the representation of network through
the eigenvalue decomposition of each time snapshot, and uses the
matrix disturbance theory to update the representations in an in-
cremental manner. Recently, TGAT [48] and DySAT [41] extend
the graph attention network (GAT) [46] to dynamic scenarios, with
the utilization of temporal self-attention mechanism to capture

1629

https://doi.org/10.1145/3442381.3449821
https://doi.org/10.1145/3442381.3449821

WWW’21, April 19–23, 2021, Ljubljana, Slovenia Liu, et al.

temporal evolution in network structures. EvolveGCN [40] uses
recurrent neural networks (RNN) to model the temporal changes of
the network, and expand the graph convolutional network (GCN)
into a dynamic graph learning framework. However, it requires
large amounts of training data to outperform even static methods
and scale poorly with an increase of time steps.

Additionally, the aforementioned approaches ignore the local
high-order structural patterns that evolve in dynamic networks –
network motif. Inspired by the effectiveness of network motifs, re-
cent efforts propose to incorporate the networkmotifs into the static
graph representation settings to improve the quality of learned node
embeddings [18, 28]. Nevertheless, how to embed network motifs
into the graph representation learning in a dynamic environment,
so as to capture the evolution of network characteristics and dy-
namic structural relations, still remains a significant challenge.

To tackle the aforementioned challenges, we develop a Motif-
preserving Temporal Shift Network (MTSN), which is a dynamic
graph neural network (GNN) framework that integrates network
motif features into the dynamic attributed network representa-
tion. First, we propose a Motif-Preserving Encoder (MPE) to model
network topology and network motif information with the incor-
poration of node attributes into node representations. Furthermore,
we propose a temporal shift mechanism along with the temporal
dimension to effectively capture the evolution patterns of dynamic
networks. More specifically, we integrate the temporal shift mecha-
nism with motif-preserving encoder into a convolution-based net-
work, which serve as the base architecture of MTSN . Experimen-
tal results on four real-world dynamic networks show that our
model significantly outperforms several strong baselines (7.3% AUC
gain and 7.1% F1 gain on average) in dynamic link prediction task.
We also demonstrate the benefits of the collaboration of temporal
shift meahcnism and motif-preserving encoder through an abla-
tion study. We further visualize the motif weights to illustrate the
capability of our developed MTSN framework in capturing and
differentiating local high-order structures on different datasets.

We highlight the key contributions of this work as follows:
• We propose an efficient and effective dynamic graph neural
network, which designs temporal shift mechanism to endow
GNN with the capability of capturing network temporal
evolution without heavy computational burden.
• We integrate motif features of network into dynamic net-
work representation to capture the local high-order struc-
tural proximities within the neighborhood at different levels
and scales.
• We conduct extensive experiments on four real-world datasets
to verify the effectiveness and efficiency of our proposed
model MTSN in dynamic link prediction task.

2 RELATEDWORK
2.1 Dynamic Network Embedding
Existing dynamic network representation learning methods fall
into two broad categories: discrete-time methods [25, 32, 33, 36, 42,
47, 51] and continuous-time methods [29, 37, 48, 57]. In particular,
Discrete-time methods divide a dynamic network into multiple time
snapshots to learn node dynamic representations. For example,
DANE [22], TIMERS [53] and DHPE [56] aim to learn network

representation through the eigenvalue decomposition of snapshot-
specific adjacency matrix based on the matrix disturbance theory
and incremental matrix decomposition method. In [5, 7, 54, 55], the
random walk strategy is utilized to capture network dynamics. In
addition, DRLAN [27] recursively updates the learned represen-
tation vectors based on the new network information from the
current time slot by incremental matrix projection for dynamic
attributed networks. However, it does not consider the temporal
evolution behaviours on dynamic networks. DynGEM [19] utilizes
deep auto-encoders to incrementally generate the representation
of a dynamic graph by only using the data from the last snapshot.
DynAERNN [9] uses a DNN which is composed of dense network
and recursive layers on multiple historical snapshots to capture the
network temporal evolution. To model the temporal dependencies
of dynamic network, [6, 34, 44] improve the graph convolutional
network to inject the graph learning process with the time-aware re-
lationships in dynamic networks. EvolveGCN [40] applies the GCN
for each time snapshot to obtain the low-dimensional representa-
tions of nodes, and uses RNN to update the parameters of message
passing during the graph convolution operations at each time snap-
shot, without the direct resort of node embeddings. DySAT [41]
uses GAT [46] to capture structural neighborhood information and
extends the self-attention mechanism to model temporal evolution
across multiple time snapshots. In [2, 17, 20, 30], they study the
representation learning on dynamic heterogeneous networks.

Additionally, Continuous-time methods do not divide the en-
tire network into snapshot-specific sub-networks. Instead, they
learn from edges with fine-grained time granularity. For instance,
CTDNE [37] designs a temporal random walk method to capture
the dynamic evolution characteristics of nodes. HTNE [57] and
MMDNE [29] use time sequence point process to capture the influ-
ence of historical time slots on the current one, then use attention
mechanism to differentiate the influence of different neighbors.
DyRep [45] uses two time scales of deep sequential point process
models to capture the interactive changes in dynamic networks.
TGAT [48] adapts the attention-based graph neural network in dy-
namic scenarios, and designs a temporal self-attention mechanism
to aggregate the temporal neighboring context from nodes with
different time granularities to obtain node dynamic representations.
Different from those methods, our proposed MTSN framework .

2.2 Motif-based Network Embedding
Many static network embedding methods focus on modeling the
high-order local structure pattern (network motif) into node rep-
resentation. For example, [21] uses the multiple motif adjacency
matrices to expand the receptive field of node’s neighbors, and then
uses attention mechanism to identify the influential neighboring
nodes for feature aggregations. RUM [49] proposes MotifWalk and
MotifRe-weighting strategies to learn both motif-based and node-
based representations, so as to capture the high-level structural
relations and individual properties of each node. GraLSP [18] cap-
tures local network structure through anonymous walks. Although
it considers the complex motif types, this method has heavy compu-
tational cost and is limited by its poor scalability. GraphSTONE [28]
builds a graph topic model through anonymous walks and graph
anchor LDA, to improve the model efficiency of GraLSP. It uses the

1630

Motif-Preserving Dynamic Attributed Network Embedding WWW’21, April 19–23, 2021, Ljubljana, Slovenia

structural topics to guide aggregation process of node features, with
the goal of generating more powerful representations. However,
none of these methods consider how to integrate network motifs in
dynamic networks. Among those approaches, MTNE [14] considers
to use Hawkes process to model the network motif of three nodes
for the evolution process in a dynamic network. However, when
MTNE uses historical network motif information, it regards the en-
tire historical network information as the search scope for network
motif construction, which results in two edges that occurred at a
relatively long time being considered to constitute an open triad.
This not only leads to the large number of open triads calculations,
but also mixes some open triads that do not conform to the real
scene, which eventually affects the quality of the representations.

3 PROBLEM DEFINITION
In this section, we formally define the problem of dynamic at-
tributed network embedding. A dynamic attributed network is a
series of network snapshots from different time steps, i.e., G =
{G1,G2, . . . ,GT }, whereT denotes the number of time steps. Each
network snapshot Gt = (Vt , Et ,Xt) is a weighted undirected
graph which is consisted of a node setVt , a edge set Et , a weighted
adjacency matrix At , and a node attribute matrix Xt .

Dynamic Attributed Network Embedding. Dynamic attributed
network embedding aims to learn latent representationZt ∈ R |V

t |×d

for all nodes in Gt at individual time step t = {1, 2, . . . ,T }, where
d represents the embedding dimensionality (d << |Vt |). Here, Zt
collectively preserves the local high-order structural proximities,
node attribute features, and temporal evolutionary behaviours in a
dynamic attributed network up to time step t .

4 METHODOLOGY
In this section, we present the details of our neural network model
MTSN (as depicted in Figure 1). There are two key components
in the framework: First, in order to capture the local high-order
topology proximities of network, we design a novel graph neural
network – Motif-Preserving Encoder (MPE). MPE performs the fea-
ture learning with the consideration of both network adjacency
matrix and network motifs, so as to obtain the representation of
the high-order similarities of the network on each snapshot. Second,
in order to efficiently capture the temporal evolutionary patterns
in dynamic networks, we design an efficient temporal convolution
model – Temporal shIft based on Motif-preserving Encoder (TIME).
TIME simulates the one-dimensional convolution operation over
the representations across different historical time snapshots along
with the time dimension through the temporal shift mechanism.

Our key innovation lies in simultaneously capturing the local
high-order structural proximities by motif-preserving encoder and
the temporal evolution patterns with the temporal shift mechanism
in dynamic node representations by stacking TIME layers.

4.1 Motif-Preserving Encoder
The adjacency matrix of the network can only represent the direct
proximity of nodes in the network. Most random walks and graph
neural networks-based methods only reply on the adjacency matrix
to encode graph connections, and thus cannot well capture the
local high-order topology proximities. However, different types

of network motifs can reflect the proximity between nodes in the
network under different high-order connection modes. In addition
to the network structures between node pairs in the adjacency
matrix, we further introduce the local high-order structures within
the neighborhood nodes contained in network motifs. Then, the
local high-order topology proximities from these two aspects are
encoded together to learn node representations.

The input of this module is the graph snapshot Gt ∈ G at the t-th
time step, and the motif matrices {Mt

i |i = 1, 2, . . . , |M |} generated
from Gt , where M is the set of motifs and |M | is the number of
motif types. Specifically, in motif matrix, (Mt

i)u,v = j indicates that
the edge between nodes u andv participates in the i-th motif type j
times, that is, it participates in establishing j different i-type motifs.
The output is the hidden representation Ht ∈ Rn×d where n is the
number of nodes in Gt and d is the representation dimensionality,
such that Ht preserves both the local high-order node proximities
and attribute features in the individual graph snapshot Gt .

Motif-Preserving Encoder (MPE) first uses the Parameterized
Graphlet Decomposition (PGD) technique [1] to extract the motif
matrices for each graph snapshot. PGD only takes a few seconds to
count network motifs over large-scale network with hundreds of
millions of edges. The time complexity to obtain motif matrix of all
network motifs with 2,3,4-nodes is O(|M | · ∆ ·Tmax) + O(|M | · ∆ ·
Smax) where |M | is the number of motif types, ∆ is the maximum
degree in the network, Tmax is the maximum number of triangles
incident to an edge and Tmax ≪ ∆ for sparse graphs, and Smax is
the maximum number of stars incident to an edge and Smax ≤ ∆.
More specifically, we select eight undirected motif types in this
paper as shown in the bottom-center part of Figure 1, which cover
all undirected network motifs within 4 nodes. By doing so, all local
structures among any 4 (or less than 4) nodes can be captured in
MPE. Then, we perform a weighted sum of the eight motif matrices
to obtain a combined motif matrix Mt that contains multi-level
network structure proximities of nodes as follows:

Mt =

|M |∑
i=1

αiM
t
i (1)

where αi is the learnable weight for the i-th motif type.
In MPE, we uses the simplified GCN to aggregate neighbor node

features to generate the node representation. In particular, we first
learn two representations for nodes based on the adjacency matrix
A and the combined motif matrixM, respectively. Finally, these two
representations are integrated to obtain the final node embedding.
We first conduct the embedding transformation as Ht

(0) = Xt ·W.
The message passing process in MPE, Ht

(l) = MPE(At ,Mt ,Ht
(l−1)),

can be formally represented as below:

Ht
A = At · Ht

(l−1),

Ht
M = M

t · Ht
(l−1),

Ht
(l) = Ht

A + βH
t
M ,

(2)

whereW ∈ Rf ×d is a trainable linear transformation weight matrix,
and weight β indicates the learnable importance of motif-based

1631

WWW’21, April 19–23, 2021, Ljubljana, Slovenia Liu, et al.

Shift

4

2

5

1

6

3

G1

4

2

5

1

6

3

7
G2

･ ･ ･

Shift

4

2

5

1

6

3

7
GT-1

𝐀𝑻−𝟏 𝐇(𝟎)
𝑻−𝟏 𝕄𝑻−𝟏

𝐇𝑨
𝑻−𝟏 𝐇𝑴

𝑻−𝟏

･･･

𝐀𝟏 𝐇(𝟎)
𝟏 𝕄𝟏

𝕄𝟏𝐀𝟏 𝐇(𝟏)
𝟏

𝐀𝟐 𝐇(𝟎)
𝟐 𝕄𝟐

𝐇𝑨
𝟐 𝐇𝑴

𝟐

𝕄𝟐𝐀𝟐 𝐇(𝟏)
𝟐

Shift

TIME TIME

𝐇(𝟐)
𝟏 𝐇(𝟐)

𝟐

･･･

𝐙𝟐𝐙𝟏

𝕄𝑻−𝟏𝐀𝑻−𝟏 𝐇(𝟏)
𝑻−𝟏

TIME

𝐇(𝟐)
𝑻−𝟏

･･･

𝐙𝑻−𝟏

･ ･ ･

･ ･ ･

𝕄𝑡 =

𝑖=1

|𝑀|

𝛼𝑖𝓜𝑖
𝑡

𝐇(0)
𝑡 = 𝐗𝑡 · 𝐖

Shift

Shift

Shift

Shift

Shift

Shift

Shift

4

2

5

1

6

3

7
GT

𝐀𝑻 𝐇(𝟎)
𝑻 𝕄𝑻

𝐇𝑨
𝑻 𝐇𝑴

𝑻

𝕄𝑻𝐀𝑻 𝐇(𝟏)
𝑻

TIME

𝐇(𝟐)
𝑻

･･･

𝐙𝑻

Shift

Shift

𝐇𝑨
𝟏 𝐇𝑴

𝟏

TIME

1st TIME layer

2nd TIME layer

Figure 1: The overview of the proposed Motif-preserving Temporal Shift Network (MTSN) framework.

network structure in generating node representations. By stack-
ing multiple MPE layers, our framework could capture the high-
order structural relationships among nodes in each graph snapshot
through the embedding propagation across graph layers.

4.2 TIME: Temporal Shift based on MPE Layer
Although MPE can obtain motif-preserving node representations
for individual network snapshot, the temporal evolutionary pat-
terns in a dynamic network has not captured in the node representa-
tions. Inspired by the Temporal Shift Mechanism (TSM) introduced
in [24], we develop a temporal shift module to model the impact
of temporal factors for node representations over the dynamic net-
work. Specifically, we use a 1-D convolution operation to capture
the temporal evolution of dynamic networks. For brevity, we use a
1-D convolution with the kernel size of 3 as an example. Suppose
the weight of the convolution isWs = (w1,w2,w3), and the input
is the hidden representation H t

v of node v , which is a 1-D vector.
The convolution operation Y tv = Conv(Ws ,H

t
v) can be represented

as: Y tv = w1H t−1
v + w2H t

v + w3H t+1
v where t is the current time

step. In general, the temporal dependency modeling consists of
two key steps: shift and multiply-accumulate. We shift the input
snapshot-specific node embedding H t

v by -1, 0, +1 step and mul-
tiply byw1,w2,w3 respectively, and then sum up to generate the
representation Y tv . Formally, the shift operation is given as follows:

(H t
v)
−1 = H t−1

v , (H t
v)

0 = H t
v , (H

t
v)
+1 = H t+1

v (3)

and the multiply-accumulate operation is formally represented as:

Y tv = w1(H
t
v)
−1 +w2(H

t
v)

0 +w3(H
t
v)
+1 (4)

By considering that our multiply-accumulate operation is com-
putationally expensive, due to the involved multiplications. To
effectively captures the temporal evolution of network in time di-
mension without significantly increasing computational cost, we
optimize our TIME component with the following operation: since
the number of nodes in each graph snapshot may be different,
we only shift the features of the nodes that already existed in the
previous snapshots to the current snapshot.

Ht
A = At · (Ht

(l−1))
−1 = At · Ht−1

(l−1),

Ht
M = M

t · (Ht
(l−1))

−1 = Mt · Ht−1
(l−1),

Ht
(l) = Ht

A + βH
t
M ,

(5)

where (·)−1 is the shift operation, i.e., (Ht1)−1 = Ht1 . The shift
operation along with the temporal dimension allows the model to
capture the temporal characteristics nonlinearly. By incorporating
this component into our MTSN framework, the model can expand
the receptive field in the time dimension and capture the dynamic
evolution characteristics of the network structures.

Figure 2 shows an example of the temporal shift operation. Specif-
ically, the number of nodes in the network may be different at each
time step (e.g., nt1 ,nt2 ,nt3). For simplicity, we assume that the num-
ber of nodes at each time step increases (i.e., nt1 < nt2 < nt3).
{H1
(1),H

2
(1),H

3
(1)} in the first layer are the latent representations

obtained after one layer. We shift the representations obtained from
the previous time step to replace the representations of the current
time step. For those nodes which do not exist at the previous time,
we maintain their current representations. The new latent represen-
tations after the shift operation are used as the input of the second
layer to be fed into next convolution operation.

1632

Motif-Preserving Dynamic Attributed Network Embedding WWW’21, April 19–23, 2021, Ljubljana, Slovenia

shift.pdf

Shift out

𝐇(𝟏)
𝟏

No shift
𝐇(𝟏)
𝟏

𝐇(𝟏)
𝟐

𝑺𝒉𝒊𝒇𝒕𝒆𝒅

𝐇(𝟏)
𝟏

𝑛𝑡1 ∙ 𝑑 𝑛𝑡1 ∙ 𝑑

𝑛𝑡2 ∙ 𝑑

𝐇(𝟏)
𝟏

𝑛𝑡1 ∙ 𝑑

Replace
𝑛𝑡2 ∙ 𝑑

Shift out
𝐇(𝟏)
𝟐

𝐇(𝟏)
𝟑

Replace
𝑺𝒉𝒊𝒇𝒕𝒆𝒅

𝐇(𝟏)
𝟐

𝑛𝑡3 ∙ 𝑑 𝑛𝑡3 ∙ 𝑑

𝑛𝑡2 ∙ 𝑑

𝒕𝟏

𝒕𝟐

𝒕𝟑

1st layer 2nd layer

･
･
･
･
･
･

Figure 2: An example of temporal shift operation

In practice, we find that simultaneously performing shift opera-
tions on adjacency matrix and motif matrix cannot provide high
performance nor efficiency. To be specific, a complete shift opera-
tion may cause most of the network structures in the current snap-
shot to be covered by historical information, resulting in the loss
of network structures, and thus a significant decrease in algorithm
performance for embedding network into latent representations.

To address the performance degradation issue caused by the
complete shift operation, we propose a partial shift strategy in our
TIME component to improve the model performance. In our model
implementation, we evaluate a variety of shift combination meth-
ods, and observe that our proposed method can achieve the best
performance only when the adjacency matrix is used for shifting,
i.e., without shift on the motif matrices. This suggests that the shift
operation on adjacency matrix can better capture temporal evolu-
tion of dynamic networks, while the shift operation on motif matrix
may harm the modeling of network temporal evolution. Hidden
representations of previous snapshot are fused with the attribute
matrix in our temporal shift mechanism during the layer-specific in-
formation propagation paradigm, which yields better performance
compared with the selection of motif matrix. The potential reason
lies in the attribute-aware adjacent matrix reflects the overall graph
structure information, while the time-specific node interactive pat-
terns are preserved with the motif-based node connections. We
believe that the representation based on motif matrix can provide
more local structural information on each independent snapshot,
rather than the temporal characteristics in a dynamic network.
Therefore, we use a partial shift operation, that is, shift operation
is only performed based on adjacency matrix A in TIME layer. In
addition, in order to alleviate the overfitting phenomenon, we add
a dropout operation to each output. We re-define the convolution
operation Ht

(l) = T IME(At ,Mt ,Ht
(l−1)) in TIME layer to replace

Ht
(l) = MPE(At ,Mt ,Ht

(l−1)):

Ht
A = dropout(A

t · (Ht
(l−1))

−1)

= dropout(At · Ht−1
(l−1)),

Ht
M = dropout(M

t · Ht
(l−1)),

Ht
(l) = Ht

A + βH
t
M ,

(6)

where (.)−1 is the shift operation and (Ht)−1 = Ht−1.
Accordingly, by stacking multiple TIME layers, our neural archi-

tecture MTSN can be represented as below:

Ht
(0) = Xt ·W,

Ht
(l) = T IME(At ,Mt ,Ht

(l−1)),
(7)

where Ht
(l) is the output of the l-th TIME layer, l = 1, 2, . . . ,L, and

L is the number of layers. We endow our proposed dynamic graph
neural network with the capability of handling node attributes, by
projecting them into latent representations as node initialized em-
beddings. Hence, the node attributes could be incorporated into our
MTSN to generate time-aware representations of nodes. By stack-
ing temporal shift operation multiple times, our model can fully
integrate the characteristics of the historical time steps with the
network structure of the current time step, increasing the model’s
ability to capture the dynamic evolution characteristics of the net-
work. It worth noting that MTSN not only encodes the motif-based
graph relational structures in the individual time-aware snapshot,
but also captures the graph structure evolving patterns through our
designed temporal shift mechanism. In particular, the aggregated
motif-aware node representations are incorporated into the graph
relation encoder of next snapshot while preserving the high-order
connectivity during the embedding propagation across graph lay-
ers. Therefore, our motif-based dynamic graph neural network is
different from static motif-based aggregation methods.

4.3 Model Learning
In this section, we present the objective function that captures the
dynamic structural evolution into node representations to train our
model. Inspired by DySAT [41], we use the dynamic representation
of a node v at time step t , Z t

v , to preserve local proximity around
v at time step t . In particular, we use a binary cross-entropy loss
at each time step to increase the similarities between the node
representations appearing in the same fixed-length random walks:

L =

T∑
t=1

∑
v ∈Vt

(∑
u ∈Nt

walk (v)

− log
(
σ (< Z t

u ,Z
t
v >)

)
−wn

∑
u′∈Neдt (v)

log
(
1 − σ (< Z t

u′ ,Z
t
v >)

)) (8)

where σ (·) is the sigmoid function, <, > can be any vector similarity
measure function (e.g., inner product operation), N t

walk (v) is the
set of nodes that co-occur with v in fixed-length random walk.
Neдt (v) is a negative sampling w.r.t. node v in snapshot Gt , and
wn denotes the negative sampling ratio, which is a tunable hyper-
parameter to balance the positive and negative samples. Notice
that W, {αi |i = 1, 2, . . . , |M |}, and β in our model are all learnable
parameters during our training phase.

1633

WWW’21, April 19–23, 2021, Ljubljana, Slovenia Liu, et al.

Algorithm 1 shows the pseudo-code of our model. The complex-
ity of linear transformation in line 3 isO(T · |V| · f ·d), and the com-
plexity of calculating Eq. (7) in line 7 isO(|E |·d+ |M | · |EM |+ |EM | ·d),
where f is the number of node attributes, d is the embedding di-
mensionality, |V| is the maximum number of nodes, |E | is the
maximum number of edges in the dynamic network, |EM | is the
maximum number of edges in the motif matrices and EM ⊂ E.
Thus, the complexity of each iteration from line 4 to line 11 is
O(L ·T · |E | ·d + L ·T · |M | · |EM | + L ·T · |EM | ·d). As a result, the
overall time complexity isO(T · |V| · f ·d +L ·T · |E | ·d), i.e., TIME
is linear with respect to the number of network edges. At the end,
we use the output of the last layer from our last snapshot as the
representation of the dynamic network up to the current time step.

Algorithm 1 The Learning Process of MTSN

Input: Adjacencymatrix set {A1,A2, . . . ,AT }, attributematrix set
{X1,X2, . . . ,XT }, motif type setM , and the number of graph
neural layers L.

Output: Representations ZT
1: Use PGD to generate motif matricesM for each network snap-

shot;
2: NT

walk = RandomWalk({A1,A2, . . . ,AT });
3: Perform a linear transformation: Ht

0 = Xt ·W;
4: for iter = 1, . . . ,maxiter do
5: for l in 1 : L do
6: for t in 1 : T do
7: Calculate Ht

(l) by Eq. (7)
8: end for
9: end for
10: Use NT

walk to optimize model by Eq. (8)
11: end for
12: Output: ZT ← HT

(L)

5 EXPERIMENTS
In this section, we perform experiments on several real-world
datasets to evaluate the performance of our proposed MTSN frame-
work. We first describe the experimenntal settings and then present
the evaluation results as compared to state-of-the-art baselines.

5.1 Datasets
We conduct extensive experiments on four public real-world datasets.
UCI [39] data is from a publicly available communication network,
in which the links denote messages sent between peer users on an
online social network platform. The time period is from Apr. 2004
to Aug. 2004 and the corresponding resolution of time snapshots is
set as ten days. MovieLens (ML-10M) [10] consists of user-tag inter-
actions where the links connect user with the tags they applied on
certain movies. The period of MovieLens data spans from Dec. 2005
to Dec. 2009 and the corresponding time resolution of partitioned
graph snapshots is set as ninety days. Epinions1 shows the trust
relationships between users. In this data, the edge indicates the
trust relations between these two connected users. The time span

1https://cse.msu.edu/~tangjili/trust.html

Table 1: Statistics of Datasets

Dataset #nodes #edges #features #time steps

UCI 1,809 16,822 / 12
ML-10M 20,537 43,760 / 9
Epinions 9,398 231,537 44 9
Epinions-L 69,236 280,180 44 9
Alibaba 5,640 53,049 19 11

of the dataset is from 2003 to 2011, and the attribute is the user’s
registration year and the degree of interest over different categories
of products. Alibaba dataset2 has two node types, user and item,
and includes four types of edges between users and items. We use
the click edge type in the experiment, and the time span is 11 days
from June 10, 2019 to June 20, 2019. For this data, the attributes of
users includes gender, age group, education level, career, income
and life stage, and the attributes of product contains the first-level
category, the second-level category, brand and price. Since some
of the baselines cannot scale to the whole graph on Epinions and
Alibaba datasets, we evaluate model performance on two sampled
datasets from Epinions and Alibaba, respectively. Additionally, we
also sample a large dataset from Epinions, denoted by Epinions-L,
to evaluate our model in a large-scale dynamic network embedding
scenario. The statistics of these datasets are summarized in Table 1.

5.2 Baselines
In our evaluation, we compare our MTSN against the following
graph learning baselines with different model structures:
• GraLSP [18] - GraLSP is a graph neural network model
which explicitly incorporates local structural patterns into
the neighborhood aggregation through random walk strat-
egy.
• GraphSTONE [28] - GraphSTONE is built upon the graph
convolutional network that utilizes topic models of graphs,
such that the structural topics could capture indicative graph
structures broadly from a probabilistic aspect.
• dynGEM [19] - dynGEM utilizes deep auto-encoders to in-
crementally generate representation of a dynamic graph
based on the data only from the last snapshot.
• dynAE and dynAERNN [9] - They are DNNwith dense lay-
ers and DNN composed of dense layers with recurrent neural
component to capture temporal evolution, respectively.
• MMDNE [29] - MMDNE microscopically models the forma-
tion process of network structure with a temporal attention
point process, and macroscopically constrains network struc-
ture to obey a certain evolutionary pattern with dynamic
learning.
• CTDNE [37] - CTDNE incorporates the temporal informa-
tion into the graph embedding based on the random walk,
so as to learn time-dependent network representation for
continuous-time dynamic networks with temporal depen-
dencies.
• TGAT [48] - TGAT employs the self-attention and functional
time encoding technique to aggregate the temporal features
as well as the underlying interactions.

2https://tianchi.aliyun.com/competition/entrance/231719/information/

1634

https://cse.msu.edu/~tangjili/trust.html
https://tianchi.aliyun.com/competition/entrance/231719/information/

Motif-Preserving Dynamic Attributed Network Embedding WWW’21, April 19–23, 2021, Ljubljana, Slovenia

Table 2: AUC and F1 score of dynamic link prediction on four datasets

Dataset UCI ML-10M Epinions Alibaba

Method AVG AUC AVG F1 AVG AUC AVG F1 AVG AUC AVG F1 AVG AUC AVG F1

GraLSP 0.559 0.536 0.629 0.586 0.807 0.752 0.575 0.547
GraphSTONE 0.557 0.545 0.631 0.601 0.838 0.754 0.587 0.557
dynGEM 0.541 0.604 0.694 0.654 0.560 0.636 0.671 0.629
dynAE 0.582 0.615 OOT OOT 0.556 0.663 0.645 0.615

dynAERNN 0.536 0.550 OOT OOT 0.532 0.644 0.584 0.564
MMDNE 0.724 0.705 0.741 0.681 0.792 0.784 0.856 0.793
CTDNE 0.565 0.557 0.650 0.642 0.532 0.523 0.546 0.540
TGAT 0.640 0.602 0.630 0.603 0.868 0.799 0.763 0.708
DySAT 0.728 0.668 0.870 0.799 0.910 0.847 0.815 0.770
TSN 0.847 0.766 0.903 0.821 0.919 0.862 0.871 0.832
MTSN 0.859 0.777 0.916 0.862 0.931 0.879 0.886 0.842

OOT: Out Of Time (72 hours). The best results are shown in bold, and the second best results are underlined.

2 3 4 5 6 7 8 9 101112
Time steps

0.4

0.6

0.8

1.0

AU
C

UCI

2 3 4 5 6 7 8 9
Time steps

0.5
0.6
0.7
0.8
0.9
1.0 ML-10M

2 3 4 5 6 7 8 9
Time steps

0.5
0.6
0.7
0.8
0.9
1.0 Epinions

2 3 4 5 6 7 8 9 10 11
Time steps

0.5
0.6
0.7
0.8
0.9
1.0 Alibaba

GraLSP
GraphSTONE

dynGEM
dynAE

dynAERNN
MMDNE

CTDNE
TGAT

DySAT
TSN

MTSN

Figure 3: Evaluation results on dynamic link prediction in terms of AUC.

• DySAT [41] - DySAT is a neural architecture that learns
node representations to capture dynamic graph structural
evolution by using self-attention to aggregate the structural
neighborhood information and temporal dynamics.

In our performance comparison, as GraLSP and GraphSTONE
can only deal with static networks, for a fair comparison, we run
these methods from scratch at each time step, so as to reflect the
temporal information. MMDNE, CTDNE and TGAT are continuous-
time dynamic network embedding methods. dynGEM, dynAE, dy-
nAERNN, DySAT andMTSN are all discrete-time dynamic network
embedding methods. In addition to the above state-of-the-art base-
lines, we also design a variant TSN of our model to verify the
effectiveness of our proposed motif-preserving encoder, by remov-
ing the network motifs in our graph structure learning and only
use adjacency matrix to learn node representation in TIME layers.

5.3 Experimental Setting
Link prediction is a very important task in real-world network
mining scenarios, e.g., the interactions between users and items in e-
commerce platforms for making accurate recommendation [11, 31].
Following DySAT [41], the evaluation focuses on the dynamic link
prediction. Using the node embeddings at time step t , dynamic
link prediction predicts the connections between nodes at the next

time step t + 1. This task has been widely used in evaluating the
quality of dynamic node representations to predict the temporal
evolution of graph structures [9, 19, 41]. We use the commonly used
evaluation metrics in link prediction, i.e., the Area Under the ROC
Curve (AUC) and the F1 score as our performance measurement.

In our experiments, we use 20% links in the network at the next
time step as the validation set to tune model hyperparameters.
We randomly sample another 20% links for training, and use the
remaining 60% for testing. In our prediction layer, we train a logistic
regression classifier to predict whether there exist a link between
each node pair in the testing set. We set embedding dimensionality
d as 128 for all the methods for a fair comparison. We use the source
code released by authors for baseline evaluation. Specifically, for all
random walk based methods, we set window size as 6. In addition,
the number of negative sampling, walks and walk length as 8, 100
and 10, respectively. For dynAE and dynAERNN, we set lookback
to 4, that is, 4 snapshots before the current time are used as the
historical information. For our MTSN, we set the number of graph
neural layers L to 3, dropout rate as 0.9, and maxiter as 30. We
evaluate the efficiency of all methods on a machine with Intel Xeon
E5-2660 (2.2GHz) CPU and 80GB memory.

1635

WWW’21, April 19–23, 2021, Ljubljana, Slovenia Liu, et al.

2 3 4 5 6 7 8 9 101112
Time steps

0.4

0.6

0.8

1.0

F1
 sc

or
e

UCI

2 3 4 5 6 7 8 9
Time steps

0.4

0.6

0.8

1.0 ML-10M

2 3 4 5 6 7 8 9
Time steps

0.5
0.6
0.7
0.8
0.9
1.0 Epinions

2 3 4 5 6 7 8 9 10 11
Time steps

0.5
0.6
0.7
0.8
0.9
1.0 Alibaba

GraLSP
GraphSTONE

dynGEM
dynAE

dynAERNN
MMDNE

CTDNE
TGAT

DySAT
TSN

MTSN

Figure 4: Evaluation results on dynamic link prediction in terms of F1-score.

Table 3: Dynamic link prediction results on Epinions-L

Method AVG AUC AVG F1

CTDNE 0.696 0.650
TSN 0.887 0.852

5.4 Dynamic Link Prediction
First, we evaluate themodel performance of ourMTSN as compared
to other state-of-the-art baselines in dynamic link prediction task.
Considering that both dynAE and dynAERNN require a certain
amount of historical information to train, we set the parameter look-
back as 4. Hence these methods do not output results on the first 4
time steps. Experimental results are reported in Table 2. As we can
see, our MTSN significantly outperforms all baseline methods in
terms of both AUC and F1 score on four datasets. More specifically,
experimental results indicate that MTSN achieves average gains
of 7–8% AUC and F1 score in comparison to the best performed
baseline across all datasets. Considering that the performance gain
in link prediction reported in some network representation learn-
ing methods [18, 28, 29] is usually around 2-3%, this performance
improvement achieved by our MTSN is significant. Among various
compared methods, DySAT performs the best, because it attempts
to learn node representations by adopting the self-attention along
with two dimensions of structural neighborhoods and temporal
dynamics. However, our MTSN consistently outperforms DySAT by
2-18% AUC and 4-16% F1 score across all datasets, which suggests
the rationality of our designed motif-preserving dynamic graph
neural network architecture. In addition, our model variant TSN
performs better than compared baselines, which validates the effec-
tiveness of our developed temporal shift mechanism for modeling
temporal dependencies in dynamic network.

Furthermore, we report the evaluation results of all approaches
in terms of AUC and F1 score at each time step in Figure 3 and
Figure 4. From these results, we have the following observations:
First, the performance of the static methods, i.e., GraLSP and Graph-
STONE, perform worse than most dynamic methods, but they per-
forms better than the dynamic network embedding methods such
as dynGEM, dynAE, dynAERNN, MMDNE and CTDNE on Epinions
dataset. This potential reason is that these dynamic methods cannot
leverage the attribute information included in the Epinions dataset.

1 2 3 4 5 6 7 8 9 1011
Time steps −0.04

−0.03

−0.02

−0.01

0.00

0.01

0.02

0.03

m
otif weight

(a) UCI dataset

1 2 3 4 5 6 7 8 9 10
Time steps −0.04

−0.03

−0.02

−0.01

0.00

0.01

0.02

0.03

0.04

m
otif weight

(b) Alibaba dataset

Figure 5: Motif weight on different datasets

However, the attribute information can provide useful knowledge
to effectively improve the performance of dynamic link prediction
on Epinions data. This has been demonstrated by the observation
that TGAT and DySAT perform better than MMDNE on Epinions.
Second, discrete-time methods (e.g., DySAT and MTSN) outper-
form continuous-time methods (e.g., MMDNE, CTDNE and TGAT)
on most datasets (except Alibaba dataset). One possible explanation
is that the continuous-time method can hardly capture the network
evolution with significant structure variation among time steps.
But the network structure changes between adjacent snapshots of
UCI, ML-10M and Epinions are relatively large, while the resolution
of each time step in Alibaba data is one day, thus the changes in
the network structure are relatively small. This is why MMDNE
performs better than other discrete-time methods on Alibaba. How-
ever, our method still achieves best on Alibaba data, because the
local high-order structures in motifs that implies important corre-
lation factors for potential links are embedded in our learned node
dynamic representations. In addition, our model performs multiple
temporal shift operations in time dimension, and can effectively
capture accurate temporal evolution characteristics in networks
with different time granularities.

Additionally, due to the heavy computational time and memory
cost of most baseline methods (e.g., more than 72 hours), we only
evaluate our TSN and CTDNE on the large-scale Epinions-L dataset,
and the results are reported in Table 3. From the results, we can see
that our variant TSN still achieves better results than CTDNE in
terms of both AUC and F1 score on large-scale Epinions-L dataset.

1636

Motif-Preserving Dynamic Attributed Network Embedding WWW’21, April 19–23, 2021, Ljubljana, Slovenia

2 3 4 5 6 7 8 9 10 11 12

Time steps

102

103

104

R
u
n
ti

m
e
 (

S
e
co

n
d
)

UCI

2 3 4 5 6 7 8 9 10 11

Time steps

102

103

104

Alibaba

dynGEM
dynAE
dynAERNN

MMDNE
CTDNE

TGAT
DySAT

TSN
MTSN

Figure 6: Runtime w.r.t. time step on UCI and Alibaba

32 64 128 256 512
Dimension d

0.7

0.8

0.9

1.0

AV
G

AU
C

TSN
MTSN

1.0
1.3
1.6
1.9

TSN
MTSN

2 3 4 5 6
#layers

0.70

0.75

0.80

0.85

0.90

0.95
TSN
MTSN

1.0
1.3
1.6
1.9
2.2

Ti
m

e
(1

03 S
ec

on
d)TSN

MTSN

Figure 7: AUC and Runtime w.r.t. d and #layers L

5.5 Impact of Different Network Motifs
To understand the impact of motifs in generating node representa-
tions in dynamic network, we visualize the motif weights learned
at each time step on UCI and Alibaba data in Figure 5. We can see
that the importance of motifs for node embeding generation vary
by datasets, and the importance of motifs at different time steps
also show different patterns.

In communication network UCI, we can observe that users are
more likely to interact with close friends in the same communities,
and the dense local structures could helps us improve the prediction
for future links. In E-commerce dataset Alibaba, the links in the
network indicate the interactions between users and products. We
can also observe that the four-star motif has the highest weight, but
most other types of motifs have only a small effect. This observation
is consistent with the characteristics of Alibaba as an E-commerce
website without social functions. In addition, because users tend
to click products that meet their preferences, four-star motif can
help us find a collection of products with high similarity in link
prediction. We can find that although the more general motif might
be a subgraph of the other types of motif structures, network motifs
with complex structures could preserve some node-specific unique
topology characteristics, which is complementary to more general
motif types. The above observations justify that our model can
automatically capture and differentiate the different types of local
high-order features in network at different time steps.

5.6 Efficiency and Parameter Sensitivity
Model Efficiency. In addition to the prediction accuracy, we fur-
ther investigate the efficiency of our MTSN and the variant TSN
and seven dynamic baselines on UCI and Alibaba datasets. Fig-
ure 6 shows the model efficiency evaluation results of different

approaches. From Figure 6, it can be seen that the efficiency of our
variant TSN is significantly better than all dynamic baselines, which
suggests the good model scalability of our proposed framework
in handling large-scale dataset. Recall that TSN can achieve much
better prediction performance than state-of-the-art baselines. As
we mentioned in the TIME layer section, the temporal shift oper-
ation can learn the dynamic evolution of the network at a very
low computational cost. Our MTSN incorporates network motifs
to obtain stronger representation performance with the increase
of computation cost accordingly. Nevertheless, our MTSN is still
more efficient than state-of-the-art methods: MMDNE and TGAT.
In reality, if we pursue higher efficiency, we can use our variant
TSN, which has highest efficiency, and also achieves better perfor-
mance over state-of-the-art baselines. If we pursue high prediction
performance, we can use our MTSN, which achieves state-of-the-
art performance with an acceptable time consumption.

Parameter Sensitivity. We also evaluate the sensitivity of our
proposed method MTSN and TSN w.r.t. different settings of em-
bedding dimension d and the number of TIME layers L. Figure 7
shows the experimental results on UCI dataset. From the evalua-
tion results, we find that the performance of our MTSN and TSN
increases lightly with the larger embedding dimensionality. Similar
observations for the effect of the number of layers. The model per-
formance becomes stable when the number of layers reaches at 4.
This is because that modeling the higher-order network structures
with a more deep graph network may lead to the over-smoothing
issue [3]. Nevertheless, we can notice see that the improvement in
prediction performance of our model requires more computation
cost. In practical scenarios, we can balance the performance and
efficiency by flexibly choosing the model settings according to the
requirements of network mining tasks.

6 CONCLUSION
In this paper, we present a motif-preserving dynamic attributed
network embedding MTSN that captures the local high-order struc-
tures and temporal evolution for dynamic attributed networks.
MTSN learns node dynamic representations by stacking TIME lay-
ers that simultaneously model both local high-order structural
proximities and temporal dynamics for dynamic network embed-
ding. Experiments on four real-world networks demonstrate that
our model significantly outperforms state-of-the-art baselines in
terms of both effectiveness and efficiency in dynamic link predic-
tion. For future work, we are interested in inducing a more complex
motif-aware sequential model to preserve the temporal dynamics
of network structures for graph representation learning.

ACKNOWLEDGMENTS
This work is partially supported by the National Key Research and
Development Program of China under grant No. 2018AAA0100602,
the National Natural Science Foundation of China under grant Nos.
61773331, U1706218, 41927805 and 61976123, and Key Development
Program for Basic Research of Shandong Province under grant No.
ZR2020ZD44. The views and conclusions contained in this paper are
those of the authors and should not be interpreted as representing
any funding agencies. Corresponding author: Yanwei Yu.

1637

WWW’21, April 19–23, 2021, Ljubljana, Slovenia Liu, et al.

REFERENCES
[1] Nesreen K. Ahmed, Jennifer Neville, Ryan A. Rossi, and Nick G. Duffield. 2015.

Efficient Graphlet Counting for Large Networks. In ICDM. 1–10.
[2] Ranran Bian, Yun Sing Koh, Gillian Dobbie, and Anna Divoli. 2019. Network

Embedding and ChangeModeling in Dynamic Heterogeneous Networks. In SIGIR.
861–864.

[3] Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. 2020. Measuring
and relieving the over-smoothing problem for graph neural networks from the
topological view. In AAAI, Vol. 34. 3438–3445.

[4] Hongxu Chen, Hongzhi Yin, WeiqingWang, HaoWang, Quoc Viet Hung Nguyen,
and Xue Li. 2018. PME: projected metric embedding on heterogeneous networks
for link prediction. In SIGKDD. 1177–1186.

[5] Sam De Winter, Tim Decuypere, Sandra Mitrović, Bart Baesens, and Jochen
De Weerdt. 2018. Combining temporal aspects of dynamic networks with
Node2Vec for a more efficient dynamic link prediction. In ASONAM. 1234–1241.

[6] Songgaojun Deng, Huzefa Rangwala, and Yue Ning. 2019. Learning Dynamic
Context Graphs for Predicting Social Events. In SIGKDD. 1007–1016.

[7] Lun Du, Yun Wang, Guojie Song, Zhicong Lu, and Junshan Wang. 2018. Dynamic
Network Embedding: An Extended Approach for Skip-gram based Network
Embedding. In IJCAI. 2086–2092.

[8] Hongchang Gao and Heng Huang. 2018. Deep Attributed Network Embedding.
In IJCAI. 3364–3370.

[9] Palash Goyal, Sujit Rokka Chhetri, and Arquimedes Canedo. 2020. dyngraph2vec:
Capturing network dynamics using dynamic graph representation learning.
Knowledge-Based Systems 187 (2020), 104816.

[10] F Maxwell Harper and Joseph A Konstan. 2015. The movielens datasets: History
and context. Acm transactions on interactive intelligent systems (tiis) 5, 4 (2015),
1–19.

[11] Chao Huang, Jiahui Chen, Lianghao Xia, Yong Xu, Peng Dai, Yanqing Chen,
Liefeng Bo, et al. 2021. Graph-enhanced multi-task learning of multi-level transi-
tion dynamics for session-based recommendation. In AAAI.

[12] Chao Huang, Baoxu Shi, Xuchao Zhang, Xian Wu, et al. 2019. Similarity-aware
network embedding with self-paced learning. In CIKM. 2113–2116.

[13] Chao Huang, Xian Wu, Xuchao Zhang, Chuxu Zhang, Jiashu Zhao, Dawei Yin,
and Nitesh V Chawla. 2019. Online purchase prediction via multi-scale modeling
of behavior dynamics. In SIGKDD. 2613–2622.

[14] Hong Huang, Zixuan Fang, Xiao Wang, Youshan Miao, and Hai Jin. 2020. Motif-
Preserving Temporal Network Embedding. In IJCAI. 1237–1243.

[15] Xiao Huang, Jundong Li, and Xia Hu. 2017. Label informed attributed network
embedding. In WSDM. 731–739.

[16] Xiao Huang, Qingquan Song, Fan Yang, and Xia Hu. 2019. Large-Scale Heteroge-
neous Feature Embedding. In AAAI. 3878–3885.

[17] Di Jin, Mark Heimann, Ryan A Rossi, and Danai Koutra. 2019. node2bits: Compact
Time-and Attribute-aware Node Representations for User Stitching. In ECML
PKDD. 483–506.

[18] Yilun Jin, Guojie Song, and Chuan Shi. 2020. GraLSP: Graph Neural Networks
with Local Structural Patterns. In AAAI. 4361–4368.

[19] Nitin Kamra, Palash Goyal, Xinran He, and Yan Liu. 2017. DynGEM: deep
embedding method for dynamic graphs. In IJCAI International Workshop on
Representation Learning for Graphs (ReLiG).

[20] Srijan Kumar, Xikun Zhang, and Jure Leskovec. 2019. Predicting dynamic em-
bedding trajectory in temporal interaction networks. In SIGKDD. 1269–1278.

[21] John Boaz Lee, Ryan A Rossi, Xiangnan Kong, Sungchul Kim, Eunyee Koh, and
Anup Rao. 2019. Graph convolutional networks with motif-based attention. In
CIKM. 499–508.

[22] Jundong Li, Harsh Dani, Xia Hu, Jiliang Tang, Yi Chang, and Huan Liu. 2017.
Attributed network embedding for learning in a dynamic environment. In CIKM.
387–396.

[23] Lizi Liao, Xiangnan He, Hanwang Zhang, and Tat-Seng Chua. 2018. Attributed
social network embedding. IEEE Transactions on Knowledge and Data Engineering
30, 12 (2018), 2257–2270.

[24] Ji Lin, Chuang Gan, and Song Han. 2019. Tsm: Temporal shift module for efficient
video understanding. In ICCV. 7083–7093.

[25] Xi Liu, Ping-Chun Hsieh, Nick Duffield, Rui Chen, Muhe Xie, and Xidao Wen.
2019. Real-time streaming graph embedding through local actions. In Companion
Proceedings of WWW. 285–293.

[26] Zhijun Liu, Chao Huang, Yanwei Yu, Baode Fan, and Junyu Dong. 2020. Fast
Attributed Multiplex Heterogeneous Network Embedding. In CIKM. 995–1004.

[27] Zhijun Liu, Chao Huang, Yanwei Yu, Peng Song, Baode Fan, and Junyu Dong.
2020. Dynamic Representation Learning for Large-Scale Attributed Networks. In
CIKM. 1005–1014.

[28] Qingqing Long, Yilun Jin, Guojie Song, Yi Li, andWei Lin. 2020. Graph Structural-
topic Neural Network. In SIGKDD. 1065–1073.

[29] Yuanfu Lu, Xiao Wang, Chuan Shi, Philip S Yu, and Yanfang Ye. 2019. Temporal
network embedding with micro-and macro-dynamics. In CIKM. 469–478.

[30] Wenjuan Luo, Han Zhang, Xiaodi Yang, Lin Bo, Xiaoqing Yang, Zang Li, Xiaohu
Qie, and Jieping Ye. 2020. Dynamic Heterogeneous Graph Neural Network for
Real-time Event Prediction. In SIGKDD. 3213–3223.

[31] Chen Ma, Peng Kang, and Xue Liu. 2019. Hierarchical gating networks for
sequential recommendation. In SIGKDD. 825–833.

[32] Jianxin Ma, Peng Cui, and Wenwu Zhu. 2018. DepthLGP: Learning Embeddings
of Out-of-Sample Nodes in Dynamic Networks. In AAAI. 370–377.

[33] Lijia Ma, Yutao Zhang, Jianqiang Li, Qiuzhen Lin, Qing Bao, Shanfeng Wang, and
Maoguo Gong. 2020. Community-aware dynamic network embedding by using
deep autoencoder. Information Sciences 519 (2020), 22–42.

[34] Franco Manessi, Alessandro Rozza, and Mario Manzo. 2020. Dynamic graph
convolutional networks. Pattern Recognition 97 (2020), 107000.

[35] Renny Márquez and Richard Weber. 2019. Overlapping community detection in
static and dynamic social networks. In WSDM. 822–823.

[36] Zaiqiao Meng, Shangsong Liang, Xiangliang Zhang, Richard McCreadie, and
Iadh Ounis. 2020. Jointly Learning Representations of Nodes and Attributes for
Attributed Networks. TOIS 38, 2 (2020), 1–32.

[37] Giang Hoang Nguyen, John Boaz Lee, Ryan A Rossi, Nesreen K Ahmed, Eunyee
Koh, and Sungchul Kim. 2018. Continuous-time dynamic network embeddings.
In Companion Proceedings of WWW. 969–976.

[38] Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, and Wenwu Zhu. 2016. Asym-
metric transitivity preserving graph embedding. In SIGKDD. 1105–1114.

[39] Pietro Panzarasa, Tore Opsahl, and Kathleen M Carley. 2009. Patterns and
dynamics of users’ behavior and interaction: Network analysis of an online
community. Journal of the American Society for Information Science and Technology
60, 5 (2009), 911–932.

[40] Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura,
Hiroki Kanezashi, Tim Kaler, Tao B Schardl, and Charles E Leiserson. 2020.
EvolveGCN: Evolving Graph Convolutional Networks for Dynamic Graphs. In
AAAI. 5363–5370.

[41] Aravind Sankar, Yanhong Wu, Liang Gou, Wei Zhang, and Hao Yang. 2020.
DySAT: Deep Neural Representation Learning on Dynamic Graphs via Self-
Attention Networks. In ICDM. 519–527.

[42] Uriel Singer, Ido Guy, and Kira Radinsky. 2019. Node Embedding over Temporal
Graphs. In IJCAI. 4605–4612.

[43] Yiwei Sun, Suhang Wang, Tsung-Yu Hsieh, Xianfeng Tang, and Vasant Honavar.
2019. Megan: A generative adversarial network for multi-view network embed-
ding. In IJCAI. 3527–3533.

[44] Aynaz Taheri, Kevin Gimpel, and Tanya Berger-Wolf. 2019. Learning to represent
the evolution of dynamic graphswith recurrentmodels. InCompanion Proceedings
of WWW. 301–307.

[45] Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, and Hongyuan Zha. 2019.
DyRep: Learning Representations over Dynamic Graphs. In ICLR.

[46] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In ICLR.

[47] Yun Xiong, Yao Zhang, Hanjie Fu,WeiWang, Yangyong Zhu, and S Yu Philip. 2019.
Dyngraphgan: Dynamic graph embedding via generative adversarial networks.
In DASFAA. 536–552.

[48] Da Xu, Chuanwei Ruan, Evren Körpeoglu, Sushant Kumar, and Kannan Achan.
2020. Inductive representation learning on temporal graphs. In ICLR.

[49] Yanlei Yu, Zhiwu Lu, Jiajun Liu, Guoping Zhao, and Ji-rong Wen. 2019. Rum:
Network representation learning using motifs. In ICDE. 1382–1393.

[50] Yanwei Yu, HongjianWang, and Zhenhui Li. 2018. Inferring mobility relationship
via graph embedding. Proceedings of the ACM on Interactive, Mobile, Wearable
and Ubiquitous Technologies (IMWUT) 2, 3 (2018), 1–21.

[51] Yanwei Yu, Huaxiu Yao, Hongjian Wang, Xianfeng Tang, and Zhenhui Li. 2018.
Representation learning for large-scale dynamic networks. In DASFAA. 526–541.

[52] Chuxu Zhang, Dongjin Song, Chao Huang, Ananthram Swami, and Nitesh V
Chawla. 2019. Heterogeneous graph neural network. In SIGKDD. 793–803.

[53] Ziwei Zhang, Peng Cui, Jian Pei, Xiao Wang, and Wenwu Zhu. 2018. TIMERS:
Error-Bounded SVD Restart on Dynamic Networks. In AAAI. 224–231.

[54] Aakas Zhiyuli, Xun Liang, Yanfang Chen, and Xiaoyong Du. 2018. Modeling
Large-Scale Dynamic Social Networks via Node Embeddings. IEEE Transactions
on Knowledge and Data Engineering 31, 10 (2018), 1994–2007.

[55] Aakas Zhiyuli, Xun Liang, YanFang Chen, Peng Shu, and Xiaoping Zhou. 2018.
Joint Learning of Evolving Links for Dynamic Network Embedding. In AAAI.
8189–8190.

[56] Dingyuan Zhu, Peng Cui, Ziwei Zhang, Jian Pei, and Wenwu Zhu. 2018. High-
order proximity preserved embedding for dynamic networks. IEEE Transactions
on Knowledge and Data Engineering 30, 11 (2018), 2134–2144.

[57] Yuan Zuo, Guannan Liu, Hao Lin, Jia Guo, Xiaoqian Hu, and Junjie Wu. 2018.
Embedding temporal network via neighborhood formation. In SIGKDD. 2857–
2866.

1638

	Abstract
	1 Introduction
	2 Related Work
	2.1 Dynamic Network Embedding
	2.2 Motif-based Network Embedding

	3 Problem Definition
	4 METHODOLOGY
	4.1 Motif-Preserving Encoder
	4.2 TIME: Temporal Shift based on MPE Layer
	4.3 Model Learning

	5 Experiments
	5.1 Datasets
	5.2 Baselines
	5.3 Experimental Setting
	5.4 Dynamic Link Prediction
	5.5 Impact of Different Network Motifs
	5.6 Efficiency and Parameter Sensitivity

	6 Conclusion
	Acknowledgments
	References

